blob: a40cefa9e7dcd4cbcc5e42dcb8d8e5fe79be6e97 [file] [log] [blame]
Brian Silverman72890c22015-09-19 14:37:37 -04001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
Austin Schuh189376f2018-12-20 22:11:15 +11005// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
Brian Silverman72890c22015-09-19 14:37:37 -04006//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
Austin Schuh189376f2018-12-20 22:11:15 +110011#ifndef EIGEN_INVERSE_IMPL_H
12#define EIGEN_INVERSE_IMPL_H
Brian Silverman72890c22015-09-19 14:37:37 -040013
14namespace Eigen {
15
16namespace internal {
17
18/**********************************
19*** General case implementation ***
20**********************************/
21
22template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
23struct compute_inverse
24{
Austin Schuh189376f2018-12-20 22:11:15 +110025 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -040026 static inline void run(const MatrixType& matrix, ResultType& result)
27 {
28 result = matrix.partialPivLu().inverse();
29 }
30};
31
32template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
33struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ };
34
35/****************************
36*** Size 1 implementation ***
37****************************/
38
39template<typename MatrixType, typename ResultType>
40struct compute_inverse<MatrixType, ResultType, 1>
41{
Austin Schuh189376f2018-12-20 22:11:15 +110042 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -040043 static inline void run(const MatrixType& matrix, ResultType& result)
44 {
45 typedef typename MatrixType::Scalar Scalar;
Austin Schuh189376f2018-12-20 22:11:15 +110046 internal::evaluator<MatrixType> matrixEval(matrix);
47 result.coeffRef(0,0) = Scalar(1) / matrixEval.coeff(0,0);
Brian Silverman72890c22015-09-19 14:37:37 -040048 }
49};
50
51template<typename MatrixType, typename ResultType>
52struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
53{
Austin Schuh189376f2018-12-20 22:11:15 +110054 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -040055 static inline void run(
56 const MatrixType& matrix,
57 const typename MatrixType::RealScalar& absDeterminantThreshold,
58 ResultType& result,
59 typename ResultType::Scalar& determinant,
60 bool& invertible
61 )
62 {
63 using std::abs;
64 determinant = matrix.coeff(0,0);
65 invertible = abs(determinant) > absDeterminantThreshold;
66 if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
67 }
68};
69
70/****************************
71*** Size 2 implementation ***
72****************************/
73
74template<typename MatrixType, typename ResultType>
Austin Schuh189376f2018-12-20 22:11:15 +110075EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -040076inline void compute_inverse_size2_helper(
77 const MatrixType& matrix, const typename ResultType::Scalar& invdet,
78 ResultType& result)
79{
Austin Schuhc55b0172022-02-20 17:52:35 -080080 typename ResultType::Scalar temp = matrix.coeff(0,0);
Austin Schuh189376f2018-12-20 22:11:15 +110081 result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
Brian Silverman72890c22015-09-19 14:37:37 -040082 result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
83 result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
Austin Schuhc55b0172022-02-20 17:52:35 -080084 result.coeffRef(1,1) = temp * invdet;
Brian Silverman72890c22015-09-19 14:37:37 -040085}
86
87template<typename MatrixType, typename ResultType>
88struct compute_inverse<MatrixType, ResultType, 2>
89{
Austin Schuh189376f2018-12-20 22:11:15 +110090 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -040091 static inline void run(const MatrixType& matrix, ResultType& result)
92 {
93 typedef typename ResultType::Scalar Scalar;
94 const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
95 compute_inverse_size2_helper(matrix, invdet, result);
96 }
97};
98
99template<typename MatrixType, typename ResultType>
100struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
101{
Austin Schuh189376f2018-12-20 22:11:15 +1100102 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400103 static inline void run(
104 const MatrixType& matrix,
105 const typename MatrixType::RealScalar& absDeterminantThreshold,
106 ResultType& inverse,
107 typename ResultType::Scalar& determinant,
108 bool& invertible
109 )
110 {
111 using std::abs;
112 typedef typename ResultType::Scalar Scalar;
113 determinant = matrix.determinant();
114 invertible = abs(determinant) > absDeterminantThreshold;
115 if(!invertible) return;
116 const Scalar invdet = Scalar(1) / determinant;
117 compute_inverse_size2_helper(matrix, invdet, inverse);
118 }
119};
120
121/****************************
122*** Size 3 implementation ***
123****************************/
124
125template<typename MatrixType, int i, int j>
Austin Schuh189376f2018-12-20 22:11:15 +1100126EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400127inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m)
128{
129 enum {
130 i1 = (i+1) % 3,
131 i2 = (i+2) % 3,
132 j1 = (j+1) % 3,
133 j2 = (j+2) % 3
134 };
135 return m.coeff(i1, j1) * m.coeff(i2, j2)
136 - m.coeff(i1, j2) * m.coeff(i2, j1);
137}
138
139template<typename MatrixType, typename ResultType>
Austin Schuh189376f2018-12-20 22:11:15 +1100140EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400141inline void compute_inverse_size3_helper(
142 const MatrixType& matrix,
143 const typename ResultType::Scalar& invdet,
144 const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0,
145 ResultType& result)
146{
Austin Schuhc55b0172022-02-20 17:52:35 -0800147 // Compute cofactors in a way that avoids aliasing issues.
148 typedef typename ResultType::Scalar Scalar;
149 const Scalar c01 = cofactor_3x3<MatrixType,0,1>(matrix) * invdet;
150 const Scalar c11 = cofactor_3x3<MatrixType,1,1>(matrix) * invdet;
151 const Scalar c02 = cofactor_3x3<MatrixType,0,2>(matrix) * invdet;
Brian Silverman72890c22015-09-19 14:37:37 -0400152 result.coeffRef(1,2) = cofactor_3x3<MatrixType,2,1>(matrix) * invdet;
Brian Silverman72890c22015-09-19 14:37:37 -0400153 result.coeffRef(2,1) = cofactor_3x3<MatrixType,1,2>(matrix) * invdet;
154 result.coeffRef(2,2) = cofactor_3x3<MatrixType,2,2>(matrix) * invdet;
Austin Schuhc55b0172022-02-20 17:52:35 -0800155 result.coeffRef(1,0) = c01;
156 result.coeffRef(1,1) = c11;
157 result.coeffRef(2,0) = c02;
158 result.row(0) = cofactors_col0 * invdet;
Brian Silverman72890c22015-09-19 14:37:37 -0400159}
160
161template<typename MatrixType, typename ResultType>
162struct compute_inverse<MatrixType, ResultType, 3>
163{
Austin Schuh189376f2018-12-20 22:11:15 +1100164 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400165 static inline void run(const MatrixType& matrix, ResultType& result)
166 {
167 typedef typename ResultType::Scalar Scalar;
168 Matrix<typename MatrixType::Scalar,3,1> cofactors_col0;
169 cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
170 cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
171 cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
172 const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
173 const Scalar invdet = Scalar(1) / det;
174 compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
175 }
176};
177
178template<typename MatrixType, typename ResultType>
179struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
180{
Austin Schuh189376f2018-12-20 22:11:15 +1100181 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400182 static inline void run(
183 const MatrixType& matrix,
184 const typename MatrixType::RealScalar& absDeterminantThreshold,
185 ResultType& inverse,
186 typename ResultType::Scalar& determinant,
187 bool& invertible
188 )
189 {
Brian Silverman72890c22015-09-19 14:37:37 -0400190 typedef typename ResultType::Scalar Scalar;
191 Matrix<Scalar,3,1> cofactors_col0;
192 cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
193 cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
194 cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
195 determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
Austin Schuhc55b0172022-02-20 17:52:35 -0800196 invertible = Eigen::numext::abs(determinant) > absDeterminantThreshold;
Brian Silverman72890c22015-09-19 14:37:37 -0400197 if(!invertible) return;
198 const Scalar invdet = Scalar(1) / determinant;
199 compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
200 }
201};
202
203/****************************
204*** Size 4 implementation ***
205****************************/
206
207template<typename Derived>
Austin Schuh189376f2018-12-20 22:11:15 +1100208EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400209inline const typename Derived::Scalar general_det3_helper
210(const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3)
211{
212 return matrix.coeff(i1,j1)
213 * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2));
214}
215
216template<typename MatrixType, int i, int j>
Austin Schuh189376f2018-12-20 22:11:15 +1100217EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400218inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix)
219{
220 enum {
221 i1 = (i+1) % 4,
222 i2 = (i+2) % 4,
223 i3 = (i+3) % 4,
224 j1 = (j+1) % 4,
225 j2 = (j+2) % 4,
226 j3 = (j+3) % 4
227 };
228 return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3)
229 + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3)
230 + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3);
231}
232
233template<int Arch, typename Scalar, typename MatrixType, typename ResultType>
234struct compute_inverse_size4
235{
Austin Schuh189376f2018-12-20 22:11:15 +1100236 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400237 static void run(const MatrixType& matrix, ResultType& result)
238 {
239 result.coeffRef(0,0) = cofactor_4x4<MatrixType,0,0>(matrix);
240 result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix);
241 result.coeffRef(2,0) = cofactor_4x4<MatrixType,0,2>(matrix);
242 result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix);
243 result.coeffRef(0,2) = cofactor_4x4<MatrixType,2,0>(matrix);
244 result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix);
245 result.coeffRef(2,2) = cofactor_4x4<MatrixType,2,2>(matrix);
246 result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix);
247 result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix);
248 result.coeffRef(1,1) = cofactor_4x4<MatrixType,1,1>(matrix);
249 result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix);
250 result.coeffRef(3,1) = cofactor_4x4<MatrixType,1,3>(matrix);
251 result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix);
252 result.coeffRef(1,3) = cofactor_4x4<MatrixType,3,1>(matrix);
253 result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix);
254 result.coeffRef(3,3) = cofactor_4x4<MatrixType,3,3>(matrix);
255 result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum();
256 }
257};
258
259template<typename MatrixType, typename ResultType>
260struct compute_inverse<MatrixType, ResultType, 4>
261 : compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar,
262 MatrixType, ResultType>
263{
264};
265
266template<typename MatrixType, typename ResultType>
267struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
268{
Austin Schuh189376f2018-12-20 22:11:15 +1100269 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400270 static inline void run(
271 const MatrixType& matrix,
272 const typename MatrixType::RealScalar& absDeterminantThreshold,
273 ResultType& inverse,
274 typename ResultType::Scalar& determinant,
275 bool& invertible
276 )
277 {
278 using std::abs;
279 determinant = matrix.determinant();
280 invertible = abs(determinant) > absDeterminantThreshold;
Austin Schuhc55b0172022-02-20 17:52:35 -0800281 if(invertible && extract_data(matrix) != extract_data(inverse)) {
282 compute_inverse<MatrixType, ResultType>::run(matrix, inverse);
283 }
284 else if(invertible) {
285 MatrixType matrix_t = matrix;
286 compute_inverse<MatrixType, ResultType>::run(matrix_t, inverse);
287 }
Brian Silverman72890c22015-09-19 14:37:37 -0400288 }
289};
290
291/*************************
292*** MatrixBase methods ***
293*************************/
294
Austin Schuh189376f2018-12-20 22:11:15 +1100295} // end namespace internal
296
297namespace internal {
298
299// Specialization for "dense = dense_xpr.inverse()"
300template<typename DstXprType, typename XprType>
301struct Assignment<DstXprType, Inverse<XprType>, internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar>, Dense2Dense>
Brian Silverman72890c22015-09-19 14:37:37 -0400302{
Austin Schuh189376f2018-12-20 22:11:15 +1100303 typedef Inverse<XprType> SrcXprType;
Austin Schuhc55b0172022-02-20 17:52:35 -0800304 EIGEN_DEVICE_FUNC
Austin Schuh189376f2018-12-20 22:11:15 +1100305 static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar> &)
Brian Silverman72890c22015-09-19 14:37:37 -0400306 {
Austin Schuh189376f2018-12-20 22:11:15 +1100307 Index dstRows = src.rows();
308 Index dstCols = src.cols();
309 if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
310 dst.resize(dstRows, dstCols);
311
312 const int Size = EIGEN_PLAIN_ENUM_MIN(XprType::ColsAtCompileTime,DstXprType::ColsAtCompileTime);
Brian Silverman72890c22015-09-19 14:37:37 -0400313 EIGEN_ONLY_USED_FOR_DEBUG(Size);
Austin Schuh189376f2018-12-20 22:11:15 +1100314 eigen_assert(( (Size<=1) || (Size>4) || (extract_data(src.nestedExpression())!=extract_data(dst)))
Brian Silverman72890c22015-09-19 14:37:37 -0400315 && "Aliasing problem detected in inverse(), you need to do inverse().eval() here.");
316
Austin Schuh189376f2018-12-20 22:11:15 +1100317 typedef typename internal::nested_eval<XprType,XprType::ColsAtCompileTime>::type ActualXprType;
318 typedef typename internal::remove_all<ActualXprType>::type ActualXprTypeCleanded;
319
320 ActualXprType actual_xpr(src.nestedExpression());
321
322 compute_inverse<ActualXprTypeCleanded, DstXprType>::run(actual_xpr, dst);
Brian Silverman72890c22015-09-19 14:37:37 -0400323 }
324};
325
Austin Schuh189376f2018-12-20 22:11:15 +1100326
Brian Silverman72890c22015-09-19 14:37:37 -0400327} // end namespace internal
328
329/** \lu_module
330 *
331 * \returns the matrix inverse of this matrix.
332 *
333 * For small fixed sizes up to 4x4, this method uses cofactors.
334 * In the general case, this method uses class PartialPivLU.
335 *
336 * \note This matrix must be invertible, otherwise the result is undefined. If you need an
337 * invertibility check, do the following:
338 * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck().
339 * \li for the general case, use class FullPivLU.
340 *
341 * Example: \include MatrixBase_inverse.cpp
342 * Output: \verbinclude MatrixBase_inverse.out
343 *
344 * \sa computeInverseAndDetWithCheck()
345 */
346template<typename Derived>
Austin Schuhc55b0172022-02-20 17:52:35 -0800347EIGEN_DEVICE_FUNC
Austin Schuh189376f2018-12-20 22:11:15 +1100348inline const Inverse<Derived> MatrixBase<Derived>::inverse() const
Brian Silverman72890c22015-09-19 14:37:37 -0400349{
350 EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
351 eigen_assert(rows() == cols());
Austin Schuh189376f2018-12-20 22:11:15 +1100352 return Inverse<Derived>(derived());
Brian Silverman72890c22015-09-19 14:37:37 -0400353}
354
355/** \lu_module
356 *
357 * Computation of matrix inverse and determinant, with invertibility check.
358 *
359 * This is only for fixed-size square matrices of size up to 4x4.
360 *
Austin Schuhc55b0172022-02-20 17:52:35 -0800361 * Notice that it will trigger a copy of input matrix when trying to do the inverse in place.
362 *
Brian Silverman72890c22015-09-19 14:37:37 -0400363 * \param inverse Reference to the matrix in which to store the inverse.
364 * \param determinant Reference to the variable in which to store the determinant.
365 * \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
366 * \param absDeterminantThreshold Optional parameter controlling the invertibility check.
367 * The matrix will be declared invertible if the absolute value of its
368 * determinant is greater than this threshold.
369 *
370 * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp
371 * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out
372 *
373 * \sa inverse(), computeInverseWithCheck()
374 */
375template<typename Derived>
376template<typename ResultType>
377inline void MatrixBase<Derived>::computeInverseAndDetWithCheck(
378 ResultType& inverse,
379 typename ResultType::Scalar& determinant,
380 bool& invertible,
381 const RealScalar& absDeterminantThreshold
382 ) const
383{
384 // i'd love to put some static assertions there, but SFINAE means that they have no effect...
385 eigen_assert(rows() == cols());
386 // for 2x2, it's worth giving a chance to avoid evaluating.
387 // for larger sizes, evaluating has negligible cost and limits code size.
388 typedef typename internal::conditional<
389 RowsAtCompileTime == 2,
Austin Schuh189376f2018-12-20 22:11:15 +1100390 typename internal::remove_all<typename internal::nested_eval<Derived, 2>::type>::type,
Brian Silverman72890c22015-09-19 14:37:37 -0400391 PlainObject
392 >::type MatrixType;
393 internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run
394 (derived(), absDeterminantThreshold, inverse, determinant, invertible);
395}
396
397/** \lu_module
398 *
399 * Computation of matrix inverse, with invertibility check.
400 *
401 * This is only for fixed-size square matrices of size up to 4x4.
402 *
Austin Schuhc55b0172022-02-20 17:52:35 -0800403 * Notice that it will trigger a copy of input matrix when trying to do the inverse in place.
404 *
Brian Silverman72890c22015-09-19 14:37:37 -0400405 * \param inverse Reference to the matrix in which to store the inverse.
406 * \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
407 * \param absDeterminantThreshold Optional parameter controlling the invertibility check.
408 * The matrix will be declared invertible if the absolute value of its
409 * determinant is greater than this threshold.
410 *
411 * Example: \include MatrixBase_computeInverseWithCheck.cpp
412 * Output: \verbinclude MatrixBase_computeInverseWithCheck.out
413 *
414 * \sa inverse(), computeInverseAndDetWithCheck()
415 */
416template<typename Derived>
417template<typename ResultType>
418inline void MatrixBase<Derived>::computeInverseWithCheck(
419 ResultType& inverse,
420 bool& invertible,
421 const RealScalar& absDeterminantThreshold
422 ) const
423{
Austin Schuh189376f2018-12-20 22:11:15 +1100424 Scalar determinant;
Brian Silverman72890c22015-09-19 14:37:37 -0400425 // i'd love to put some static assertions there, but SFINAE means that they have no effect...
426 eigen_assert(rows() == cols());
427 computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold);
428}
429
430} // end namespace Eigen
431
Austin Schuh189376f2018-12-20 22:11:15 +1100432#endif // EIGEN_INVERSE_IMPL_H