blob: 52b8c2a4eb8e57f9ebd7ca27ee6412a89908314b [file] [log] [blame]
Brian Silverman72890c22015-09-19 14:37:37 -04001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
7//
8// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
12#ifndef EIGEN_TRANSFORM_H
13#define EIGEN_TRANSFORM_H
14
Austin Schuhc55b0172022-02-20 17:52:35 -080015namespace Eigen {
Brian Silverman72890c22015-09-19 14:37:37 -040016
17namespace internal {
18
19template<typename Transform>
20struct transform_traits
21{
22 enum
23 {
24 Dim = Transform::Dim,
25 HDim = Transform::HDim,
26 Mode = Transform::Mode,
27 IsProjective = (int(Mode)==int(Projective))
28 };
29};
30
31template< typename TransformType,
32 typename MatrixType,
33 int Case = transform_traits<TransformType>::IsProjective ? 0
34 : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1
Austin Schuh189376f2018-12-20 22:11:15 +110035 : 2,
36 int RhsCols = MatrixType::ColsAtCompileTime>
Brian Silverman72890c22015-09-19 14:37:37 -040037struct transform_right_product_impl;
38
39template< typename Other,
40 int Mode,
41 int Options,
42 int Dim,
43 int HDim,
44 int OtherRows=Other::RowsAtCompileTime,
45 int OtherCols=Other::ColsAtCompileTime>
46struct transform_left_product_impl;
47
48template< typename Lhs,
49 typename Rhs,
Austin Schuhc55b0172022-02-20 17:52:35 -080050 bool AnyProjective =
Brian Silverman72890c22015-09-19 14:37:37 -040051 transform_traits<Lhs>::IsProjective ||
52 transform_traits<Rhs>::IsProjective>
53struct transform_transform_product_impl;
54
55template< typename Other,
56 int Mode,
57 int Options,
58 int Dim,
59 int HDim,
60 int OtherRows=Other::RowsAtCompileTime,
61 int OtherCols=Other::ColsAtCompileTime>
62struct transform_construct_from_matrix;
63
64template<typename TransformType> struct transform_take_affine_part;
65
Austin Schuh189376f2018-12-20 22:11:15 +110066template<typename _Scalar, int _Dim, int _Mode, int _Options>
67struct traits<Transform<_Scalar,_Dim,_Mode,_Options> >
68{
69 typedef _Scalar Scalar;
70 typedef Eigen::Index StorageIndex;
71 typedef Dense StorageKind;
72 enum {
73 Dim1 = _Dim==Dynamic ? _Dim : _Dim + 1,
74 RowsAtCompileTime = _Mode==Projective ? Dim1 : _Dim,
75 ColsAtCompileTime = Dim1,
76 MaxRowsAtCompileTime = RowsAtCompileTime,
77 MaxColsAtCompileTime = ColsAtCompileTime,
78 Flags = 0
79 };
80};
81
Brian Silverman72890c22015-09-19 14:37:37 -040082template<int Mode> struct transform_make_affine;
83
84} // end namespace internal
85
86/** \geometry_module \ingroup Geometry_Module
87 *
88 * \class Transform
89 *
90 * \brief Represents an homogeneous transformation in a N dimensional space
91 *
92 * \tparam _Scalar the scalar type, i.e., the type of the coefficients
93 * \tparam _Dim the dimension of the space
94 * \tparam _Mode the type of the transformation. Can be:
95 * - #Affine: the transformation is stored as a (Dim+1)^2 matrix,
96 * where the last row is assumed to be [0 ... 0 1].
97 * - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix.
98 * - #Projective: the transformation is stored as a (Dim+1)^2 matrix
99 * without any assumption.
Austin Schuhc55b0172022-02-20 17:52:35 -0800100 * - #Isometry: same as #Affine with the additional assumption that
101 * the linear part represents a rotation. This assumption is exploited
102 * to speed up some functions such as inverse() and rotation().
Brian Silverman72890c22015-09-19 14:37:37 -0400103 * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor.
104 * These Options are passed directly to the underlying matrix type.
105 *
106 * The homography is internally represented and stored by a matrix which
107 * is available through the matrix() method. To understand the behavior of
108 * this class you have to think a Transform object as its internal
109 * matrix representation. The chosen convention is right multiply:
110 *
111 * \code v' = T * v \endcode
112 *
113 * Therefore, an affine transformation matrix M is shaped like this:
114 *
115 * \f$ \left( \begin{array}{cc}
116 * linear & translation\\
117 * 0 ... 0 & 1
118 * \end{array} \right) \f$
119 *
120 * Note that for a projective transformation the last row can be anything,
Austin Schuhc55b0172022-02-20 17:52:35 -0800121 * and then the interpretation of different parts might be slightly different.
Brian Silverman72890c22015-09-19 14:37:37 -0400122 *
123 * However, unlike a plain matrix, the Transform class provides many features
124 * simplifying both its assembly and usage. In particular, it can be composed
Austin Schuh189376f2018-12-20 22:11:15 +1100125 * with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix)
Brian Silverman72890c22015-09-19 14:37:37 -0400126 * and can be directly used to transform implicit homogeneous vectors. All these
127 * operations are handled via the operator*. For the composition of transformations,
128 * its principle consists to first convert the right/left hand sides of the product
129 * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product.
130 * Of course, internally, operator* tries to perform the minimal number of operations
131 * according to the nature of each terms. Likewise, when applying the transform
Austin Schuh189376f2018-12-20 22:11:15 +1100132 * to points, the latters are automatically promoted to homogeneous vectors
133 * before doing the matrix product. The conventions to homogeneous representations
Brian Silverman72890c22015-09-19 14:37:37 -0400134 * are performed as follow:
135 *
136 * \b Translation t (Dim)x(1):
137 * \f$ \left( \begin{array}{cc}
138 * I & t \\
139 * 0\,...\,0 & 1
140 * \end{array} \right) \f$
141 *
142 * \b Rotation R (Dim)x(Dim):
143 * \f$ \left( \begin{array}{cc}
144 * R & 0\\
145 * 0\,...\,0 & 1
146 * \end{array} \right) \f$
Austin Schuh189376f2018-12-20 22:11:15 +1100147 *<!--
Brian Silverman72890c22015-09-19 14:37:37 -0400148 * \b Linear \b Matrix L (Dim)x(Dim):
149 * \f$ \left( \begin{array}{cc}
150 * L & 0\\
151 * 0\,...\,0 & 1
152 * \end{array} \right) \f$
153 *
154 * \b Affine \b Matrix A (Dim)x(Dim+1):
155 * \f$ \left( \begin{array}{c}
156 * A\\
157 * 0\,...\,0\,1
158 * \end{array} \right) \f$
Austin Schuh189376f2018-12-20 22:11:15 +1100159 *-->
160 * \b Scaling \b DiagonalMatrix S (Dim)x(Dim):
161 * \f$ \left( \begin{array}{cc}
162 * S & 0\\
163 * 0\,...\,0 & 1
164 * \end{array} \right) \f$
Brian Silverman72890c22015-09-19 14:37:37 -0400165 *
Austin Schuh189376f2018-12-20 22:11:15 +1100166 * \b Column \b point v (Dim)x(1):
Brian Silverman72890c22015-09-19 14:37:37 -0400167 * \f$ \left( \begin{array}{c}
168 * v\\
169 * 1
170 * \end{array} \right) \f$
171 *
Austin Schuh189376f2018-12-20 22:11:15 +1100172 * \b Set \b of \b column \b points V1...Vn (Dim)x(n):
Brian Silverman72890c22015-09-19 14:37:37 -0400173 * \f$ \left( \begin{array}{ccc}
174 * v_1 & ... & v_n\\
175 * 1 & ... & 1
176 * \end{array} \right) \f$
177 *
178 * The concatenation of a Transform object with any kind of other transformation
179 * always returns a Transform object.
180 *
181 * A little exception to the "as pure matrix product" rule is the case of the
182 * transformation of non homogeneous vectors by an affine transformation. In
183 * that case the last matrix row can be ignored, and the product returns non
184 * homogeneous vectors.
185 *
186 * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation,
187 * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix.
188 * The solution is either to use a Dim x Dynamic matrix or explicitly request a
189 * vector transformation by making the vector homogeneous:
190 * \code
191 * m' = T * m.colwise().homogeneous();
192 * \endcode
193 * Note that there is zero overhead.
194 *
195 * Conversion methods from/to Qt's QMatrix and QTransform are available if the
196 * preprocessor token EIGEN_QT_SUPPORT is defined.
197 *
198 * This class can be extended with the help of the plugin mechanism described on the page
Austin Schuh189376f2018-12-20 22:11:15 +1100199 * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN.
Brian Silverman72890c22015-09-19 14:37:37 -0400200 *
201 * \sa class Matrix, class Quaternion
202 */
203template<typename _Scalar, int _Dim, int _Mode, int _Options>
204class Transform
205{
206public:
207 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
208 enum {
209 Mode = _Mode,
210 Options = _Options,
211 Dim = _Dim, ///< space dimension in which the transformation holds
212 HDim = _Dim+1, ///< size of a respective homogeneous vector
213 Rows = int(Mode)==(AffineCompact) ? Dim : HDim
214 };
215 /** the scalar type of the coefficients */
216 typedef _Scalar Scalar;
Austin Schuh189376f2018-12-20 22:11:15 +1100217 typedef Eigen::Index StorageIndex;
218 typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
Brian Silverman72890c22015-09-19 14:37:37 -0400219 /** type of the matrix used to represent the transformation */
220 typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType;
221 /** constified MatrixType */
222 typedef const MatrixType ConstMatrixType;
223 /** type of the matrix used to represent the linear part of the transformation */
224 typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType;
225 /** type of read/write reference to the linear part of the transformation */
Austin Schuhc55b0172022-02-20 17:52:35 -0800226 typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (int(Options)&RowMajor)==0> LinearPart;
Brian Silverman72890c22015-09-19 14:37:37 -0400227 /** type of read reference to the linear part of the transformation */
Austin Schuhc55b0172022-02-20 17:52:35 -0800228 typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (int(Options)&RowMajor)==0> ConstLinearPart;
Brian Silverman72890c22015-09-19 14:37:37 -0400229 /** type of read/write reference to the affine part of the transformation */
230 typedef typename internal::conditional<int(Mode)==int(AffineCompact),
231 MatrixType&,
232 Block<MatrixType,Dim,HDim> >::type AffinePart;
233 /** type of read reference to the affine part of the transformation */
234 typedef typename internal::conditional<int(Mode)==int(AffineCompact),
235 const MatrixType&,
236 const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart;
237 /** type of a vector */
238 typedef Matrix<Scalar,Dim,1> VectorType;
239 /** type of a read/write reference to the translation part of the rotation */
Austin Schuh189376f2018-12-20 22:11:15 +1100240 typedef Block<MatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> TranslationPart;
Brian Silverman72890c22015-09-19 14:37:37 -0400241 /** type of a read reference to the translation part of the rotation */
Austin Schuh189376f2018-12-20 22:11:15 +1100242 typedef const Block<ConstMatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> ConstTranslationPart;
Brian Silverman72890c22015-09-19 14:37:37 -0400243 /** corresponding translation type */
244 typedef Translation<Scalar,Dim> TranslationType;
Austin Schuhc55b0172022-02-20 17:52:35 -0800245
Brian Silverman72890c22015-09-19 14:37:37 -0400246 // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0
247 enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) };
248 /** The return type of the product between a diagonal matrix and a transform */
249 typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType;
250
251protected:
252
253 MatrixType m_matrix;
254
255public:
256
257 /** Default constructor without initialization of the meaningful coefficients.
Austin Schuhc55b0172022-02-20 17:52:35 -0800258 * If Mode==Affine or Mode==Isometry, then the last row is set to [0 ... 0 1] */
Austin Schuh189376f2018-12-20 22:11:15 +1100259 EIGEN_DEVICE_FUNC inline Transform()
Brian Silverman72890c22015-09-19 14:37:37 -0400260 {
261 check_template_params();
Austin Schuhc55b0172022-02-20 17:52:35 -0800262 internal::transform_make_affine<(int(Mode)==Affine || int(Mode)==Isometry) ? Affine : AffineCompact>::run(m_matrix);
Brian Silverman72890c22015-09-19 14:37:37 -0400263 }
264
Austin Schuh189376f2018-12-20 22:11:15 +1100265 EIGEN_DEVICE_FUNC inline explicit Transform(const TranslationType& t)
Brian Silverman72890c22015-09-19 14:37:37 -0400266 {
267 check_template_params();
268 *this = t;
269 }
Austin Schuh189376f2018-12-20 22:11:15 +1100270 EIGEN_DEVICE_FUNC inline explicit Transform(const UniformScaling<Scalar>& s)
Brian Silverman72890c22015-09-19 14:37:37 -0400271 {
272 check_template_params();
273 *this = s;
274 }
275 template<typename Derived>
Austin Schuh189376f2018-12-20 22:11:15 +1100276 EIGEN_DEVICE_FUNC inline explicit Transform(const RotationBase<Derived, Dim>& r)
Brian Silverman72890c22015-09-19 14:37:37 -0400277 {
278 check_template_params();
279 *this = r;
280 }
281
Brian Silverman72890c22015-09-19 14:37:37 -0400282 typedef internal::transform_take_affine_part<Transform> take_affine_part;
283
284 /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
285 template<typename OtherDerived>
Austin Schuh189376f2018-12-20 22:11:15 +1100286 EIGEN_DEVICE_FUNC inline explicit Transform(const EigenBase<OtherDerived>& other)
Brian Silverman72890c22015-09-19 14:37:37 -0400287 {
288 EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
289 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
290
291 check_template_params();
292 internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
293 }
294
295 /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */
296 template<typename OtherDerived>
Austin Schuh189376f2018-12-20 22:11:15 +1100297 EIGEN_DEVICE_FUNC inline Transform& operator=(const EigenBase<OtherDerived>& other)
Brian Silverman72890c22015-09-19 14:37:37 -0400298 {
299 EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
300 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
301
302 internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
303 return *this;
304 }
Austin Schuhc55b0172022-02-20 17:52:35 -0800305
Brian Silverman72890c22015-09-19 14:37:37 -0400306 template<int OtherOptions>
Austin Schuh189376f2018-12-20 22:11:15 +1100307 EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other)
Brian Silverman72890c22015-09-19 14:37:37 -0400308 {
309 check_template_params();
310 // only the options change, we can directly copy the matrices
311 m_matrix = other.matrix();
312 }
313
314 template<int OtherMode,int OtherOptions>
Austin Schuh189376f2018-12-20 22:11:15 +1100315 EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other)
Brian Silverman72890c22015-09-19 14:37:37 -0400316 {
317 check_template_params();
318 // prevent conversions as:
319 // Affine | AffineCompact | Isometry = Projective
320 EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)),
321 YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
322
323 // prevent conversions as:
324 // Isometry = Affine | AffineCompact
325 EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)),
326 YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
327
328 enum { ModeIsAffineCompact = Mode == int(AffineCompact),
329 OtherModeIsAffineCompact = OtherMode == int(AffineCompact)
330 };
331
Austin Schuhc55b0172022-02-20 17:52:35 -0800332 if(EIGEN_CONST_CONDITIONAL(ModeIsAffineCompact == OtherModeIsAffineCompact))
Brian Silverman72890c22015-09-19 14:37:37 -0400333 {
334 // We need the block expression because the code is compiled for all
335 // combinations of transformations and will trigger a compile time error
336 // if one tries to assign the matrices directly
337 m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0);
338 makeAffine();
339 }
Austin Schuhc55b0172022-02-20 17:52:35 -0800340 else if(EIGEN_CONST_CONDITIONAL(OtherModeIsAffineCompact))
Brian Silverman72890c22015-09-19 14:37:37 -0400341 {
342 typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType;
343 internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix());
344 }
345 else
346 {
347 // here we know that Mode == AffineCompact and OtherMode != AffineCompact.
348 // if OtherMode were Projective, the static assert above would already have caught it.
349 // So the only possibility is that OtherMode == Affine
350 linear() = other.linear();
351 translation() = other.translation();
352 }
353 }
354
355 template<typename OtherDerived>
Austin Schuh189376f2018-12-20 22:11:15 +1100356 EIGEN_DEVICE_FUNC Transform(const ReturnByValue<OtherDerived>& other)
Brian Silverman72890c22015-09-19 14:37:37 -0400357 {
358 check_template_params();
359 other.evalTo(*this);
360 }
361
362 template<typename OtherDerived>
Austin Schuh189376f2018-12-20 22:11:15 +1100363 EIGEN_DEVICE_FUNC Transform& operator=(const ReturnByValue<OtherDerived>& other)
Brian Silverman72890c22015-09-19 14:37:37 -0400364 {
365 other.evalTo(*this);
366 return *this;
367 }
368
369 #ifdef EIGEN_QT_SUPPORT
370 inline Transform(const QMatrix& other);
371 inline Transform& operator=(const QMatrix& other);
372 inline QMatrix toQMatrix(void) const;
373 inline Transform(const QTransform& other);
374 inline Transform& operator=(const QTransform& other);
375 inline QTransform toQTransform(void) const;
376 #endif
Austin Schuhc55b0172022-02-20 17:52:35 -0800377
378 EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return int(Mode)==int(Projective) ? m_matrix.cols() : (m_matrix.cols()-1); }
379 EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); }
Brian Silverman72890c22015-09-19 14:37:37 -0400380
381 /** shortcut for m_matrix(row,col);
382 * \sa MatrixBase::operator(Index,Index) const */
Austin Schuh189376f2018-12-20 22:11:15 +1100383 EIGEN_DEVICE_FUNC inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); }
Brian Silverman72890c22015-09-19 14:37:37 -0400384 /** shortcut for m_matrix(row,col);
385 * \sa MatrixBase::operator(Index,Index) */
Austin Schuh189376f2018-12-20 22:11:15 +1100386 EIGEN_DEVICE_FUNC inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); }
Brian Silverman72890c22015-09-19 14:37:37 -0400387
388 /** \returns a read-only expression of the transformation matrix */
Austin Schuh189376f2018-12-20 22:11:15 +1100389 EIGEN_DEVICE_FUNC inline const MatrixType& matrix() const { return m_matrix; }
Brian Silverman72890c22015-09-19 14:37:37 -0400390 /** \returns a writable expression of the transformation matrix */
Austin Schuh189376f2018-12-20 22:11:15 +1100391 EIGEN_DEVICE_FUNC inline MatrixType& matrix() { return m_matrix; }
Brian Silverman72890c22015-09-19 14:37:37 -0400392
393 /** \returns a read-only expression of the linear part of the transformation */
Austin Schuh189376f2018-12-20 22:11:15 +1100394 EIGEN_DEVICE_FUNC inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); }
Brian Silverman72890c22015-09-19 14:37:37 -0400395 /** \returns a writable expression of the linear part of the transformation */
Austin Schuh189376f2018-12-20 22:11:15 +1100396 EIGEN_DEVICE_FUNC inline LinearPart linear() { return LinearPart(m_matrix,0,0); }
Brian Silverman72890c22015-09-19 14:37:37 -0400397
398 /** \returns a read-only expression of the Dim x HDim affine part of the transformation */
Austin Schuh189376f2018-12-20 22:11:15 +1100399 EIGEN_DEVICE_FUNC inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); }
Brian Silverman72890c22015-09-19 14:37:37 -0400400 /** \returns a writable expression of the Dim x HDim affine part of the transformation */
Austin Schuh189376f2018-12-20 22:11:15 +1100401 EIGEN_DEVICE_FUNC inline AffinePart affine() { return take_affine_part::run(m_matrix); }
Brian Silverman72890c22015-09-19 14:37:37 -0400402
403 /** \returns a read-only expression of the translation vector of the transformation */
Austin Schuh189376f2018-12-20 22:11:15 +1100404 EIGEN_DEVICE_FUNC inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); }
Brian Silverman72890c22015-09-19 14:37:37 -0400405 /** \returns a writable expression of the translation vector of the transformation */
Austin Schuh189376f2018-12-20 22:11:15 +1100406 EIGEN_DEVICE_FUNC inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); }
Brian Silverman72890c22015-09-19 14:37:37 -0400407
Austin Schuh189376f2018-12-20 22:11:15 +1100408 /** \returns an expression of the product between the transform \c *this and a matrix expression \a other.
Brian Silverman72890c22015-09-19 14:37:37 -0400409 *
Austin Schuh189376f2018-12-20 22:11:15 +1100410 * The right-hand-side \a other can be either:
Brian Silverman72890c22015-09-19 14:37:37 -0400411 * \li an homogeneous vector of size Dim+1,
Austin Schuh189376f2018-12-20 22:11:15 +1100412 * \li a set of homogeneous vectors of size Dim+1 x N,
Brian Silverman72890c22015-09-19 14:37:37 -0400413 * \li a transformation matrix of size Dim+1 x Dim+1.
Austin Schuh189376f2018-12-20 22:11:15 +1100414 *
415 * Moreover, if \c *this represents an affine transformation (i.e., Mode!=Projective), then \a other can also be:
416 * \li a point of size Dim (computes: \code this->linear() * other + this->translation()\endcode),
417 * \li a set of N points as a Dim x N matrix (computes: \code (this->linear() * other).colwise() + this->translation()\endcode),
418 *
419 * In all cases, the return type is a matrix or vector of same sizes as the right-hand-side \a other.
420 *
421 * If you want to interpret \a other as a linear or affine transformation, then first convert it to a Transform<> type,
422 * or do your own cooking.
423 *
424 * Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only:
425 * \code
426 * Affine3f A;
427 * Vector3f v1, v2;
428 * v2 = A.linear() * v1;
429 * \endcode
430 *
Brian Silverman72890c22015-09-19 14:37:37 -0400431 */
432 // note: this function is defined here because some compilers cannot find the respective declaration
433 template<typename OtherDerived>
Austin Schuh189376f2018-12-20 22:11:15 +1100434 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, OtherDerived>::ResultType
Brian Silverman72890c22015-09-19 14:37:37 -0400435 operator * (const EigenBase<OtherDerived> &other) const
436 { return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); }
437
438 /** \returns the product expression of a transformation matrix \a a times a transform \a b
439 *
Austin Schuh189376f2018-12-20 22:11:15 +1100440 * The left hand side \a other can be either:
Brian Silverman72890c22015-09-19 14:37:37 -0400441 * \li a linear transformation matrix of size Dim x Dim,
442 * \li an affine transformation matrix of size Dim x Dim+1,
443 * \li a general transformation matrix of size Dim+1 x Dim+1.
444 */
445 template<typename OtherDerived> friend
Austin Schuh189376f2018-12-20 22:11:15 +1100446 EIGEN_DEVICE_FUNC inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType
Brian Silverman72890c22015-09-19 14:37:37 -0400447 operator * (const EigenBase<OtherDerived> &a, const Transform &b)
448 { return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); }
449
450 /** \returns The product expression of a transform \a a times a diagonal matrix \a b
451 *
452 * The rhs diagonal matrix is interpreted as an affine scaling transformation. The
Austin Schuhc55b0172022-02-20 17:52:35 -0800453 * product results in a Transform of the same type (mode) as the lhs only if the lhs
Brian Silverman72890c22015-09-19 14:37:37 -0400454 * mode is no isometry. In that case, the returned transform is an affinity.
455 */
456 template<typename DiagonalDerived>
Austin Schuh189376f2018-12-20 22:11:15 +1100457 EIGEN_DEVICE_FUNC inline const TransformTimeDiagonalReturnType
Brian Silverman72890c22015-09-19 14:37:37 -0400458 operator * (const DiagonalBase<DiagonalDerived> &b) const
459 {
460 TransformTimeDiagonalReturnType res(*this);
Austin Schuh189376f2018-12-20 22:11:15 +1100461 res.linearExt() *= b;
Brian Silverman72890c22015-09-19 14:37:37 -0400462 return res;
463 }
464
465 /** \returns The product expression of a diagonal matrix \a a times a transform \a b
466 *
467 * The lhs diagonal matrix is interpreted as an affine scaling transformation. The
Austin Schuhc55b0172022-02-20 17:52:35 -0800468 * product results in a Transform of the same type (mode) as the lhs only if the lhs
Brian Silverman72890c22015-09-19 14:37:37 -0400469 * mode is no isometry. In that case, the returned transform is an affinity.
470 */
471 template<typename DiagonalDerived>
Austin Schuh189376f2018-12-20 22:11:15 +1100472 EIGEN_DEVICE_FUNC friend inline TransformTimeDiagonalReturnType
Brian Silverman72890c22015-09-19 14:37:37 -0400473 operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b)
474 {
475 TransformTimeDiagonalReturnType res;
476 res.linear().noalias() = a*b.linear();
477 res.translation().noalias() = a*b.translation();
Austin Schuhc55b0172022-02-20 17:52:35 -0800478 if (EIGEN_CONST_CONDITIONAL(Mode!=int(AffineCompact)))
Brian Silverman72890c22015-09-19 14:37:37 -0400479 res.matrix().row(Dim) = b.matrix().row(Dim);
480 return res;
481 }
482
483 template<typename OtherDerived>
Austin Schuh189376f2018-12-20 22:11:15 +1100484 EIGEN_DEVICE_FUNC inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; }
Brian Silverman72890c22015-09-19 14:37:37 -0400485
486 /** Concatenates two transformations */
Austin Schuh189376f2018-12-20 22:11:15 +1100487 EIGEN_DEVICE_FUNC inline const Transform operator * (const Transform& other) const
Brian Silverman72890c22015-09-19 14:37:37 -0400488 {
489 return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other);
490 }
Austin Schuhc55b0172022-02-20 17:52:35 -0800491
Austin Schuh189376f2018-12-20 22:11:15 +1100492 #if EIGEN_COMP_ICC
Brian Silverman72890c22015-09-19 14:37:37 -0400493private:
494 // this intermediate structure permits to workaround a bug in ICC 11:
495 // error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0>
496 // (const Eigen::Transform<double, 3, 2, 0> &) const"
497 // (the meaning of a name may have changed since the template declaration -- the type of the template is:
498 // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>,
499 // Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const")
Austin Schuhc55b0172022-02-20 17:52:35 -0800500 //
Brian Silverman72890c22015-09-19 14:37:37 -0400501 template<int OtherMode,int OtherOptions> struct icc_11_workaround
502 {
503 typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType;
504 typedef typename ProductType::ResultType ResultType;
505 };
Austin Schuhc55b0172022-02-20 17:52:35 -0800506
Brian Silverman72890c22015-09-19 14:37:37 -0400507public:
508 /** Concatenates two different transformations */
509 template<int OtherMode,int OtherOptions>
510 inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType
511 operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
512 {
513 typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType;
514 return ProductType::run(*this,other);
515 }
516 #else
517 /** Concatenates two different transformations */
518 template<int OtherMode,int OtherOptions>
Austin Schuh189376f2018-12-20 22:11:15 +1100519 EIGEN_DEVICE_FUNC inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType
Brian Silverman72890c22015-09-19 14:37:37 -0400520 operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
521 {
522 return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other);
523 }
524 #endif
525
526 /** \sa MatrixBase::setIdentity() */
Austin Schuh189376f2018-12-20 22:11:15 +1100527 EIGEN_DEVICE_FUNC void setIdentity() { m_matrix.setIdentity(); }
Brian Silverman72890c22015-09-19 14:37:37 -0400528
529 /**
530 * \brief Returns an identity transformation.
531 * \todo In the future this function should be returning a Transform expression.
532 */
Austin Schuh189376f2018-12-20 22:11:15 +1100533 EIGEN_DEVICE_FUNC static const Transform Identity()
Brian Silverman72890c22015-09-19 14:37:37 -0400534 {
535 return Transform(MatrixType::Identity());
536 }
537
538 template<typename OtherDerived>
Austin Schuhc55b0172022-02-20 17:52:35 -0800539 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400540 inline Transform& scale(const MatrixBase<OtherDerived> &other);
541
542 template<typename OtherDerived>
Austin Schuh189376f2018-12-20 22:11:15 +1100543 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400544 inline Transform& prescale(const MatrixBase<OtherDerived> &other);
545
Austin Schuh189376f2018-12-20 22:11:15 +1100546 EIGEN_DEVICE_FUNC inline Transform& scale(const Scalar& s);
547 EIGEN_DEVICE_FUNC inline Transform& prescale(const Scalar& s);
Brian Silverman72890c22015-09-19 14:37:37 -0400548
549 template<typename OtherDerived>
Austin Schuh189376f2018-12-20 22:11:15 +1100550 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400551 inline Transform& translate(const MatrixBase<OtherDerived> &other);
552
553 template<typename OtherDerived>
Austin Schuh189376f2018-12-20 22:11:15 +1100554 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400555 inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
556
557 template<typename RotationType>
Austin Schuh189376f2018-12-20 22:11:15 +1100558 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400559 inline Transform& rotate(const RotationType& rotation);
560
561 template<typename RotationType>
Austin Schuh189376f2018-12-20 22:11:15 +1100562 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400563 inline Transform& prerotate(const RotationType& rotation);
564
Austin Schuh189376f2018-12-20 22:11:15 +1100565 EIGEN_DEVICE_FUNC Transform& shear(const Scalar& sx, const Scalar& sy);
566 EIGEN_DEVICE_FUNC Transform& preshear(const Scalar& sx, const Scalar& sy);
Brian Silverman72890c22015-09-19 14:37:37 -0400567
Austin Schuh189376f2018-12-20 22:11:15 +1100568 EIGEN_DEVICE_FUNC inline Transform& operator=(const TranslationType& t);
Austin Schuhc55b0172022-02-20 17:52:35 -0800569
Austin Schuh189376f2018-12-20 22:11:15 +1100570 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400571 inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
Austin Schuhc55b0172022-02-20 17:52:35 -0800572
Austin Schuh189376f2018-12-20 22:11:15 +1100573 EIGEN_DEVICE_FUNC inline Transform operator*(const TranslationType& t) const;
Brian Silverman72890c22015-09-19 14:37:37 -0400574
Austin Schuhc55b0172022-02-20 17:52:35 -0800575 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400576 inline Transform& operator=(const UniformScaling<Scalar>& t);
Austin Schuhc55b0172022-02-20 17:52:35 -0800577
Austin Schuh189376f2018-12-20 22:11:15 +1100578 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400579 inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
Austin Schuhc55b0172022-02-20 17:52:35 -0800580
Austin Schuh189376f2018-12-20 22:11:15 +1100581 EIGEN_DEVICE_FUNC
582 inline TransformTimeDiagonalReturnType operator*(const UniformScaling<Scalar>& s) const
Brian Silverman72890c22015-09-19 14:37:37 -0400583 {
Austin Schuh189376f2018-12-20 22:11:15 +1100584 TransformTimeDiagonalReturnType res = *this;
Brian Silverman72890c22015-09-19 14:37:37 -0400585 res.scale(s.factor());
586 return res;
587 }
588
Austin Schuh189376f2018-12-20 22:11:15 +1100589 EIGEN_DEVICE_FUNC
590 inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linearExt() *= s; return *this; }
Brian Silverman72890c22015-09-19 14:37:37 -0400591
592 template<typename Derived>
Austin Schuh189376f2018-12-20 22:11:15 +1100593 EIGEN_DEVICE_FUNC inline Transform& operator=(const RotationBase<Derived,Dim>& r);
Brian Silverman72890c22015-09-19 14:37:37 -0400594 template<typename Derived>
Austin Schuh189376f2018-12-20 22:11:15 +1100595 EIGEN_DEVICE_FUNC inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
Brian Silverman72890c22015-09-19 14:37:37 -0400596 template<typename Derived>
Austin Schuh189376f2018-12-20 22:11:15 +1100597 EIGEN_DEVICE_FUNC inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
Brian Silverman72890c22015-09-19 14:37:37 -0400598
Austin Schuhc55b0172022-02-20 17:52:35 -0800599 typedef typename internal::conditional<int(Mode)==Isometry,ConstLinearPart,const LinearMatrixType>::type RotationReturnType;
600 EIGEN_DEVICE_FUNC RotationReturnType rotation() const;
601
Brian Silverman72890c22015-09-19 14:37:37 -0400602 template<typename RotationMatrixType, typename ScalingMatrixType>
Austin Schuh189376f2018-12-20 22:11:15 +1100603 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400604 void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
605 template<typename ScalingMatrixType, typename RotationMatrixType>
Austin Schuh189376f2018-12-20 22:11:15 +1100606 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400607 void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
608
609 template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
Austin Schuh189376f2018-12-20 22:11:15 +1100610 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400611 Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
612 const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
613
Austin Schuh189376f2018-12-20 22:11:15 +1100614 EIGEN_DEVICE_FUNC
Brian Silverman72890c22015-09-19 14:37:37 -0400615 inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const;
616
617 /** \returns a const pointer to the column major internal matrix */
Austin Schuh189376f2018-12-20 22:11:15 +1100618 EIGEN_DEVICE_FUNC const Scalar* data() const { return m_matrix.data(); }
Brian Silverman72890c22015-09-19 14:37:37 -0400619 /** \returns a non-const pointer to the column major internal matrix */
Austin Schuh189376f2018-12-20 22:11:15 +1100620 EIGEN_DEVICE_FUNC Scalar* data() { return m_matrix.data(); }
Brian Silverman72890c22015-09-19 14:37:37 -0400621
622 /** \returns \c *this with scalar type casted to \a NewScalarType
623 *
624 * Note that if \a NewScalarType is equal to the current scalar type of \c *this
625 * then this function smartly returns a const reference to \c *this.
626 */
627 template<typename NewScalarType>
Austin Schuh189376f2018-12-20 22:11:15 +1100628 EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const
Brian Silverman72890c22015-09-19 14:37:37 -0400629 { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); }
630
631 /** Copy constructor with scalar type conversion */
632 template<typename OtherScalarType>
Austin Schuh189376f2018-12-20 22:11:15 +1100633 EIGEN_DEVICE_FUNC inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other)
Brian Silverman72890c22015-09-19 14:37:37 -0400634 {
635 check_template_params();
636 m_matrix = other.matrix().template cast<Scalar>();
637 }
638
639 /** \returns \c true if \c *this is approximately equal to \a other, within the precision
640 * determined by \a prec.
641 *
642 * \sa MatrixBase::isApprox() */
Austin Schuh189376f2018-12-20 22:11:15 +1100643 EIGEN_DEVICE_FUNC bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
Brian Silverman72890c22015-09-19 14:37:37 -0400644 { return m_matrix.isApprox(other.m_matrix, prec); }
645
646 /** Sets the last row to [0 ... 0 1]
647 */
Austin Schuh189376f2018-12-20 22:11:15 +1100648 EIGEN_DEVICE_FUNC void makeAffine()
Brian Silverman72890c22015-09-19 14:37:37 -0400649 {
650 internal::transform_make_affine<int(Mode)>::run(m_matrix);
651 }
652
653 /** \internal
654 * \returns the Dim x Dim linear part if the transformation is affine,
655 * and the HDim x Dim part for projective transformations.
656 */
Austin Schuh189376f2018-12-20 22:11:15 +1100657 EIGEN_DEVICE_FUNC inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt()
Brian Silverman72890c22015-09-19 14:37:37 -0400658 { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
659 /** \internal
660 * \returns the Dim x Dim linear part if the transformation is affine,
661 * and the HDim x Dim part for projective transformations.
662 */
Austin Schuh189376f2018-12-20 22:11:15 +1100663 EIGEN_DEVICE_FUNC inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const
Brian Silverman72890c22015-09-19 14:37:37 -0400664 { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
665
666 /** \internal
667 * \returns the translation part if the transformation is affine,
668 * and the last column for projective transformations.
669 */
Austin Schuh189376f2018-12-20 22:11:15 +1100670 EIGEN_DEVICE_FUNC inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt()
Brian Silverman72890c22015-09-19 14:37:37 -0400671 { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
672 /** \internal
673 * \returns the translation part if the transformation is affine,
674 * and the last column for projective transformations.
675 */
Austin Schuh189376f2018-12-20 22:11:15 +1100676 EIGEN_DEVICE_FUNC inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const
Brian Silverman72890c22015-09-19 14:37:37 -0400677 { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
678
679
680 #ifdef EIGEN_TRANSFORM_PLUGIN
681 #include EIGEN_TRANSFORM_PLUGIN
682 #endif
Austin Schuhc55b0172022-02-20 17:52:35 -0800683
Brian Silverman72890c22015-09-19 14:37:37 -0400684protected:
685 #ifndef EIGEN_PARSED_BY_DOXYGEN
Austin Schuh189376f2018-12-20 22:11:15 +1100686 EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void check_template_params()
Brian Silverman72890c22015-09-19 14:37:37 -0400687 {
688 EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS)
689 }
690 #endif
691
692};
693
694/** \ingroup Geometry_Module */
695typedef Transform<float,2,Isometry> Isometry2f;
696/** \ingroup Geometry_Module */
697typedef Transform<float,3,Isometry> Isometry3f;
698/** \ingroup Geometry_Module */
699typedef Transform<double,2,Isometry> Isometry2d;
700/** \ingroup Geometry_Module */
701typedef Transform<double,3,Isometry> Isometry3d;
702
703/** \ingroup Geometry_Module */
704typedef Transform<float,2,Affine> Affine2f;
705/** \ingroup Geometry_Module */
706typedef Transform<float,3,Affine> Affine3f;
707/** \ingroup Geometry_Module */
708typedef Transform<double,2,Affine> Affine2d;
709/** \ingroup Geometry_Module */
710typedef Transform<double,3,Affine> Affine3d;
711
712/** \ingroup Geometry_Module */
713typedef Transform<float,2,AffineCompact> AffineCompact2f;
714/** \ingroup Geometry_Module */
715typedef Transform<float,3,AffineCompact> AffineCompact3f;
716/** \ingroup Geometry_Module */
717typedef Transform<double,2,AffineCompact> AffineCompact2d;
718/** \ingroup Geometry_Module */
719typedef Transform<double,3,AffineCompact> AffineCompact3d;
720
721/** \ingroup Geometry_Module */
722typedef Transform<float,2,Projective> Projective2f;
723/** \ingroup Geometry_Module */
724typedef Transform<float,3,Projective> Projective3f;
725/** \ingroup Geometry_Module */
726typedef Transform<double,2,Projective> Projective2d;
727/** \ingroup Geometry_Module */
728typedef Transform<double,3,Projective> Projective3d;
729
730/**************************
731*** Optional QT support ***
732**************************/
733
734#ifdef EIGEN_QT_SUPPORT
735/** Initializes \c *this from a QMatrix assuming the dimension is 2.
736 *
737 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
738 */
739template<typename Scalar, int Dim, int Mode,int Options>
740Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other)
741{
742 check_template_params();
743 *this = other;
744}
745
746/** Set \c *this from a QMatrix assuming the dimension is 2.
747 *
748 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
749 */
750template<typename Scalar, int Dim, int Mode,int Options>
751Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other)
752{
753 EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
Austin Schuhc55b0172022-02-20 17:52:35 -0800754 if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact)))
Austin Schuh189376f2018-12-20 22:11:15 +1100755 m_matrix << other.m11(), other.m21(), other.dx(),
756 other.m12(), other.m22(), other.dy();
757 else
758 m_matrix << other.m11(), other.m21(), other.dx(),
759 other.m12(), other.m22(), other.dy(),
760 0, 0, 1;
Brian Silverman72890c22015-09-19 14:37:37 -0400761 return *this;
762}
763
764/** \returns a QMatrix from \c *this assuming the dimension is 2.
765 *
766 * \warning this conversion might loss data if \c *this is not affine
767 *
768 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
769 */
770template<typename Scalar, int Dim, int Mode, int Options>
771QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const
772{
773 check_template_params();
774 EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
775 return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
776 m_matrix.coeff(0,1), m_matrix.coeff(1,1),
777 m_matrix.coeff(0,2), m_matrix.coeff(1,2));
778}
779
780/** Initializes \c *this from a QTransform assuming the dimension is 2.
781 *
782 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
783 */
784template<typename Scalar, int Dim, int Mode,int Options>
785Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other)
786{
787 check_template_params();
788 *this = other;
789}
790
791/** Set \c *this from a QTransform assuming the dimension is 2.
792 *
793 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
794 */
795template<typename Scalar, int Dim, int Mode, int Options>
796Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other)
797{
798 check_template_params();
799 EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
Austin Schuhc55b0172022-02-20 17:52:35 -0800800 if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact)))
Brian Silverman72890c22015-09-19 14:37:37 -0400801 m_matrix << other.m11(), other.m21(), other.dx(),
802 other.m12(), other.m22(), other.dy();
803 else
804 m_matrix << other.m11(), other.m21(), other.dx(),
805 other.m12(), other.m22(), other.dy(),
806 other.m13(), other.m23(), other.m33();
807 return *this;
808}
809
810/** \returns a QTransform from \c *this assuming the dimension is 2.
811 *
812 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
813 */
814template<typename Scalar, int Dim, int Mode, int Options>
815QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const
816{
817 EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
Austin Schuhc55b0172022-02-20 17:52:35 -0800818 if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact)))
Brian Silverman72890c22015-09-19 14:37:37 -0400819 return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
820 m_matrix.coeff(0,1), m_matrix.coeff(1,1),
821 m_matrix.coeff(0,2), m_matrix.coeff(1,2));
822 else
823 return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
824 m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
825 m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
826}
827#endif
828
829/*********************
830*** Procedural API ***
831*********************/
832
833/** Applies on the right the non uniform scale transformation represented
834 * by the vector \a other to \c *this and returns a reference to \c *this.
835 * \sa prescale()
836 */
837template<typename Scalar, int Dim, int Mode, int Options>
838template<typename OtherDerived>
Austin Schuh189376f2018-12-20 22:11:15 +1100839EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Brian Silverman72890c22015-09-19 14:37:37 -0400840Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other)
841{
842 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
843 EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
844 linearExt().noalias() = (linearExt() * other.asDiagonal());
845 return *this;
846}
847
848/** Applies on the right a uniform scale of a factor \a c to \c *this
849 * and returns a reference to \c *this.
850 * \sa prescale(Scalar)
851 */
852template<typename Scalar, int Dim, int Mode, int Options>
Austin Schuh189376f2018-12-20 22:11:15 +1100853EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s)
Brian Silverman72890c22015-09-19 14:37:37 -0400854{
855 EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
856 linearExt() *= s;
857 return *this;
858}
859
860/** Applies on the left the non uniform scale transformation represented
861 * by the vector \a other to \c *this and returns a reference to \c *this.
862 * \sa scale()
863 */
864template<typename Scalar, int Dim, int Mode, int Options>
865template<typename OtherDerived>
Austin Schuh189376f2018-12-20 22:11:15 +1100866EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Brian Silverman72890c22015-09-19 14:37:37 -0400867Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other)
868{
869 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
870 EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
Austin Schuh189376f2018-12-20 22:11:15 +1100871 affine().noalias() = (other.asDiagonal() * affine());
Brian Silverman72890c22015-09-19 14:37:37 -0400872 return *this;
873}
874
875/** Applies on the left a uniform scale of a factor \a c to \c *this
876 * and returns a reference to \c *this.
877 * \sa scale(Scalar)
878 */
879template<typename Scalar, int Dim, int Mode, int Options>
Austin Schuh189376f2018-12-20 22:11:15 +1100880EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s)
Brian Silverman72890c22015-09-19 14:37:37 -0400881{
882 EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
883 m_matrix.template topRows<Dim>() *= s;
884 return *this;
885}
886
887/** Applies on the right the translation matrix represented by the vector \a other
888 * to \c *this and returns a reference to \c *this.
889 * \sa pretranslate()
890 */
891template<typename Scalar, int Dim, int Mode, int Options>
892template<typename OtherDerived>
Austin Schuh189376f2018-12-20 22:11:15 +1100893EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Brian Silverman72890c22015-09-19 14:37:37 -0400894Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other)
895{
896 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
897 translationExt() += linearExt() * other;
898 return *this;
899}
900
901/** Applies on the left the translation matrix represented by the vector \a other
902 * to \c *this and returns a reference to \c *this.
903 * \sa translate()
904 */
905template<typename Scalar, int Dim, int Mode, int Options>
906template<typename OtherDerived>
Austin Schuh189376f2018-12-20 22:11:15 +1100907EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Brian Silverman72890c22015-09-19 14:37:37 -0400908Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other)
909{
910 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
Austin Schuhc55b0172022-02-20 17:52:35 -0800911 if(EIGEN_CONST_CONDITIONAL(int(Mode)==int(Projective)))
Brian Silverman72890c22015-09-19 14:37:37 -0400912 affine() += other * m_matrix.row(Dim);
913 else
914 translation() += other;
915 return *this;
916}
917
918/** Applies on the right the rotation represented by the rotation \a rotation
919 * to \c *this and returns a reference to \c *this.
920 *
921 * The template parameter \a RotationType is the type of the rotation which
922 * must be known by internal::toRotationMatrix<>.
923 *
924 * Natively supported types includes:
925 * - any scalar (2D),
926 * - a Dim x Dim matrix expression,
927 * - a Quaternion (3D),
928 * - a AngleAxis (3D)
929 *
930 * This mechanism is easily extendable to support user types such as Euler angles,
931 * or a pair of Quaternion for 4D rotations.
932 *
933 * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
934 */
935template<typename Scalar, int Dim, int Mode, int Options>
936template<typename RotationType>
Austin Schuh189376f2018-12-20 22:11:15 +1100937EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Brian Silverman72890c22015-09-19 14:37:37 -0400938Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation)
939{
940 linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation);
941 return *this;
942}
943
944/** Applies on the left the rotation represented by the rotation \a rotation
945 * to \c *this and returns a reference to \c *this.
946 *
947 * See rotate() for further details.
948 *
949 * \sa rotate()
950 */
951template<typename Scalar, int Dim, int Mode, int Options>
952template<typename RotationType>
Austin Schuh189376f2018-12-20 22:11:15 +1100953EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Brian Silverman72890c22015-09-19 14:37:37 -0400954Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation)
955{
956 m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation)
957 * m_matrix.template block<Dim,HDim>(0,0);
958 return *this;
959}
960
961/** Applies on the right the shear transformation represented
962 * by the vector \a other to \c *this and returns a reference to \c *this.
963 * \warning 2D only.
964 * \sa preshear()
965 */
966template<typename Scalar, int Dim, int Mode, int Options>
Austin Schuh189376f2018-12-20 22:11:15 +1100967EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Brian Silverman72890c22015-09-19 14:37:37 -0400968Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy)
969{
970 EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
971 EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
972 VectorType tmp = linear().col(0)*sy + linear().col(1);
973 linear() << linear().col(0) + linear().col(1)*sx, tmp;
974 return *this;
975}
976
977/** Applies on the left the shear transformation represented
978 * by the vector \a other to \c *this and returns a reference to \c *this.
979 * \warning 2D only.
980 * \sa shear()
981 */
982template<typename Scalar, int Dim, int Mode, int Options>
Austin Schuh189376f2018-12-20 22:11:15 +1100983EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Brian Silverman72890c22015-09-19 14:37:37 -0400984Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy)
985{
986 EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
987 EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
988 m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
989 return *this;
990}
991
992/******************************************************
993*** Scaling, Translation and Rotation compatibility ***
994******************************************************/
995
996template<typename Scalar, int Dim, int Mode, int Options>
Austin Schuh189376f2018-12-20 22:11:15 +1100997EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t)
Brian Silverman72890c22015-09-19 14:37:37 -0400998{
999 linear().setIdentity();
1000 translation() = t.vector();
1001 makeAffine();
1002 return *this;
1003}
1004
1005template<typename Scalar, int Dim, int Mode, int Options>
Austin Schuh189376f2018-12-20 22:11:15 +11001006EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const
Brian Silverman72890c22015-09-19 14:37:37 -04001007{
1008 Transform res = *this;
1009 res.translate(t.vector());
1010 return res;
1011}
1012
1013template<typename Scalar, int Dim, int Mode, int Options>
Austin Schuh189376f2018-12-20 22:11:15 +11001014EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s)
Brian Silverman72890c22015-09-19 14:37:37 -04001015{
1016 m_matrix.setZero();
1017 linear().diagonal().fill(s.factor());
1018 makeAffine();
1019 return *this;
1020}
1021
1022template<typename Scalar, int Dim, int Mode, int Options>
1023template<typename Derived>
Austin Schuh189376f2018-12-20 22:11:15 +11001024EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r)
Brian Silverman72890c22015-09-19 14:37:37 -04001025{
1026 linear() = internal::toRotationMatrix<Scalar,Dim>(r);
1027 translation().setZero();
1028 makeAffine();
1029 return *this;
1030}
1031
1032template<typename Scalar, int Dim, int Mode, int Options>
1033template<typename Derived>
Austin Schuh189376f2018-12-20 22:11:15 +11001034EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const
Brian Silverman72890c22015-09-19 14:37:37 -04001035{
1036 Transform res = *this;
1037 res.rotate(r.derived());
1038 return res;
1039}
1040
1041/************************
1042*** Special functions ***
1043************************/
1044
Austin Schuhc55b0172022-02-20 17:52:35 -08001045namespace internal {
1046template<int Mode> struct transform_rotation_impl {
1047 template<typename TransformType>
1048 EIGEN_DEVICE_FUNC static inline
1049 const typename TransformType::LinearMatrixType run(const TransformType& t)
1050 {
1051 typedef typename TransformType::LinearMatrixType LinearMatrixType;
1052 LinearMatrixType result;
1053 t.computeRotationScaling(&result, (LinearMatrixType*)0);
1054 return result;
1055 }
1056};
1057template<> struct transform_rotation_impl<Isometry> {
1058 template<typename TransformType>
1059 EIGEN_DEVICE_FUNC static inline
1060 typename TransformType::ConstLinearPart run(const TransformType& t)
1061 {
1062 return t.linear();
1063 }
1064};
1065}
Brian Silverman72890c22015-09-19 14:37:37 -04001066/** \returns the rotation part of the transformation
1067 *
Austin Schuhc55b0172022-02-20 17:52:35 -08001068 * If Mode==Isometry, then this method is an alias for linear(),
1069 * otherwise it calls computeRotationScaling() to extract the rotation
1070 * through a SVD decomposition.
Brian Silverman72890c22015-09-19 14:37:37 -04001071 *
1072 * \svd_module
1073 *
1074 * \sa computeRotationScaling(), computeScalingRotation(), class SVD
1075 */
1076template<typename Scalar, int Dim, int Mode, int Options>
Austin Schuhc55b0172022-02-20 17:52:35 -08001077EIGEN_DEVICE_FUNC
1078typename Transform<Scalar,Dim,Mode,Options>::RotationReturnType
Brian Silverman72890c22015-09-19 14:37:37 -04001079Transform<Scalar,Dim,Mode,Options>::rotation() const
1080{
Austin Schuhc55b0172022-02-20 17:52:35 -08001081 return internal::transform_rotation_impl<Mode>::run(*this);
Brian Silverman72890c22015-09-19 14:37:37 -04001082}
1083
1084
1085/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
1086 * not necessarily positive.
1087 *
1088 * If either pointer is zero, the corresponding computation is skipped.
1089 *
1090 *
1091 *
1092 * \svd_module
1093 *
1094 * \sa computeScalingRotation(), rotation(), class SVD
1095 */
1096template<typename Scalar, int Dim, int Mode, int Options>
1097template<typename RotationMatrixType, typename ScalingMatrixType>
Austin Schuh189376f2018-12-20 22:11:15 +11001098EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
Brian Silverman72890c22015-09-19 14:37:37 -04001099{
Austin Schuhc55b0172022-02-20 17:52:35 -08001100 // Note that JacobiSVD is faster than BDCSVD for small matrices.
Brian Silverman72890c22015-09-19 14:37:37 -04001101 JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
1102
Austin Schuhc55b0172022-02-20 17:52:35 -08001103 Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant() < Scalar(0) ? Scalar(-1) : Scalar(1); // so x has absolute value 1
Brian Silverman72890c22015-09-19 14:37:37 -04001104 VectorType sv(svd.singularValues());
Austin Schuhc55b0172022-02-20 17:52:35 -08001105 sv.coeffRef(Dim-1) *= x;
1106 if(scaling) *scaling = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint();
Brian Silverman72890c22015-09-19 14:37:37 -04001107 if(rotation)
1108 {
1109 LinearMatrixType m(svd.matrixU());
Austin Schuhc55b0172022-02-20 17:52:35 -08001110 m.col(Dim-1) *= x;
1111 *rotation = m * svd.matrixV().adjoint();
Brian Silverman72890c22015-09-19 14:37:37 -04001112 }
1113}
1114
Austin Schuh189376f2018-12-20 22:11:15 +11001115/** decomposes the linear part of the transformation as a product scaling x rotation, the scaling being
Brian Silverman72890c22015-09-19 14:37:37 -04001116 * not necessarily positive.
1117 *
1118 * If either pointer is zero, the corresponding computation is skipped.
1119 *
1120 *
1121 *
1122 * \svd_module
1123 *
1124 * \sa computeRotationScaling(), rotation(), class SVD
1125 */
1126template<typename Scalar, int Dim, int Mode, int Options>
1127template<typename ScalingMatrixType, typename RotationMatrixType>
Austin Schuh189376f2018-12-20 22:11:15 +11001128EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
Brian Silverman72890c22015-09-19 14:37:37 -04001129{
Austin Schuhc55b0172022-02-20 17:52:35 -08001130 // Note that JacobiSVD is faster than BDCSVD for small matrices.
Brian Silverman72890c22015-09-19 14:37:37 -04001131 JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
1132
Austin Schuhc55b0172022-02-20 17:52:35 -08001133 Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant() < Scalar(0) ? Scalar(-1) : Scalar(1); // so x has absolute value 1
Brian Silverman72890c22015-09-19 14:37:37 -04001134 VectorType sv(svd.singularValues());
Austin Schuhc55b0172022-02-20 17:52:35 -08001135 sv.coeffRef(Dim-1) *= x;
1136 if(scaling) *scaling = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint();
Brian Silverman72890c22015-09-19 14:37:37 -04001137 if(rotation)
1138 {
1139 LinearMatrixType m(svd.matrixU());
Austin Schuhc55b0172022-02-20 17:52:35 -08001140 m.col(Dim-1) *= x;
1141 *rotation = m * svd.matrixV().adjoint();
Brian Silverman72890c22015-09-19 14:37:37 -04001142 }
1143}
1144
1145/** Convenient method to set \c *this from a position, orientation and scale
1146 * of a 3D object.
1147 */
1148template<typename Scalar, int Dim, int Mode, int Options>
1149template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
Austin Schuh189376f2018-12-20 22:11:15 +11001150EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Brian Silverman72890c22015-09-19 14:37:37 -04001151Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
1152 const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
1153{
1154 linear() = internal::toRotationMatrix<Scalar,Dim>(orientation);
1155 linear() *= scale.asDiagonal();
1156 translation() = position;
1157 makeAffine();
1158 return *this;
1159}
1160
1161namespace internal {
1162
1163template<int Mode>
1164struct transform_make_affine
1165{
1166 template<typename MatrixType>
Austin Schuh189376f2018-12-20 22:11:15 +11001167 EIGEN_DEVICE_FUNC static void run(MatrixType &mat)
Brian Silverman72890c22015-09-19 14:37:37 -04001168 {
1169 static const int Dim = MatrixType::ColsAtCompileTime-1;
1170 mat.template block<1,Dim>(Dim,0).setZero();
1171 mat.coeffRef(Dim,Dim) = typename MatrixType::Scalar(1);
1172 }
1173};
1174
1175template<>
1176struct transform_make_affine<AffineCompact>
1177{
Austin Schuh189376f2018-12-20 22:11:15 +11001178 template<typename MatrixType> EIGEN_DEVICE_FUNC static void run(MatrixType &) { }
Brian Silverman72890c22015-09-19 14:37:37 -04001179};
Austin Schuhc55b0172022-02-20 17:52:35 -08001180
Brian Silverman72890c22015-09-19 14:37:37 -04001181// selector needed to avoid taking the inverse of a 3x4 matrix
1182template<typename TransformType, int Mode=TransformType::Mode>
1183struct projective_transform_inverse
1184{
Austin Schuh189376f2018-12-20 22:11:15 +11001185 EIGEN_DEVICE_FUNC static inline void run(const TransformType&, TransformType&)
Brian Silverman72890c22015-09-19 14:37:37 -04001186 {}
1187};
1188
1189template<typename TransformType>
1190struct projective_transform_inverse<TransformType, Projective>
1191{
Austin Schuh189376f2018-12-20 22:11:15 +11001192 EIGEN_DEVICE_FUNC static inline void run(const TransformType& m, TransformType& res)
Brian Silverman72890c22015-09-19 14:37:37 -04001193 {
1194 res.matrix() = m.matrix().inverse();
1195 }
1196};
1197
1198} // end namespace internal
1199
1200
1201/**
1202 *
1203 * \returns the inverse transformation according to some given knowledge
1204 * on \c *this.
1205 *
1206 * \param hint allows to optimize the inversion process when the transformation
1207 * is known to be not a general transformation (optional). The possible values are:
1208 * - #Projective if the transformation is not necessarily affine, i.e., if the
1209 * last row is not guaranteed to be [0 ... 0 1]
1210 * - #Affine if the last row can be assumed to be [0 ... 0 1]
1211 * - #Isometry if the transformation is only a concatenations of translations
1212 * and rotations.
1213 * The default is the template class parameter \c Mode.
1214 *
1215 * \warning unless \a traits is always set to NoShear or NoScaling, this function
1216 * requires the generic inverse method of MatrixBase defined in the LU module. If
1217 * you forget to include this module, then you will get hard to debug linking errors.
1218 *
1219 * \sa MatrixBase::inverse()
1220 */
1221template<typename Scalar, int Dim, int Mode, int Options>
Austin Schuh189376f2018-12-20 22:11:15 +11001222EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>
Brian Silverman72890c22015-09-19 14:37:37 -04001223Transform<Scalar,Dim,Mode,Options>::inverse(TransformTraits hint) const
1224{
1225 Transform res;
1226 if (hint == Projective)
1227 {
1228 internal::projective_transform_inverse<Transform>::run(*this, res);
1229 }
1230 else
1231 {
1232 if (hint == Isometry)
1233 {
1234 res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose();
1235 }
1236 else if(hint&Affine)
1237 {
1238 res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse();
1239 }
1240 else
1241 {
1242 eigen_assert(false && "Invalid transform traits in Transform::Inverse");
1243 }
1244 // translation and remaining parts
1245 res.matrix().template topRightCorner<Dim,1>()
1246 = - res.matrix().template topLeftCorner<Dim,Dim>() * translation();
1247 res.makeAffine(); // we do need this, because in the beginning res is uninitialized
1248 }
1249 return res;
1250}
1251
1252namespace internal {
1253
1254/*****************************************************
1255*** Specializations of take affine part ***
1256*****************************************************/
1257
1258template<typename TransformType> struct transform_take_affine_part {
1259 typedef typename TransformType::MatrixType MatrixType;
1260 typedef typename TransformType::AffinePart AffinePart;
1261 typedef typename TransformType::ConstAffinePart ConstAffinePart;
1262 static inline AffinePart run(MatrixType& m)
1263 { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
1264 static inline ConstAffinePart run(const MatrixType& m)
1265 { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
1266};
1267
1268template<typename Scalar, int Dim, int Options>
1269struct transform_take_affine_part<Transform<Scalar,Dim,AffineCompact, Options> > {
1270 typedef typename Transform<Scalar,Dim,AffineCompact,Options>::MatrixType MatrixType;
1271 static inline MatrixType& run(MatrixType& m) { return m; }
1272 static inline const MatrixType& run(const MatrixType& m) { return m; }
1273};
1274
1275/*****************************************************
1276*** Specializations of construct from matrix ***
1277*****************************************************/
1278
1279template<typename Other, int Mode, int Options, int Dim, int HDim>
1280struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,Dim>
1281{
1282 static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1283 {
1284 transform->linear() = other;
1285 transform->translation().setZero();
1286 transform->makeAffine();
1287 }
1288};
1289
1290template<typename Other, int Mode, int Options, int Dim, int HDim>
1291struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,HDim>
1292{
1293 static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1294 {
1295 transform->affine() = other;
1296 transform->makeAffine();
1297 }
1298};
1299
1300template<typename Other, int Mode, int Options, int Dim, int HDim>
1301struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, HDim,HDim>
1302{
1303 static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1304 { transform->matrix() = other; }
1305};
1306
1307template<typename Other, int Options, int Dim, int HDim>
1308struct transform_construct_from_matrix<Other, AffineCompact,Options,Dim,HDim, HDim,HDim>
1309{
1310 static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact,Options> *transform, const Other& other)
1311 { transform->matrix() = other.template block<Dim,HDim>(0,0); }
1312};
1313
1314/**********************************************************
1315*** Specializations of operator* with rhs EigenBase ***
1316**********************************************************/
1317
1318template<int LhsMode,int RhsMode>
1319struct transform_product_result
1320{
Austin Schuhc55b0172022-02-20 17:52:35 -08001321 enum
1322 {
Brian Silverman72890c22015-09-19 14:37:37 -04001323 Mode =
1324 (LhsMode == (int)Projective || RhsMode == (int)Projective ) ? Projective :
1325 (LhsMode == (int)Affine || RhsMode == (int)Affine ) ? Affine :
1326 (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact :
1327 (LhsMode == (int)Isometry || RhsMode == (int)Isometry ) ? Isometry : Projective
1328 };
1329};
1330
Austin Schuh189376f2018-12-20 22:11:15 +11001331template< typename TransformType, typename MatrixType, int RhsCols>
1332struct transform_right_product_impl< TransformType, MatrixType, 0, RhsCols>
Brian Silverman72890c22015-09-19 14:37:37 -04001333{
1334 typedef typename MatrixType::PlainObject ResultType;
1335
Austin Schuhc55b0172022-02-20 17:52:35 -08001336 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
Brian Silverman72890c22015-09-19 14:37:37 -04001337 {
1338 return T.matrix() * other;
1339 }
1340};
1341
Austin Schuh189376f2018-12-20 22:11:15 +11001342template< typename TransformType, typename MatrixType, int RhsCols>
1343struct transform_right_product_impl< TransformType, MatrixType, 1, RhsCols>
Brian Silverman72890c22015-09-19 14:37:37 -04001344{
Austin Schuhc55b0172022-02-20 17:52:35 -08001345 enum {
1346 Dim = TransformType::Dim,
Brian Silverman72890c22015-09-19 14:37:37 -04001347 HDim = TransformType::HDim,
1348 OtherRows = MatrixType::RowsAtCompileTime,
1349 OtherCols = MatrixType::ColsAtCompileTime
1350 };
1351
1352 typedef typename MatrixType::PlainObject ResultType;
1353
Austin Schuhc55b0172022-02-20 17:52:35 -08001354 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
Brian Silverman72890c22015-09-19 14:37:37 -04001355 {
1356 EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
1357
1358 typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime)==Dim> TopLeftLhs;
1359
1360 ResultType res(other.rows(),other.cols());
1361 TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other;
1362 res.row(OtherRows-1) = other.row(OtherRows-1);
Austin Schuhc55b0172022-02-20 17:52:35 -08001363
Brian Silverman72890c22015-09-19 14:37:37 -04001364 return res;
1365 }
1366};
1367
Austin Schuh189376f2018-12-20 22:11:15 +11001368template< typename TransformType, typename MatrixType, int RhsCols>
1369struct transform_right_product_impl< TransformType, MatrixType, 2, RhsCols>
Brian Silverman72890c22015-09-19 14:37:37 -04001370{
Austin Schuhc55b0172022-02-20 17:52:35 -08001371 enum {
1372 Dim = TransformType::Dim,
Brian Silverman72890c22015-09-19 14:37:37 -04001373 HDim = TransformType::HDim,
1374 OtherRows = MatrixType::RowsAtCompileTime,
1375 OtherCols = MatrixType::ColsAtCompileTime
1376 };
1377
1378 typedef typename MatrixType::PlainObject ResultType;
1379
Austin Schuhc55b0172022-02-20 17:52:35 -08001380 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
Brian Silverman72890c22015-09-19 14:37:37 -04001381 {
1382 EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
1383
1384 typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs;
1385 ResultType res(Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(),1,other.cols()));
1386 TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other;
1387
1388 return res;
1389 }
1390};
1391
Austin Schuh189376f2018-12-20 22:11:15 +11001392template< typename TransformType, typename MatrixType >
1393struct transform_right_product_impl< TransformType, MatrixType, 2, 1> // rhs is a vector of size Dim
1394{
1395 typedef typename TransformType::MatrixType TransformMatrix;
1396 enum {
1397 Dim = TransformType::Dim,
1398 HDim = TransformType::HDim,
1399 OtherRows = MatrixType::RowsAtCompileTime,
1400 WorkingRows = EIGEN_PLAIN_ENUM_MIN(TransformMatrix::RowsAtCompileTime,HDim)
1401 };
1402
1403 typedef typename MatrixType::PlainObject ResultType;
1404
Austin Schuhc55b0172022-02-20 17:52:35 -08001405 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
Austin Schuh189376f2018-12-20 22:11:15 +11001406 {
1407 EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
1408
1409 Matrix<typename ResultType::Scalar, Dim+1, 1> rhs;
1410 rhs.template head<Dim>() = other; rhs[Dim] = typename ResultType::Scalar(1);
1411 Matrix<typename ResultType::Scalar, WorkingRows, 1> res(T.matrix() * rhs);
1412 return res.template head<Dim>();
1413 }
1414};
1415
Brian Silverman72890c22015-09-19 14:37:37 -04001416/**********************************************************
1417*** Specializations of operator* with lhs EigenBase ***
1418**********************************************************/
1419
1420// generic HDim x HDim matrix * T => Projective
1421template<typename Other,int Mode, int Options, int Dim, int HDim>
1422struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, HDim,HDim>
1423{
1424 typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
1425 typedef typename TransformType::MatrixType MatrixType;
1426 typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
1427 static ResultType run(const Other& other,const TransformType& tr)
1428 { return ResultType(other * tr.matrix()); }
1429};
1430
1431// generic HDim x HDim matrix * AffineCompact => Projective
1432template<typename Other, int Options, int Dim, int HDim>
1433struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, HDim,HDim>
1434{
1435 typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
1436 typedef typename TransformType::MatrixType MatrixType;
1437 typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
1438 static ResultType run(const Other& other,const TransformType& tr)
1439 {
1440 ResultType res;
1441 res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix();
1442 res.matrix().col(Dim) += other.col(Dim);
1443 return res;
1444 }
1445};
1446
1447// affine matrix * T
1448template<typename Other,int Mode, int Options, int Dim, int HDim>
1449struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,HDim>
1450{
1451 typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
1452 typedef typename TransformType::MatrixType MatrixType;
1453 typedef TransformType ResultType;
1454 static ResultType run(const Other& other,const TransformType& tr)
1455 {
1456 ResultType res;
1457 res.affine().noalias() = other * tr.matrix();
1458 res.matrix().row(Dim) = tr.matrix().row(Dim);
1459 return res;
1460 }
1461};
1462
1463// affine matrix * AffineCompact
1464template<typename Other, int Options, int Dim, int HDim>
1465struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, Dim,HDim>
1466{
1467 typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
1468 typedef typename TransformType::MatrixType MatrixType;
1469 typedef TransformType ResultType;
1470 static ResultType run(const Other& other,const TransformType& tr)
1471 {
1472 ResultType res;
1473 res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix();
1474 res.translation() += other.col(Dim);
1475 return res;
1476 }
1477};
1478
1479// linear matrix * T
1480template<typename Other,int Mode, int Options, int Dim, int HDim>
1481struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,Dim>
1482{
1483 typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
1484 typedef typename TransformType::MatrixType MatrixType;
1485 typedef TransformType ResultType;
1486 static ResultType run(const Other& other, const TransformType& tr)
1487 {
1488 TransformType res;
1489 if(Mode!=int(AffineCompact))
1490 res.matrix().row(Dim) = tr.matrix().row(Dim);
1491 res.matrix().template topRows<Dim>().noalias()
1492 = other * tr.matrix().template topRows<Dim>();
1493 return res;
1494 }
1495};
1496
1497/**********************************************************
1498*** Specializations of operator* with another Transform ***
1499**********************************************************/
1500
1501template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
1502struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,false >
1503{
1504 enum { ResultMode = transform_product_result<LhsMode,RhsMode>::Mode };
1505 typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
1506 typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
1507 typedef Transform<Scalar,Dim,ResultMode,LhsOptions> ResultType;
1508 static ResultType run(const Lhs& lhs, const Rhs& rhs)
1509 {
1510 ResultType res;
1511 res.linear() = lhs.linear() * rhs.linear();
1512 res.translation() = lhs.linear() * rhs.translation() + lhs.translation();
1513 res.makeAffine();
1514 return res;
1515 }
1516};
1517
1518template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
1519struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,true >
1520{
1521 typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
1522 typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
1523 typedef Transform<Scalar,Dim,Projective> ResultType;
1524 static ResultType run(const Lhs& lhs, const Rhs& rhs)
1525 {
1526 return ResultType( lhs.matrix() * rhs.matrix() );
1527 }
1528};
1529
1530template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
1531struct transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact,LhsOptions>,Transform<Scalar,Dim,Projective,RhsOptions>,true >
1532{
1533 typedef Transform<Scalar,Dim,AffineCompact,LhsOptions> Lhs;
1534 typedef Transform<Scalar,Dim,Projective,RhsOptions> Rhs;
1535 typedef Transform<Scalar,Dim,Projective> ResultType;
1536 static ResultType run(const Lhs& lhs, const Rhs& rhs)
1537 {
1538 ResultType res;
1539 res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix();
1540 res.matrix().row(Dim) = rhs.matrix().row(Dim);
1541 return res;
1542 }
1543};
1544
1545template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
1546struct transform_transform_product_impl<Transform<Scalar,Dim,Projective,LhsOptions>,Transform<Scalar,Dim,AffineCompact,RhsOptions>,true >
1547{
1548 typedef Transform<Scalar,Dim,Projective,LhsOptions> Lhs;
1549 typedef Transform<Scalar,Dim,AffineCompact,RhsOptions> Rhs;
1550 typedef Transform<Scalar,Dim,Projective> ResultType;
1551 static ResultType run(const Lhs& lhs, const Rhs& rhs)
1552 {
1553 ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix());
1554 res.matrix().col(Dim) += lhs.matrix().col(Dim);
1555 return res;
1556 }
1557};
1558
1559} // end namespace internal
1560
1561} // end namespace Eigen
1562
1563#endif // EIGEN_TRANSFORM_H