Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_INVERSE_H |
| 11 | #define EIGEN_INVERSE_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | namespace internal { |
| 16 | |
| 17 | /********************************** |
| 18 | *** General case implementation *** |
| 19 | **********************************/ |
| 20 | |
| 21 | template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime> |
| 22 | struct compute_inverse |
| 23 | { |
| 24 | static inline void run(const MatrixType& matrix, ResultType& result) |
| 25 | { |
| 26 | result = matrix.partialPivLu().inverse(); |
| 27 | } |
| 28 | }; |
| 29 | |
| 30 | template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime> |
| 31 | struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ }; |
| 32 | |
| 33 | /**************************** |
| 34 | *** Size 1 implementation *** |
| 35 | ****************************/ |
| 36 | |
| 37 | template<typename MatrixType, typename ResultType> |
| 38 | struct compute_inverse<MatrixType, ResultType, 1> |
| 39 | { |
| 40 | static inline void run(const MatrixType& matrix, ResultType& result) |
| 41 | { |
| 42 | typedef typename MatrixType::Scalar Scalar; |
| 43 | result.coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0); |
| 44 | } |
| 45 | }; |
| 46 | |
| 47 | template<typename MatrixType, typename ResultType> |
| 48 | struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1> |
| 49 | { |
| 50 | static inline void run( |
| 51 | const MatrixType& matrix, |
| 52 | const typename MatrixType::RealScalar& absDeterminantThreshold, |
| 53 | ResultType& result, |
| 54 | typename ResultType::Scalar& determinant, |
| 55 | bool& invertible |
| 56 | ) |
| 57 | { |
| 58 | using std::abs; |
| 59 | determinant = matrix.coeff(0,0); |
| 60 | invertible = abs(determinant) > absDeterminantThreshold; |
| 61 | if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant; |
| 62 | } |
| 63 | }; |
| 64 | |
| 65 | /**************************** |
| 66 | *** Size 2 implementation *** |
| 67 | ****************************/ |
| 68 | |
| 69 | template<typename MatrixType, typename ResultType> |
| 70 | inline void compute_inverse_size2_helper( |
| 71 | const MatrixType& matrix, const typename ResultType::Scalar& invdet, |
| 72 | ResultType& result) |
| 73 | { |
| 74 | result.coeffRef(0,0) = matrix.coeff(1,1) * invdet; |
| 75 | result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet; |
| 76 | result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet; |
| 77 | result.coeffRef(1,1) = matrix.coeff(0,0) * invdet; |
| 78 | } |
| 79 | |
| 80 | template<typename MatrixType, typename ResultType> |
| 81 | struct compute_inverse<MatrixType, ResultType, 2> |
| 82 | { |
| 83 | static inline void run(const MatrixType& matrix, ResultType& result) |
| 84 | { |
| 85 | typedef typename ResultType::Scalar Scalar; |
| 86 | const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant(); |
| 87 | compute_inverse_size2_helper(matrix, invdet, result); |
| 88 | } |
| 89 | }; |
| 90 | |
| 91 | template<typename MatrixType, typename ResultType> |
| 92 | struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2> |
| 93 | { |
| 94 | static inline void run( |
| 95 | const MatrixType& matrix, |
| 96 | const typename MatrixType::RealScalar& absDeterminantThreshold, |
| 97 | ResultType& inverse, |
| 98 | typename ResultType::Scalar& determinant, |
| 99 | bool& invertible |
| 100 | ) |
| 101 | { |
| 102 | using std::abs; |
| 103 | typedef typename ResultType::Scalar Scalar; |
| 104 | determinant = matrix.determinant(); |
| 105 | invertible = abs(determinant) > absDeterminantThreshold; |
| 106 | if(!invertible) return; |
| 107 | const Scalar invdet = Scalar(1) / determinant; |
| 108 | compute_inverse_size2_helper(matrix, invdet, inverse); |
| 109 | } |
| 110 | }; |
| 111 | |
| 112 | /**************************** |
| 113 | *** Size 3 implementation *** |
| 114 | ****************************/ |
| 115 | |
| 116 | template<typename MatrixType, int i, int j> |
| 117 | inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m) |
| 118 | { |
| 119 | enum { |
| 120 | i1 = (i+1) % 3, |
| 121 | i2 = (i+2) % 3, |
| 122 | j1 = (j+1) % 3, |
| 123 | j2 = (j+2) % 3 |
| 124 | }; |
| 125 | return m.coeff(i1, j1) * m.coeff(i2, j2) |
| 126 | - m.coeff(i1, j2) * m.coeff(i2, j1); |
| 127 | } |
| 128 | |
| 129 | template<typename MatrixType, typename ResultType> |
| 130 | inline void compute_inverse_size3_helper( |
| 131 | const MatrixType& matrix, |
| 132 | const typename ResultType::Scalar& invdet, |
| 133 | const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0, |
| 134 | ResultType& result) |
| 135 | { |
| 136 | result.row(0) = cofactors_col0 * invdet; |
| 137 | result.coeffRef(1,0) = cofactor_3x3<MatrixType,0,1>(matrix) * invdet; |
| 138 | result.coeffRef(1,1) = cofactor_3x3<MatrixType,1,1>(matrix) * invdet; |
| 139 | result.coeffRef(1,2) = cofactor_3x3<MatrixType,2,1>(matrix) * invdet; |
| 140 | result.coeffRef(2,0) = cofactor_3x3<MatrixType,0,2>(matrix) * invdet; |
| 141 | result.coeffRef(2,1) = cofactor_3x3<MatrixType,1,2>(matrix) * invdet; |
| 142 | result.coeffRef(2,2) = cofactor_3x3<MatrixType,2,2>(matrix) * invdet; |
| 143 | } |
| 144 | |
| 145 | template<typename MatrixType, typename ResultType> |
| 146 | struct compute_inverse<MatrixType, ResultType, 3> |
| 147 | { |
| 148 | static inline void run(const MatrixType& matrix, ResultType& result) |
| 149 | { |
| 150 | typedef typename ResultType::Scalar Scalar; |
| 151 | Matrix<typename MatrixType::Scalar,3,1> cofactors_col0; |
| 152 | cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix); |
| 153 | cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix); |
| 154 | cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix); |
| 155 | const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); |
| 156 | const Scalar invdet = Scalar(1) / det; |
| 157 | compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result); |
| 158 | } |
| 159 | }; |
| 160 | |
| 161 | template<typename MatrixType, typename ResultType> |
| 162 | struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3> |
| 163 | { |
| 164 | static inline void run( |
| 165 | const MatrixType& matrix, |
| 166 | const typename MatrixType::RealScalar& absDeterminantThreshold, |
| 167 | ResultType& inverse, |
| 168 | typename ResultType::Scalar& determinant, |
| 169 | bool& invertible |
| 170 | ) |
| 171 | { |
| 172 | using std::abs; |
| 173 | typedef typename ResultType::Scalar Scalar; |
| 174 | Matrix<Scalar,3,1> cofactors_col0; |
| 175 | cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix); |
| 176 | cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix); |
| 177 | cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix); |
| 178 | determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); |
| 179 | invertible = abs(determinant) > absDeterminantThreshold; |
| 180 | if(!invertible) return; |
| 181 | const Scalar invdet = Scalar(1) / determinant; |
| 182 | compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse); |
| 183 | } |
| 184 | }; |
| 185 | |
| 186 | /**************************** |
| 187 | *** Size 4 implementation *** |
| 188 | ****************************/ |
| 189 | |
| 190 | template<typename Derived> |
| 191 | inline const typename Derived::Scalar general_det3_helper |
| 192 | (const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3) |
| 193 | { |
| 194 | return matrix.coeff(i1,j1) |
| 195 | * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2)); |
| 196 | } |
| 197 | |
| 198 | template<typename MatrixType, int i, int j> |
| 199 | inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix) |
| 200 | { |
| 201 | enum { |
| 202 | i1 = (i+1) % 4, |
| 203 | i2 = (i+2) % 4, |
| 204 | i3 = (i+3) % 4, |
| 205 | j1 = (j+1) % 4, |
| 206 | j2 = (j+2) % 4, |
| 207 | j3 = (j+3) % 4 |
| 208 | }; |
| 209 | return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3) |
| 210 | + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3) |
| 211 | + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3); |
| 212 | } |
| 213 | |
| 214 | template<int Arch, typename Scalar, typename MatrixType, typename ResultType> |
| 215 | struct compute_inverse_size4 |
| 216 | { |
| 217 | static void run(const MatrixType& matrix, ResultType& result) |
| 218 | { |
| 219 | result.coeffRef(0,0) = cofactor_4x4<MatrixType,0,0>(matrix); |
| 220 | result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix); |
| 221 | result.coeffRef(2,0) = cofactor_4x4<MatrixType,0,2>(matrix); |
| 222 | result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix); |
| 223 | result.coeffRef(0,2) = cofactor_4x4<MatrixType,2,0>(matrix); |
| 224 | result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix); |
| 225 | result.coeffRef(2,2) = cofactor_4x4<MatrixType,2,2>(matrix); |
| 226 | result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix); |
| 227 | result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix); |
| 228 | result.coeffRef(1,1) = cofactor_4x4<MatrixType,1,1>(matrix); |
| 229 | result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix); |
| 230 | result.coeffRef(3,1) = cofactor_4x4<MatrixType,1,3>(matrix); |
| 231 | result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix); |
| 232 | result.coeffRef(1,3) = cofactor_4x4<MatrixType,3,1>(matrix); |
| 233 | result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix); |
| 234 | result.coeffRef(3,3) = cofactor_4x4<MatrixType,3,3>(matrix); |
| 235 | result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum(); |
| 236 | } |
| 237 | }; |
| 238 | |
| 239 | template<typename MatrixType, typename ResultType> |
| 240 | struct compute_inverse<MatrixType, ResultType, 4> |
| 241 | : compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar, |
| 242 | MatrixType, ResultType> |
| 243 | { |
| 244 | }; |
| 245 | |
| 246 | template<typename MatrixType, typename ResultType> |
| 247 | struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4> |
| 248 | { |
| 249 | static inline void run( |
| 250 | const MatrixType& matrix, |
| 251 | const typename MatrixType::RealScalar& absDeterminantThreshold, |
| 252 | ResultType& inverse, |
| 253 | typename ResultType::Scalar& determinant, |
| 254 | bool& invertible |
| 255 | ) |
| 256 | { |
| 257 | using std::abs; |
| 258 | determinant = matrix.determinant(); |
| 259 | invertible = abs(determinant) > absDeterminantThreshold; |
| 260 | if(invertible) compute_inverse<MatrixType, ResultType>::run(matrix, inverse); |
| 261 | } |
| 262 | }; |
| 263 | |
| 264 | /************************* |
| 265 | *** MatrixBase methods *** |
| 266 | *************************/ |
| 267 | |
| 268 | template<typename MatrixType> |
| 269 | struct traits<inverse_impl<MatrixType> > |
| 270 | { |
| 271 | typedef typename MatrixType::PlainObject ReturnType; |
| 272 | }; |
| 273 | |
| 274 | template<typename MatrixType> |
| 275 | struct inverse_impl : public ReturnByValue<inverse_impl<MatrixType> > |
| 276 | { |
| 277 | typedef typename MatrixType::Index Index; |
| 278 | typedef typename internal::eval<MatrixType>::type MatrixTypeNested; |
| 279 | typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned; |
| 280 | MatrixTypeNested m_matrix; |
| 281 | |
| 282 | inverse_impl(const MatrixType& matrix) |
| 283 | : m_matrix(matrix) |
| 284 | {} |
| 285 | |
| 286 | inline Index rows() const { return m_matrix.rows(); } |
| 287 | inline Index cols() const { return m_matrix.cols(); } |
| 288 | |
| 289 | template<typename Dest> inline void evalTo(Dest& dst) const |
| 290 | { |
| 291 | const int Size = EIGEN_PLAIN_ENUM_MIN(MatrixType::ColsAtCompileTime,Dest::ColsAtCompileTime); |
| 292 | EIGEN_ONLY_USED_FOR_DEBUG(Size); |
| 293 | eigen_assert(( (Size<=1) || (Size>4) || (extract_data(m_matrix)!=extract_data(dst))) |
| 294 | && "Aliasing problem detected in inverse(), you need to do inverse().eval() here."); |
| 295 | |
| 296 | compute_inverse<MatrixTypeNestedCleaned, Dest>::run(m_matrix, dst); |
| 297 | } |
| 298 | }; |
| 299 | |
| 300 | } // end namespace internal |
| 301 | |
| 302 | /** \lu_module |
| 303 | * |
| 304 | * \returns the matrix inverse of this matrix. |
| 305 | * |
| 306 | * For small fixed sizes up to 4x4, this method uses cofactors. |
| 307 | * In the general case, this method uses class PartialPivLU. |
| 308 | * |
| 309 | * \note This matrix must be invertible, otherwise the result is undefined. If you need an |
| 310 | * invertibility check, do the following: |
| 311 | * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck(). |
| 312 | * \li for the general case, use class FullPivLU. |
| 313 | * |
| 314 | * Example: \include MatrixBase_inverse.cpp |
| 315 | * Output: \verbinclude MatrixBase_inverse.out |
| 316 | * |
| 317 | * \sa computeInverseAndDetWithCheck() |
| 318 | */ |
| 319 | template<typename Derived> |
| 320 | inline const internal::inverse_impl<Derived> MatrixBase<Derived>::inverse() const |
| 321 | { |
| 322 | EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES) |
| 323 | eigen_assert(rows() == cols()); |
| 324 | return internal::inverse_impl<Derived>(derived()); |
| 325 | } |
| 326 | |
| 327 | /** \lu_module |
| 328 | * |
| 329 | * Computation of matrix inverse and determinant, with invertibility check. |
| 330 | * |
| 331 | * This is only for fixed-size square matrices of size up to 4x4. |
| 332 | * |
| 333 | * \param inverse Reference to the matrix in which to store the inverse. |
| 334 | * \param determinant Reference to the variable in which to store the determinant. |
| 335 | * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. |
| 336 | * \param absDeterminantThreshold Optional parameter controlling the invertibility check. |
| 337 | * The matrix will be declared invertible if the absolute value of its |
| 338 | * determinant is greater than this threshold. |
| 339 | * |
| 340 | * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp |
| 341 | * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out |
| 342 | * |
| 343 | * \sa inverse(), computeInverseWithCheck() |
| 344 | */ |
| 345 | template<typename Derived> |
| 346 | template<typename ResultType> |
| 347 | inline void MatrixBase<Derived>::computeInverseAndDetWithCheck( |
| 348 | ResultType& inverse, |
| 349 | typename ResultType::Scalar& determinant, |
| 350 | bool& invertible, |
| 351 | const RealScalar& absDeterminantThreshold |
| 352 | ) const |
| 353 | { |
| 354 | // i'd love to put some static assertions there, but SFINAE means that they have no effect... |
| 355 | eigen_assert(rows() == cols()); |
| 356 | // for 2x2, it's worth giving a chance to avoid evaluating. |
| 357 | // for larger sizes, evaluating has negligible cost and limits code size. |
| 358 | typedef typename internal::conditional< |
| 359 | RowsAtCompileTime == 2, |
| 360 | typename internal::remove_all<typename internal::nested<Derived, 2>::type>::type, |
| 361 | PlainObject |
| 362 | >::type MatrixType; |
| 363 | internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run |
| 364 | (derived(), absDeterminantThreshold, inverse, determinant, invertible); |
| 365 | } |
| 366 | |
| 367 | /** \lu_module |
| 368 | * |
| 369 | * Computation of matrix inverse, with invertibility check. |
| 370 | * |
| 371 | * This is only for fixed-size square matrices of size up to 4x4. |
| 372 | * |
| 373 | * \param inverse Reference to the matrix in which to store the inverse. |
| 374 | * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. |
| 375 | * \param absDeterminantThreshold Optional parameter controlling the invertibility check. |
| 376 | * The matrix will be declared invertible if the absolute value of its |
| 377 | * determinant is greater than this threshold. |
| 378 | * |
| 379 | * Example: \include MatrixBase_computeInverseWithCheck.cpp |
| 380 | * Output: \verbinclude MatrixBase_computeInverseWithCheck.out |
| 381 | * |
| 382 | * \sa inverse(), computeInverseAndDetWithCheck() |
| 383 | */ |
| 384 | template<typename Derived> |
| 385 | template<typename ResultType> |
| 386 | inline void MatrixBase<Derived>::computeInverseWithCheck( |
| 387 | ResultType& inverse, |
| 388 | bool& invertible, |
| 389 | const RealScalar& absDeterminantThreshold |
| 390 | ) const |
| 391 | { |
| 392 | RealScalar determinant; |
| 393 | // i'd love to put some static assertions there, but SFINAE means that they have no effect... |
| 394 | eigen_assert(rows() == cols()); |
| 395 | computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold); |
| 396 | } |
| 397 | |
| 398 | } // end namespace Eigen |
| 399 | |
| 400 | #endif // EIGEN_INVERSE_H |