Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/Eigen/src/LU/Inverse.h b/Eigen/src/LU/Inverse.h
new file mode 100644
index 0000000..3cf8871
--- /dev/null
+++ b/Eigen/src/LU/Inverse.h
@@ -0,0 +1,400 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_INVERSE_H
+#define EIGEN_INVERSE_H
+
+namespace Eigen { 
+
+namespace internal {
+
+/**********************************
+*** General case implementation ***
+**********************************/
+
+template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
+struct compute_inverse
+{
+  static inline void run(const MatrixType& matrix, ResultType& result)
+  {
+    result = matrix.partialPivLu().inverse();
+  }
+};
+
+template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
+struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ };
+
+/****************************
+*** Size 1 implementation ***
+****************************/
+
+template<typename MatrixType, typename ResultType>
+struct compute_inverse<MatrixType, ResultType, 1>
+{
+  static inline void run(const MatrixType& matrix, ResultType& result)
+  {
+    typedef typename MatrixType::Scalar Scalar;
+    result.coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0);
+  }
+};
+
+template<typename MatrixType, typename ResultType>
+struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
+{
+  static inline void run(
+    const MatrixType& matrix,
+    const typename MatrixType::RealScalar& absDeterminantThreshold,
+    ResultType& result,
+    typename ResultType::Scalar& determinant,
+    bool& invertible
+  )
+  {
+    using std::abs;
+    determinant = matrix.coeff(0,0);
+    invertible = abs(determinant) > absDeterminantThreshold;
+    if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
+  }
+};
+
+/****************************
+*** Size 2 implementation ***
+****************************/
+
+template<typename MatrixType, typename ResultType>
+inline void compute_inverse_size2_helper(
+    const MatrixType& matrix, const typename ResultType::Scalar& invdet,
+    ResultType& result)
+{
+  result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
+  result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
+  result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
+  result.coeffRef(1,1) = matrix.coeff(0,0) * invdet;
+}
+
+template<typename MatrixType, typename ResultType>
+struct compute_inverse<MatrixType, ResultType, 2>
+{
+  static inline void run(const MatrixType& matrix, ResultType& result)
+  {
+    typedef typename ResultType::Scalar Scalar;
+    const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
+    compute_inverse_size2_helper(matrix, invdet, result);
+  }
+};
+
+template<typename MatrixType, typename ResultType>
+struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
+{
+  static inline void run(
+    const MatrixType& matrix,
+    const typename MatrixType::RealScalar& absDeterminantThreshold,
+    ResultType& inverse,
+    typename ResultType::Scalar& determinant,
+    bool& invertible
+  )
+  {
+    using std::abs;
+    typedef typename ResultType::Scalar Scalar;
+    determinant = matrix.determinant();
+    invertible = abs(determinant) > absDeterminantThreshold;
+    if(!invertible) return;
+    const Scalar invdet = Scalar(1) / determinant;
+    compute_inverse_size2_helper(matrix, invdet, inverse);
+  }
+};
+
+/****************************
+*** Size 3 implementation ***
+****************************/
+
+template<typename MatrixType, int i, int j>
+inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m)
+{
+  enum {
+    i1 = (i+1) % 3,
+    i2 = (i+2) % 3,
+    j1 = (j+1) % 3,
+    j2 = (j+2) % 3
+  };
+  return m.coeff(i1, j1) * m.coeff(i2, j2)
+       - m.coeff(i1, j2) * m.coeff(i2, j1);
+}
+
+template<typename MatrixType, typename ResultType>
+inline void compute_inverse_size3_helper(
+    const MatrixType& matrix,
+    const typename ResultType::Scalar& invdet,
+    const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0,
+    ResultType& result)
+{
+  result.row(0) = cofactors_col0 * invdet;
+  result.coeffRef(1,0) =  cofactor_3x3<MatrixType,0,1>(matrix) * invdet;
+  result.coeffRef(1,1) =  cofactor_3x3<MatrixType,1,1>(matrix) * invdet;
+  result.coeffRef(1,2) =  cofactor_3x3<MatrixType,2,1>(matrix) * invdet;
+  result.coeffRef(2,0) =  cofactor_3x3<MatrixType,0,2>(matrix) * invdet;
+  result.coeffRef(2,1) =  cofactor_3x3<MatrixType,1,2>(matrix) * invdet;
+  result.coeffRef(2,2) =  cofactor_3x3<MatrixType,2,2>(matrix) * invdet;
+}
+
+template<typename MatrixType, typename ResultType>
+struct compute_inverse<MatrixType, ResultType, 3>
+{
+  static inline void run(const MatrixType& matrix, ResultType& result)
+  {
+    typedef typename ResultType::Scalar Scalar;
+    Matrix<typename MatrixType::Scalar,3,1> cofactors_col0;
+    cofactors_col0.coeffRef(0) =  cofactor_3x3<MatrixType,0,0>(matrix);
+    cofactors_col0.coeffRef(1) =  cofactor_3x3<MatrixType,1,0>(matrix);
+    cofactors_col0.coeffRef(2) =  cofactor_3x3<MatrixType,2,0>(matrix);
+    const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
+    const Scalar invdet = Scalar(1) / det;
+    compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
+  }
+};
+
+template<typename MatrixType, typename ResultType>
+struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
+{
+  static inline void run(
+    const MatrixType& matrix,
+    const typename MatrixType::RealScalar& absDeterminantThreshold,
+    ResultType& inverse,
+    typename ResultType::Scalar& determinant,
+    bool& invertible
+  )
+  {
+    using std::abs;
+    typedef typename ResultType::Scalar Scalar;
+    Matrix<Scalar,3,1> cofactors_col0;
+    cofactors_col0.coeffRef(0) =  cofactor_3x3<MatrixType,0,0>(matrix);
+    cofactors_col0.coeffRef(1) =  cofactor_3x3<MatrixType,1,0>(matrix);
+    cofactors_col0.coeffRef(2) =  cofactor_3x3<MatrixType,2,0>(matrix);
+    determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
+    invertible = abs(determinant) > absDeterminantThreshold;
+    if(!invertible) return;
+    const Scalar invdet = Scalar(1) / determinant;
+    compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
+  }
+};
+
+/****************************
+*** Size 4 implementation ***
+****************************/
+
+template<typename Derived>
+inline const typename Derived::Scalar general_det3_helper
+(const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3)
+{
+  return matrix.coeff(i1,j1)
+         * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2));
+}
+
+template<typename MatrixType, int i, int j>
+inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix)
+{
+  enum {
+    i1 = (i+1) % 4,
+    i2 = (i+2) % 4,
+    i3 = (i+3) % 4,
+    j1 = (j+1) % 4,
+    j2 = (j+2) % 4,
+    j3 = (j+3) % 4
+  };
+  return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3)
+       + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3)
+       + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3);
+}
+
+template<int Arch, typename Scalar, typename MatrixType, typename ResultType>
+struct compute_inverse_size4
+{
+  static void run(const MatrixType& matrix, ResultType& result)
+  {
+    result.coeffRef(0,0) =  cofactor_4x4<MatrixType,0,0>(matrix);
+    result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix);
+    result.coeffRef(2,0) =  cofactor_4x4<MatrixType,0,2>(matrix);
+    result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix);
+    result.coeffRef(0,2) =  cofactor_4x4<MatrixType,2,0>(matrix);
+    result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix);
+    result.coeffRef(2,2) =  cofactor_4x4<MatrixType,2,2>(matrix);
+    result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix);
+    result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix);
+    result.coeffRef(1,1) =  cofactor_4x4<MatrixType,1,1>(matrix);
+    result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix);
+    result.coeffRef(3,1) =  cofactor_4x4<MatrixType,1,3>(matrix);
+    result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix);
+    result.coeffRef(1,3) =  cofactor_4x4<MatrixType,3,1>(matrix);
+    result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix);
+    result.coeffRef(3,3) =  cofactor_4x4<MatrixType,3,3>(matrix);
+    result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum();
+  }
+};
+
+template<typename MatrixType, typename ResultType>
+struct compute_inverse<MatrixType, ResultType, 4>
+ : compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar,
+                            MatrixType, ResultType>
+{
+};
+
+template<typename MatrixType, typename ResultType>
+struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
+{
+  static inline void run(
+    const MatrixType& matrix,
+    const typename MatrixType::RealScalar& absDeterminantThreshold,
+    ResultType& inverse,
+    typename ResultType::Scalar& determinant,
+    bool& invertible
+  )
+  {
+    using std::abs;
+    determinant = matrix.determinant();
+    invertible = abs(determinant) > absDeterminantThreshold;
+    if(invertible) compute_inverse<MatrixType, ResultType>::run(matrix, inverse);
+  }
+};
+
+/*************************
+*** MatrixBase methods ***
+*************************/
+
+template<typename MatrixType>
+struct traits<inverse_impl<MatrixType> >
+{
+  typedef typename MatrixType::PlainObject ReturnType;
+};
+
+template<typename MatrixType>
+struct inverse_impl : public ReturnByValue<inverse_impl<MatrixType> >
+{
+  typedef typename MatrixType::Index Index;
+  typedef typename internal::eval<MatrixType>::type MatrixTypeNested;
+  typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
+  MatrixTypeNested m_matrix;
+
+  inverse_impl(const MatrixType& matrix)
+    : m_matrix(matrix)
+  {}
+
+  inline Index rows() const { return m_matrix.rows(); }
+  inline Index cols() const { return m_matrix.cols(); }
+
+  template<typename Dest> inline void evalTo(Dest& dst) const
+  {
+    const int Size = EIGEN_PLAIN_ENUM_MIN(MatrixType::ColsAtCompileTime,Dest::ColsAtCompileTime);
+    EIGEN_ONLY_USED_FOR_DEBUG(Size);
+    eigen_assert(( (Size<=1) || (Size>4) || (extract_data(m_matrix)!=extract_data(dst)))
+              && "Aliasing problem detected in inverse(), you need to do inverse().eval() here.");
+
+    compute_inverse<MatrixTypeNestedCleaned, Dest>::run(m_matrix, dst);
+  }
+};
+
+} // end namespace internal
+
+/** \lu_module
+  *
+  * \returns the matrix inverse of this matrix.
+  *
+  * For small fixed sizes up to 4x4, this method uses cofactors.
+  * In the general case, this method uses class PartialPivLU.
+  *
+  * \note This matrix must be invertible, otherwise the result is undefined. If you need an
+  * invertibility check, do the following:
+  * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck().
+  * \li for the general case, use class FullPivLU.
+  *
+  * Example: \include MatrixBase_inverse.cpp
+  * Output: \verbinclude MatrixBase_inverse.out
+  *
+  * \sa computeInverseAndDetWithCheck()
+  */
+template<typename Derived>
+inline const internal::inverse_impl<Derived> MatrixBase<Derived>::inverse() const
+{
+  EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
+  eigen_assert(rows() == cols());
+  return internal::inverse_impl<Derived>(derived());
+}
+
+/** \lu_module
+  *
+  * Computation of matrix inverse and determinant, with invertibility check.
+  *
+  * This is only for fixed-size square matrices of size up to 4x4.
+  *
+  * \param inverse Reference to the matrix in which to store the inverse.
+  * \param determinant Reference to the variable in which to store the determinant.
+  * \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
+  * \param absDeterminantThreshold Optional parameter controlling the invertibility check.
+  *                                The matrix will be declared invertible if the absolute value of its
+  *                                determinant is greater than this threshold.
+  *
+  * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp
+  * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out
+  *
+  * \sa inverse(), computeInverseWithCheck()
+  */
+template<typename Derived>
+template<typename ResultType>
+inline void MatrixBase<Derived>::computeInverseAndDetWithCheck(
+    ResultType& inverse,
+    typename ResultType::Scalar& determinant,
+    bool& invertible,
+    const RealScalar& absDeterminantThreshold
+  ) const
+{
+  // i'd love to put some static assertions there, but SFINAE means that they have no effect...
+  eigen_assert(rows() == cols());
+  // for 2x2, it's worth giving a chance to avoid evaluating.
+  // for larger sizes, evaluating has negligible cost and limits code size.
+  typedef typename internal::conditional<
+    RowsAtCompileTime == 2,
+    typename internal::remove_all<typename internal::nested<Derived, 2>::type>::type,
+    PlainObject
+  >::type MatrixType;
+  internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run
+    (derived(), absDeterminantThreshold, inverse, determinant, invertible);
+}
+
+/** \lu_module
+  *
+  * Computation of matrix inverse, with invertibility check.
+  *
+  * This is only for fixed-size square matrices of size up to 4x4.
+  *
+  * \param inverse Reference to the matrix in which to store the inverse.
+  * \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
+  * \param absDeterminantThreshold Optional parameter controlling the invertibility check.
+  *                                The matrix will be declared invertible if the absolute value of its
+  *                                determinant is greater than this threshold.
+  *
+  * Example: \include MatrixBase_computeInverseWithCheck.cpp
+  * Output: \verbinclude MatrixBase_computeInverseWithCheck.out
+  *
+  * \sa inverse(), computeInverseAndDetWithCheck()
+  */
+template<typename Derived>
+template<typename ResultType>
+inline void MatrixBase<Derived>::computeInverseWithCheck(
+    ResultType& inverse,
+    bool& invertible,
+    const RealScalar& absDeterminantThreshold
+  ) const
+{
+  RealScalar determinant;
+  // i'd love to put some static assertions there, but SFINAE means that they have no effect...
+  eigen_assert(rows() == cols());
+  computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold);
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_INVERSE_H