Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 6 | // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com> |
| 7 | // |
| 8 | // This Source Code Form is subject to the terms of the Mozilla |
| 9 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 10 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 11 | |
| 12 | #ifndef EIGEN_TRANSFORM_H |
| 13 | #define EIGEN_TRANSFORM_H |
| 14 | |
| 15 | namespace Eigen { |
| 16 | |
| 17 | namespace internal { |
| 18 | |
| 19 | template<typename Transform> |
| 20 | struct transform_traits |
| 21 | { |
| 22 | enum |
| 23 | { |
| 24 | Dim = Transform::Dim, |
| 25 | HDim = Transform::HDim, |
| 26 | Mode = Transform::Mode, |
| 27 | IsProjective = (int(Mode)==int(Projective)) |
| 28 | }; |
| 29 | }; |
| 30 | |
| 31 | template< typename TransformType, |
| 32 | typename MatrixType, |
| 33 | int Case = transform_traits<TransformType>::IsProjective ? 0 |
| 34 | : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1 |
| 35 | : 2> |
| 36 | struct transform_right_product_impl; |
| 37 | |
| 38 | template< typename Other, |
| 39 | int Mode, |
| 40 | int Options, |
| 41 | int Dim, |
| 42 | int HDim, |
| 43 | int OtherRows=Other::RowsAtCompileTime, |
| 44 | int OtherCols=Other::ColsAtCompileTime> |
| 45 | struct transform_left_product_impl; |
| 46 | |
| 47 | template< typename Lhs, |
| 48 | typename Rhs, |
| 49 | bool AnyProjective = |
| 50 | transform_traits<Lhs>::IsProjective || |
| 51 | transform_traits<Rhs>::IsProjective> |
| 52 | struct transform_transform_product_impl; |
| 53 | |
| 54 | template< typename Other, |
| 55 | int Mode, |
| 56 | int Options, |
| 57 | int Dim, |
| 58 | int HDim, |
| 59 | int OtherRows=Other::RowsAtCompileTime, |
| 60 | int OtherCols=Other::ColsAtCompileTime> |
| 61 | struct transform_construct_from_matrix; |
| 62 | |
| 63 | template<typename TransformType> struct transform_take_affine_part; |
| 64 | |
| 65 | template<int Mode> struct transform_make_affine; |
| 66 | |
| 67 | } // end namespace internal |
| 68 | |
| 69 | /** \geometry_module \ingroup Geometry_Module |
| 70 | * |
| 71 | * \class Transform |
| 72 | * |
| 73 | * \brief Represents an homogeneous transformation in a N dimensional space |
| 74 | * |
| 75 | * \tparam _Scalar the scalar type, i.e., the type of the coefficients |
| 76 | * \tparam _Dim the dimension of the space |
| 77 | * \tparam _Mode the type of the transformation. Can be: |
| 78 | * - #Affine: the transformation is stored as a (Dim+1)^2 matrix, |
| 79 | * where the last row is assumed to be [0 ... 0 1]. |
| 80 | * - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix. |
| 81 | * - #Projective: the transformation is stored as a (Dim+1)^2 matrix |
| 82 | * without any assumption. |
| 83 | * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor. |
| 84 | * These Options are passed directly to the underlying matrix type. |
| 85 | * |
| 86 | * The homography is internally represented and stored by a matrix which |
| 87 | * is available through the matrix() method. To understand the behavior of |
| 88 | * this class you have to think a Transform object as its internal |
| 89 | * matrix representation. The chosen convention is right multiply: |
| 90 | * |
| 91 | * \code v' = T * v \endcode |
| 92 | * |
| 93 | * Therefore, an affine transformation matrix M is shaped like this: |
| 94 | * |
| 95 | * \f$ \left( \begin{array}{cc} |
| 96 | * linear & translation\\ |
| 97 | * 0 ... 0 & 1 |
| 98 | * \end{array} \right) \f$ |
| 99 | * |
| 100 | * Note that for a projective transformation the last row can be anything, |
| 101 | * and then the interpretation of different parts might be sightly different. |
| 102 | * |
| 103 | * However, unlike a plain matrix, the Transform class provides many features |
| 104 | * simplifying both its assembly and usage. In particular, it can be composed |
| 105 | * with any other transformations (Transform,Translation,RotationBase,Matrix) |
| 106 | * and can be directly used to transform implicit homogeneous vectors. All these |
| 107 | * operations are handled via the operator*. For the composition of transformations, |
| 108 | * its principle consists to first convert the right/left hand sides of the product |
| 109 | * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. |
| 110 | * Of course, internally, operator* tries to perform the minimal number of operations |
| 111 | * according to the nature of each terms. Likewise, when applying the transform |
| 112 | * to non homogeneous vectors, the latters are automatically promoted to homogeneous |
| 113 | * one before doing the matrix product. The convertions to homogeneous representations |
| 114 | * are performed as follow: |
| 115 | * |
| 116 | * \b Translation t (Dim)x(1): |
| 117 | * \f$ \left( \begin{array}{cc} |
| 118 | * I & t \\ |
| 119 | * 0\,...\,0 & 1 |
| 120 | * \end{array} \right) \f$ |
| 121 | * |
| 122 | * \b Rotation R (Dim)x(Dim): |
| 123 | * \f$ \left( \begin{array}{cc} |
| 124 | * R & 0\\ |
| 125 | * 0\,...\,0 & 1 |
| 126 | * \end{array} \right) \f$ |
| 127 | * |
| 128 | * \b Linear \b Matrix L (Dim)x(Dim): |
| 129 | * \f$ \left( \begin{array}{cc} |
| 130 | * L & 0\\ |
| 131 | * 0\,...\,0 & 1 |
| 132 | * \end{array} \right) \f$ |
| 133 | * |
| 134 | * \b Affine \b Matrix A (Dim)x(Dim+1): |
| 135 | * \f$ \left( \begin{array}{c} |
| 136 | * A\\ |
| 137 | * 0\,...\,0\,1 |
| 138 | * \end{array} \right) \f$ |
| 139 | * |
| 140 | * \b Column \b vector v (Dim)x(1): |
| 141 | * \f$ \left( \begin{array}{c} |
| 142 | * v\\ |
| 143 | * 1 |
| 144 | * \end{array} \right) \f$ |
| 145 | * |
| 146 | * \b Set \b of \b column \b vectors V1...Vn (Dim)x(n): |
| 147 | * \f$ \left( \begin{array}{ccc} |
| 148 | * v_1 & ... & v_n\\ |
| 149 | * 1 & ... & 1 |
| 150 | * \end{array} \right) \f$ |
| 151 | * |
| 152 | * The concatenation of a Transform object with any kind of other transformation |
| 153 | * always returns a Transform object. |
| 154 | * |
| 155 | * A little exception to the "as pure matrix product" rule is the case of the |
| 156 | * transformation of non homogeneous vectors by an affine transformation. In |
| 157 | * that case the last matrix row can be ignored, and the product returns non |
| 158 | * homogeneous vectors. |
| 159 | * |
| 160 | * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation, |
| 161 | * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix. |
| 162 | * The solution is either to use a Dim x Dynamic matrix or explicitly request a |
| 163 | * vector transformation by making the vector homogeneous: |
| 164 | * \code |
| 165 | * m' = T * m.colwise().homogeneous(); |
| 166 | * \endcode |
| 167 | * Note that there is zero overhead. |
| 168 | * |
| 169 | * Conversion methods from/to Qt's QMatrix and QTransform are available if the |
| 170 | * preprocessor token EIGEN_QT_SUPPORT is defined. |
| 171 | * |
| 172 | * This class can be extended with the help of the plugin mechanism described on the page |
| 173 | * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN. |
| 174 | * |
| 175 | * \sa class Matrix, class Quaternion |
| 176 | */ |
| 177 | template<typename _Scalar, int _Dim, int _Mode, int _Options> |
| 178 | class Transform |
| 179 | { |
| 180 | public: |
| 181 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1)) |
| 182 | enum { |
| 183 | Mode = _Mode, |
| 184 | Options = _Options, |
| 185 | Dim = _Dim, ///< space dimension in which the transformation holds |
| 186 | HDim = _Dim+1, ///< size of a respective homogeneous vector |
| 187 | Rows = int(Mode)==(AffineCompact) ? Dim : HDim |
| 188 | }; |
| 189 | /** the scalar type of the coefficients */ |
| 190 | typedef _Scalar Scalar; |
| 191 | typedef DenseIndex Index; |
| 192 | /** type of the matrix used to represent the transformation */ |
| 193 | typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType; |
| 194 | /** constified MatrixType */ |
| 195 | typedef const MatrixType ConstMatrixType; |
| 196 | /** type of the matrix used to represent the linear part of the transformation */ |
| 197 | typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType; |
| 198 | /** type of read/write reference to the linear part of the transformation */ |
| 199 | typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> LinearPart; |
| 200 | /** type of read reference to the linear part of the transformation */ |
| 201 | typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> ConstLinearPart; |
| 202 | /** type of read/write reference to the affine part of the transformation */ |
| 203 | typedef typename internal::conditional<int(Mode)==int(AffineCompact), |
| 204 | MatrixType&, |
| 205 | Block<MatrixType,Dim,HDim> >::type AffinePart; |
| 206 | /** type of read reference to the affine part of the transformation */ |
| 207 | typedef typename internal::conditional<int(Mode)==int(AffineCompact), |
| 208 | const MatrixType&, |
| 209 | const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart; |
| 210 | /** type of a vector */ |
| 211 | typedef Matrix<Scalar,Dim,1> VectorType; |
| 212 | /** type of a read/write reference to the translation part of the rotation */ |
| 213 | typedef Block<MatrixType,Dim,1,int(Mode)==(AffineCompact)> TranslationPart; |
| 214 | /** type of a read reference to the translation part of the rotation */ |
| 215 | typedef const Block<ConstMatrixType,Dim,1,int(Mode)==(AffineCompact)> ConstTranslationPart; |
| 216 | /** corresponding translation type */ |
| 217 | typedef Translation<Scalar,Dim> TranslationType; |
| 218 | |
| 219 | // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0 |
| 220 | enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) }; |
| 221 | /** The return type of the product between a diagonal matrix and a transform */ |
| 222 | typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType; |
| 223 | |
| 224 | protected: |
| 225 | |
| 226 | MatrixType m_matrix; |
| 227 | |
| 228 | public: |
| 229 | |
| 230 | /** Default constructor without initialization of the meaningful coefficients. |
| 231 | * If Mode==Affine, then the last row is set to [0 ... 0 1] */ |
| 232 | inline Transform() |
| 233 | { |
| 234 | check_template_params(); |
| 235 | internal::transform_make_affine<(int(Mode)==Affine) ? Affine : AffineCompact>::run(m_matrix); |
| 236 | } |
| 237 | |
| 238 | inline Transform(const Transform& other) |
| 239 | { |
| 240 | check_template_params(); |
| 241 | m_matrix = other.m_matrix; |
| 242 | } |
| 243 | |
| 244 | inline explicit Transform(const TranslationType& t) |
| 245 | { |
| 246 | check_template_params(); |
| 247 | *this = t; |
| 248 | } |
| 249 | inline explicit Transform(const UniformScaling<Scalar>& s) |
| 250 | { |
| 251 | check_template_params(); |
| 252 | *this = s; |
| 253 | } |
| 254 | template<typename Derived> |
| 255 | inline explicit Transform(const RotationBase<Derived, Dim>& r) |
| 256 | { |
| 257 | check_template_params(); |
| 258 | *this = r; |
| 259 | } |
| 260 | |
| 261 | inline Transform& operator=(const Transform& other) |
| 262 | { m_matrix = other.m_matrix; return *this; } |
| 263 | |
| 264 | typedef internal::transform_take_affine_part<Transform> take_affine_part; |
| 265 | |
| 266 | /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ |
| 267 | template<typename OtherDerived> |
| 268 | inline explicit Transform(const EigenBase<OtherDerived>& other) |
| 269 | { |
| 270 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value), |
| 271 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); |
| 272 | |
| 273 | check_template_params(); |
| 274 | internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived()); |
| 275 | } |
| 276 | |
| 277 | /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */ |
| 278 | template<typename OtherDerived> |
| 279 | inline Transform& operator=(const EigenBase<OtherDerived>& other) |
| 280 | { |
| 281 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value), |
| 282 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); |
| 283 | |
| 284 | internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived()); |
| 285 | return *this; |
| 286 | } |
| 287 | |
| 288 | template<int OtherOptions> |
| 289 | inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other) |
| 290 | { |
| 291 | check_template_params(); |
| 292 | // only the options change, we can directly copy the matrices |
| 293 | m_matrix = other.matrix(); |
| 294 | } |
| 295 | |
| 296 | template<int OtherMode,int OtherOptions> |
| 297 | inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) |
| 298 | { |
| 299 | check_template_params(); |
| 300 | // prevent conversions as: |
| 301 | // Affine | AffineCompact | Isometry = Projective |
| 302 | EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)), |
| 303 | YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) |
| 304 | |
| 305 | // prevent conversions as: |
| 306 | // Isometry = Affine | AffineCompact |
| 307 | EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)), |
| 308 | YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) |
| 309 | |
| 310 | enum { ModeIsAffineCompact = Mode == int(AffineCompact), |
| 311 | OtherModeIsAffineCompact = OtherMode == int(AffineCompact) |
| 312 | }; |
| 313 | |
| 314 | if(ModeIsAffineCompact == OtherModeIsAffineCompact) |
| 315 | { |
| 316 | // We need the block expression because the code is compiled for all |
| 317 | // combinations of transformations and will trigger a compile time error |
| 318 | // if one tries to assign the matrices directly |
| 319 | m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0); |
| 320 | makeAffine(); |
| 321 | } |
| 322 | else if(OtherModeIsAffineCompact) |
| 323 | { |
| 324 | typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType; |
| 325 | internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix()); |
| 326 | } |
| 327 | else |
| 328 | { |
| 329 | // here we know that Mode == AffineCompact and OtherMode != AffineCompact. |
| 330 | // if OtherMode were Projective, the static assert above would already have caught it. |
| 331 | // So the only possibility is that OtherMode == Affine |
| 332 | linear() = other.linear(); |
| 333 | translation() = other.translation(); |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | template<typename OtherDerived> |
| 338 | Transform(const ReturnByValue<OtherDerived>& other) |
| 339 | { |
| 340 | check_template_params(); |
| 341 | other.evalTo(*this); |
| 342 | } |
| 343 | |
| 344 | template<typename OtherDerived> |
| 345 | Transform& operator=(const ReturnByValue<OtherDerived>& other) |
| 346 | { |
| 347 | other.evalTo(*this); |
| 348 | return *this; |
| 349 | } |
| 350 | |
| 351 | #ifdef EIGEN_QT_SUPPORT |
| 352 | inline Transform(const QMatrix& other); |
| 353 | inline Transform& operator=(const QMatrix& other); |
| 354 | inline QMatrix toQMatrix(void) const; |
| 355 | inline Transform(const QTransform& other); |
| 356 | inline Transform& operator=(const QTransform& other); |
| 357 | inline QTransform toQTransform(void) const; |
| 358 | #endif |
| 359 | |
| 360 | /** shortcut for m_matrix(row,col); |
| 361 | * \sa MatrixBase::operator(Index,Index) const */ |
| 362 | inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); } |
| 363 | /** shortcut for m_matrix(row,col); |
| 364 | * \sa MatrixBase::operator(Index,Index) */ |
| 365 | inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); } |
| 366 | |
| 367 | /** \returns a read-only expression of the transformation matrix */ |
| 368 | inline const MatrixType& matrix() const { return m_matrix; } |
| 369 | /** \returns a writable expression of the transformation matrix */ |
| 370 | inline MatrixType& matrix() { return m_matrix; } |
| 371 | |
| 372 | /** \returns a read-only expression of the linear part of the transformation */ |
| 373 | inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); } |
| 374 | /** \returns a writable expression of the linear part of the transformation */ |
| 375 | inline LinearPart linear() { return LinearPart(m_matrix,0,0); } |
| 376 | |
| 377 | /** \returns a read-only expression of the Dim x HDim affine part of the transformation */ |
| 378 | inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); } |
| 379 | /** \returns a writable expression of the Dim x HDim affine part of the transformation */ |
| 380 | inline AffinePart affine() { return take_affine_part::run(m_matrix); } |
| 381 | |
| 382 | /** \returns a read-only expression of the translation vector of the transformation */ |
| 383 | inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); } |
| 384 | /** \returns a writable expression of the translation vector of the transformation */ |
| 385 | inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); } |
| 386 | |
| 387 | /** \returns an expression of the product between the transform \c *this and a matrix expression \a other |
| 388 | * |
| 389 | * The right hand side \a other might be either: |
| 390 | * \li a vector of size Dim, |
| 391 | * \li an homogeneous vector of size Dim+1, |
| 392 | * \li a set of vectors of size Dim x Dynamic, |
| 393 | * \li a set of homogeneous vectors of size Dim+1 x Dynamic, |
| 394 | * \li a linear transformation matrix of size Dim x Dim, |
| 395 | * \li an affine transformation matrix of size Dim x Dim+1, |
| 396 | * \li a transformation matrix of size Dim+1 x Dim+1. |
| 397 | */ |
| 398 | // note: this function is defined here because some compilers cannot find the respective declaration |
| 399 | template<typename OtherDerived> |
| 400 | EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, OtherDerived>::ResultType |
| 401 | operator * (const EigenBase<OtherDerived> &other) const |
| 402 | { return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); } |
| 403 | |
| 404 | /** \returns the product expression of a transformation matrix \a a times a transform \a b |
| 405 | * |
| 406 | * The left hand side \a other might be either: |
| 407 | * \li a linear transformation matrix of size Dim x Dim, |
| 408 | * \li an affine transformation matrix of size Dim x Dim+1, |
| 409 | * \li a general transformation matrix of size Dim+1 x Dim+1. |
| 410 | */ |
| 411 | template<typename OtherDerived> friend |
| 412 | inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType |
| 413 | operator * (const EigenBase<OtherDerived> &a, const Transform &b) |
| 414 | { return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); } |
| 415 | |
| 416 | /** \returns The product expression of a transform \a a times a diagonal matrix \a b |
| 417 | * |
| 418 | * The rhs diagonal matrix is interpreted as an affine scaling transformation. The |
| 419 | * product results in a Transform of the same type (mode) as the lhs only if the lhs |
| 420 | * mode is no isometry. In that case, the returned transform is an affinity. |
| 421 | */ |
| 422 | template<typename DiagonalDerived> |
| 423 | inline const TransformTimeDiagonalReturnType |
| 424 | operator * (const DiagonalBase<DiagonalDerived> &b) const |
| 425 | { |
| 426 | TransformTimeDiagonalReturnType res(*this); |
| 427 | res.linear() *= b; |
| 428 | return res; |
| 429 | } |
| 430 | |
| 431 | /** \returns The product expression of a diagonal matrix \a a times a transform \a b |
| 432 | * |
| 433 | * The lhs diagonal matrix is interpreted as an affine scaling transformation. The |
| 434 | * product results in a Transform of the same type (mode) as the lhs only if the lhs |
| 435 | * mode is no isometry. In that case, the returned transform is an affinity. |
| 436 | */ |
| 437 | template<typename DiagonalDerived> |
| 438 | friend inline TransformTimeDiagonalReturnType |
| 439 | operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b) |
| 440 | { |
| 441 | TransformTimeDiagonalReturnType res; |
| 442 | res.linear().noalias() = a*b.linear(); |
| 443 | res.translation().noalias() = a*b.translation(); |
| 444 | if (Mode!=int(AffineCompact)) |
| 445 | res.matrix().row(Dim) = b.matrix().row(Dim); |
| 446 | return res; |
| 447 | } |
| 448 | |
| 449 | template<typename OtherDerived> |
| 450 | inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; } |
| 451 | |
| 452 | /** Concatenates two transformations */ |
| 453 | inline const Transform operator * (const Transform& other) const |
| 454 | { |
| 455 | return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other); |
| 456 | } |
| 457 | |
| 458 | #ifdef __INTEL_COMPILER |
| 459 | private: |
| 460 | // this intermediate structure permits to workaround a bug in ICC 11: |
| 461 | // error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0> |
| 462 | // (const Eigen::Transform<double, 3, 2, 0> &) const" |
| 463 | // (the meaning of a name may have changed since the template declaration -- the type of the template is: |
| 464 | // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>, |
| 465 | // Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const") |
| 466 | // |
| 467 | template<int OtherMode,int OtherOptions> struct icc_11_workaround |
| 468 | { |
| 469 | typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType; |
| 470 | typedef typename ProductType::ResultType ResultType; |
| 471 | }; |
| 472 | |
| 473 | public: |
| 474 | /** Concatenates two different transformations */ |
| 475 | template<int OtherMode,int OtherOptions> |
| 476 | inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType |
| 477 | operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const |
| 478 | { |
| 479 | typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType; |
| 480 | return ProductType::run(*this,other); |
| 481 | } |
| 482 | #else |
| 483 | /** Concatenates two different transformations */ |
| 484 | template<int OtherMode,int OtherOptions> |
| 485 | inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType |
| 486 | operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const |
| 487 | { |
| 488 | return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other); |
| 489 | } |
| 490 | #endif |
| 491 | |
| 492 | /** \sa MatrixBase::setIdentity() */ |
| 493 | void setIdentity() { m_matrix.setIdentity(); } |
| 494 | |
| 495 | /** |
| 496 | * \brief Returns an identity transformation. |
| 497 | * \todo In the future this function should be returning a Transform expression. |
| 498 | */ |
| 499 | static const Transform Identity() |
| 500 | { |
| 501 | return Transform(MatrixType::Identity()); |
| 502 | } |
| 503 | |
| 504 | template<typename OtherDerived> |
| 505 | inline Transform& scale(const MatrixBase<OtherDerived> &other); |
| 506 | |
| 507 | template<typename OtherDerived> |
| 508 | inline Transform& prescale(const MatrixBase<OtherDerived> &other); |
| 509 | |
| 510 | inline Transform& scale(const Scalar& s); |
| 511 | inline Transform& prescale(const Scalar& s); |
| 512 | |
| 513 | template<typename OtherDerived> |
| 514 | inline Transform& translate(const MatrixBase<OtherDerived> &other); |
| 515 | |
| 516 | template<typename OtherDerived> |
| 517 | inline Transform& pretranslate(const MatrixBase<OtherDerived> &other); |
| 518 | |
| 519 | template<typename RotationType> |
| 520 | inline Transform& rotate(const RotationType& rotation); |
| 521 | |
| 522 | template<typename RotationType> |
| 523 | inline Transform& prerotate(const RotationType& rotation); |
| 524 | |
| 525 | Transform& shear(const Scalar& sx, const Scalar& sy); |
| 526 | Transform& preshear(const Scalar& sx, const Scalar& sy); |
| 527 | |
| 528 | inline Transform& operator=(const TranslationType& t); |
| 529 | inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } |
| 530 | inline Transform operator*(const TranslationType& t) const; |
| 531 | |
| 532 | inline Transform& operator=(const UniformScaling<Scalar>& t); |
| 533 | inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); } |
| 534 | inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode))> operator*(const UniformScaling<Scalar>& s) const |
| 535 | { |
| 536 | Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode)),Options> res = *this; |
| 537 | res.scale(s.factor()); |
| 538 | return res; |
| 539 | } |
| 540 | |
| 541 | inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linear() *= s; return *this; } |
| 542 | |
| 543 | template<typename Derived> |
| 544 | inline Transform& operator=(const RotationBase<Derived,Dim>& r); |
| 545 | template<typename Derived> |
| 546 | inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); } |
| 547 | template<typename Derived> |
| 548 | inline Transform operator*(const RotationBase<Derived,Dim>& r) const; |
| 549 | |
| 550 | const LinearMatrixType rotation() const; |
| 551 | template<typename RotationMatrixType, typename ScalingMatrixType> |
| 552 | void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const; |
| 553 | template<typename ScalingMatrixType, typename RotationMatrixType> |
| 554 | void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const; |
| 555 | |
| 556 | template<typename PositionDerived, typename OrientationType, typename ScaleDerived> |
| 557 | Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, |
| 558 | const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale); |
| 559 | |
| 560 | inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const; |
| 561 | |
| 562 | /** \returns a const pointer to the column major internal matrix */ |
| 563 | const Scalar* data() const { return m_matrix.data(); } |
| 564 | /** \returns a non-const pointer to the column major internal matrix */ |
| 565 | Scalar* data() { return m_matrix.data(); } |
| 566 | |
| 567 | /** \returns \c *this with scalar type casted to \a NewScalarType |
| 568 | * |
| 569 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| 570 | * then this function smartly returns a const reference to \c *this. |
| 571 | */ |
| 572 | template<typename NewScalarType> |
| 573 | inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const |
| 574 | { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); } |
| 575 | |
| 576 | /** Copy constructor with scalar type conversion */ |
| 577 | template<typename OtherScalarType> |
| 578 | inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other) |
| 579 | { |
| 580 | check_template_params(); |
| 581 | m_matrix = other.matrix().template cast<Scalar>(); |
| 582 | } |
| 583 | |
| 584 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| 585 | * determined by \a prec. |
| 586 | * |
| 587 | * \sa MatrixBase::isApprox() */ |
| 588 | bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const |
| 589 | { return m_matrix.isApprox(other.m_matrix, prec); } |
| 590 | |
| 591 | /** Sets the last row to [0 ... 0 1] |
| 592 | */ |
| 593 | void makeAffine() |
| 594 | { |
| 595 | internal::transform_make_affine<int(Mode)>::run(m_matrix); |
| 596 | } |
| 597 | |
| 598 | /** \internal |
| 599 | * \returns the Dim x Dim linear part if the transformation is affine, |
| 600 | * and the HDim x Dim part for projective transformations. |
| 601 | */ |
| 602 | inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() |
| 603 | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); } |
| 604 | /** \internal |
| 605 | * \returns the Dim x Dim linear part if the transformation is affine, |
| 606 | * and the HDim x Dim part for projective transformations. |
| 607 | */ |
| 608 | inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const |
| 609 | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); } |
| 610 | |
| 611 | /** \internal |
| 612 | * \returns the translation part if the transformation is affine, |
| 613 | * and the last column for projective transformations. |
| 614 | */ |
| 615 | inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() |
| 616 | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); } |
| 617 | /** \internal |
| 618 | * \returns the translation part if the transformation is affine, |
| 619 | * and the last column for projective transformations. |
| 620 | */ |
| 621 | inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const |
| 622 | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); } |
| 623 | |
| 624 | |
| 625 | #ifdef EIGEN_TRANSFORM_PLUGIN |
| 626 | #include EIGEN_TRANSFORM_PLUGIN |
| 627 | #endif |
| 628 | |
| 629 | protected: |
| 630 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 631 | static EIGEN_STRONG_INLINE void check_template_params() |
| 632 | { |
| 633 | EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| 634 | } |
| 635 | #endif |
| 636 | |
| 637 | }; |
| 638 | |
| 639 | /** \ingroup Geometry_Module */ |
| 640 | typedef Transform<float,2,Isometry> Isometry2f; |
| 641 | /** \ingroup Geometry_Module */ |
| 642 | typedef Transform<float,3,Isometry> Isometry3f; |
| 643 | /** \ingroup Geometry_Module */ |
| 644 | typedef Transform<double,2,Isometry> Isometry2d; |
| 645 | /** \ingroup Geometry_Module */ |
| 646 | typedef Transform<double,3,Isometry> Isometry3d; |
| 647 | |
| 648 | /** \ingroup Geometry_Module */ |
| 649 | typedef Transform<float,2,Affine> Affine2f; |
| 650 | /** \ingroup Geometry_Module */ |
| 651 | typedef Transform<float,3,Affine> Affine3f; |
| 652 | /** \ingroup Geometry_Module */ |
| 653 | typedef Transform<double,2,Affine> Affine2d; |
| 654 | /** \ingroup Geometry_Module */ |
| 655 | typedef Transform<double,3,Affine> Affine3d; |
| 656 | |
| 657 | /** \ingroup Geometry_Module */ |
| 658 | typedef Transform<float,2,AffineCompact> AffineCompact2f; |
| 659 | /** \ingroup Geometry_Module */ |
| 660 | typedef Transform<float,3,AffineCompact> AffineCompact3f; |
| 661 | /** \ingroup Geometry_Module */ |
| 662 | typedef Transform<double,2,AffineCompact> AffineCompact2d; |
| 663 | /** \ingroup Geometry_Module */ |
| 664 | typedef Transform<double,3,AffineCompact> AffineCompact3d; |
| 665 | |
| 666 | /** \ingroup Geometry_Module */ |
| 667 | typedef Transform<float,2,Projective> Projective2f; |
| 668 | /** \ingroup Geometry_Module */ |
| 669 | typedef Transform<float,3,Projective> Projective3f; |
| 670 | /** \ingroup Geometry_Module */ |
| 671 | typedef Transform<double,2,Projective> Projective2d; |
| 672 | /** \ingroup Geometry_Module */ |
| 673 | typedef Transform<double,3,Projective> Projective3d; |
| 674 | |
| 675 | /************************** |
| 676 | *** Optional QT support *** |
| 677 | **************************/ |
| 678 | |
| 679 | #ifdef EIGEN_QT_SUPPORT |
| 680 | /** Initializes \c *this from a QMatrix assuming the dimension is 2. |
| 681 | * |
| 682 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| 683 | */ |
| 684 | template<typename Scalar, int Dim, int Mode,int Options> |
| 685 | Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other) |
| 686 | { |
| 687 | check_template_params(); |
| 688 | *this = other; |
| 689 | } |
| 690 | |
| 691 | /** Set \c *this from a QMatrix assuming the dimension is 2. |
| 692 | * |
| 693 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| 694 | */ |
| 695 | template<typename Scalar, int Dim, int Mode,int Options> |
| 696 | Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other) |
| 697 | { |
| 698 | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| 699 | m_matrix << other.m11(), other.m21(), other.dx(), |
| 700 | other.m12(), other.m22(), other.dy(), |
| 701 | 0, 0, 1; |
| 702 | return *this; |
| 703 | } |
| 704 | |
| 705 | /** \returns a QMatrix from \c *this assuming the dimension is 2. |
| 706 | * |
| 707 | * \warning this conversion might loss data if \c *this is not affine |
| 708 | * |
| 709 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| 710 | */ |
| 711 | template<typename Scalar, int Dim, int Mode, int Options> |
| 712 | QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const |
| 713 | { |
| 714 | check_template_params(); |
| 715 | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| 716 | return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0), |
| 717 | m_matrix.coeff(0,1), m_matrix.coeff(1,1), |
| 718 | m_matrix.coeff(0,2), m_matrix.coeff(1,2)); |
| 719 | } |
| 720 | |
| 721 | /** Initializes \c *this from a QTransform assuming the dimension is 2. |
| 722 | * |
| 723 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| 724 | */ |
| 725 | template<typename Scalar, int Dim, int Mode,int Options> |
| 726 | Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other) |
| 727 | { |
| 728 | check_template_params(); |
| 729 | *this = other; |
| 730 | } |
| 731 | |
| 732 | /** Set \c *this from a QTransform assuming the dimension is 2. |
| 733 | * |
| 734 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| 735 | */ |
| 736 | template<typename Scalar, int Dim, int Mode, int Options> |
| 737 | Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other) |
| 738 | { |
| 739 | check_template_params(); |
| 740 | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| 741 | if (Mode == int(AffineCompact)) |
| 742 | m_matrix << other.m11(), other.m21(), other.dx(), |
| 743 | other.m12(), other.m22(), other.dy(); |
| 744 | else |
| 745 | m_matrix << other.m11(), other.m21(), other.dx(), |
| 746 | other.m12(), other.m22(), other.dy(), |
| 747 | other.m13(), other.m23(), other.m33(); |
| 748 | return *this; |
| 749 | } |
| 750 | |
| 751 | /** \returns a QTransform from \c *this assuming the dimension is 2. |
| 752 | * |
| 753 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| 754 | */ |
| 755 | template<typename Scalar, int Dim, int Mode, int Options> |
| 756 | QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const |
| 757 | { |
| 758 | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| 759 | if (Mode == int(AffineCompact)) |
| 760 | return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), |
| 761 | m_matrix.coeff(0,1), m_matrix.coeff(1,1), |
| 762 | m_matrix.coeff(0,2), m_matrix.coeff(1,2)); |
| 763 | else |
| 764 | return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0), |
| 765 | m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1), |
| 766 | m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2)); |
| 767 | } |
| 768 | #endif |
| 769 | |
| 770 | /********************* |
| 771 | *** Procedural API *** |
| 772 | *********************/ |
| 773 | |
| 774 | /** Applies on the right the non uniform scale transformation represented |
| 775 | * by the vector \a other to \c *this and returns a reference to \c *this. |
| 776 | * \sa prescale() |
| 777 | */ |
| 778 | template<typename Scalar, int Dim, int Mode, int Options> |
| 779 | template<typename OtherDerived> |
| 780 | Transform<Scalar,Dim,Mode,Options>& |
| 781 | Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other) |
| 782 | { |
| 783 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
| 784 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| 785 | linearExt().noalias() = (linearExt() * other.asDiagonal()); |
| 786 | return *this; |
| 787 | } |
| 788 | |
| 789 | /** Applies on the right a uniform scale of a factor \a c to \c *this |
| 790 | * and returns a reference to \c *this. |
| 791 | * \sa prescale(Scalar) |
| 792 | */ |
| 793 | template<typename Scalar, int Dim, int Mode, int Options> |
| 794 | inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s) |
| 795 | { |
| 796 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| 797 | linearExt() *= s; |
| 798 | return *this; |
| 799 | } |
| 800 | |
| 801 | /** Applies on the left the non uniform scale transformation represented |
| 802 | * by the vector \a other to \c *this and returns a reference to \c *this. |
| 803 | * \sa scale() |
| 804 | */ |
| 805 | template<typename Scalar, int Dim, int Mode, int Options> |
| 806 | template<typename OtherDerived> |
| 807 | Transform<Scalar,Dim,Mode,Options>& |
| 808 | Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other) |
| 809 | { |
| 810 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
| 811 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| 812 | m_matrix.template block<Dim,HDim>(0,0).noalias() = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)); |
| 813 | return *this; |
| 814 | } |
| 815 | |
| 816 | /** Applies on the left a uniform scale of a factor \a c to \c *this |
| 817 | * and returns a reference to \c *this. |
| 818 | * \sa scale(Scalar) |
| 819 | */ |
| 820 | template<typename Scalar, int Dim, int Mode, int Options> |
| 821 | inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s) |
| 822 | { |
| 823 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| 824 | m_matrix.template topRows<Dim>() *= s; |
| 825 | return *this; |
| 826 | } |
| 827 | |
| 828 | /** Applies on the right the translation matrix represented by the vector \a other |
| 829 | * to \c *this and returns a reference to \c *this. |
| 830 | * \sa pretranslate() |
| 831 | */ |
| 832 | template<typename Scalar, int Dim, int Mode, int Options> |
| 833 | template<typename OtherDerived> |
| 834 | Transform<Scalar,Dim,Mode,Options>& |
| 835 | Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other) |
| 836 | { |
| 837 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
| 838 | translationExt() += linearExt() * other; |
| 839 | return *this; |
| 840 | } |
| 841 | |
| 842 | /** Applies on the left the translation matrix represented by the vector \a other |
| 843 | * to \c *this and returns a reference to \c *this. |
| 844 | * \sa translate() |
| 845 | */ |
| 846 | template<typename Scalar, int Dim, int Mode, int Options> |
| 847 | template<typename OtherDerived> |
| 848 | Transform<Scalar,Dim,Mode,Options>& |
| 849 | Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other) |
| 850 | { |
| 851 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
| 852 | if(int(Mode)==int(Projective)) |
| 853 | affine() += other * m_matrix.row(Dim); |
| 854 | else |
| 855 | translation() += other; |
| 856 | return *this; |
| 857 | } |
| 858 | |
| 859 | /** Applies on the right the rotation represented by the rotation \a rotation |
| 860 | * to \c *this and returns a reference to \c *this. |
| 861 | * |
| 862 | * The template parameter \a RotationType is the type of the rotation which |
| 863 | * must be known by internal::toRotationMatrix<>. |
| 864 | * |
| 865 | * Natively supported types includes: |
| 866 | * - any scalar (2D), |
| 867 | * - a Dim x Dim matrix expression, |
| 868 | * - a Quaternion (3D), |
| 869 | * - a AngleAxis (3D) |
| 870 | * |
| 871 | * This mechanism is easily extendable to support user types such as Euler angles, |
| 872 | * or a pair of Quaternion for 4D rotations. |
| 873 | * |
| 874 | * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) |
| 875 | */ |
| 876 | template<typename Scalar, int Dim, int Mode, int Options> |
| 877 | template<typename RotationType> |
| 878 | Transform<Scalar,Dim,Mode,Options>& |
| 879 | Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation) |
| 880 | { |
| 881 | linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation); |
| 882 | return *this; |
| 883 | } |
| 884 | |
| 885 | /** Applies on the left the rotation represented by the rotation \a rotation |
| 886 | * to \c *this and returns a reference to \c *this. |
| 887 | * |
| 888 | * See rotate() for further details. |
| 889 | * |
| 890 | * \sa rotate() |
| 891 | */ |
| 892 | template<typename Scalar, int Dim, int Mode, int Options> |
| 893 | template<typename RotationType> |
| 894 | Transform<Scalar,Dim,Mode,Options>& |
| 895 | Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation) |
| 896 | { |
| 897 | m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation) |
| 898 | * m_matrix.template block<Dim,HDim>(0,0); |
| 899 | return *this; |
| 900 | } |
| 901 | |
| 902 | /** Applies on the right the shear transformation represented |
| 903 | * by the vector \a other to \c *this and returns a reference to \c *this. |
| 904 | * \warning 2D only. |
| 905 | * \sa preshear() |
| 906 | */ |
| 907 | template<typename Scalar, int Dim, int Mode, int Options> |
| 908 | Transform<Scalar,Dim,Mode,Options>& |
| 909 | Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy) |
| 910 | { |
| 911 | EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| 912 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| 913 | VectorType tmp = linear().col(0)*sy + linear().col(1); |
| 914 | linear() << linear().col(0) + linear().col(1)*sx, tmp; |
| 915 | return *this; |
| 916 | } |
| 917 | |
| 918 | /** Applies on the left the shear transformation represented |
| 919 | * by the vector \a other to \c *this and returns a reference to \c *this. |
| 920 | * \warning 2D only. |
| 921 | * \sa shear() |
| 922 | */ |
| 923 | template<typename Scalar, int Dim, int Mode, int Options> |
| 924 | Transform<Scalar,Dim,Mode,Options>& |
| 925 | Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy) |
| 926 | { |
| 927 | EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| 928 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| 929 | m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0); |
| 930 | return *this; |
| 931 | } |
| 932 | |
| 933 | /****************************************************** |
| 934 | *** Scaling, Translation and Rotation compatibility *** |
| 935 | ******************************************************/ |
| 936 | |
| 937 | template<typename Scalar, int Dim, int Mode, int Options> |
| 938 | inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t) |
| 939 | { |
| 940 | linear().setIdentity(); |
| 941 | translation() = t.vector(); |
| 942 | makeAffine(); |
| 943 | return *this; |
| 944 | } |
| 945 | |
| 946 | template<typename Scalar, int Dim, int Mode, int Options> |
| 947 | inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const |
| 948 | { |
| 949 | Transform res = *this; |
| 950 | res.translate(t.vector()); |
| 951 | return res; |
| 952 | } |
| 953 | |
| 954 | template<typename Scalar, int Dim, int Mode, int Options> |
| 955 | inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s) |
| 956 | { |
| 957 | m_matrix.setZero(); |
| 958 | linear().diagonal().fill(s.factor()); |
| 959 | makeAffine(); |
| 960 | return *this; |
| 961 | } |
| 962 | |
| 963 | template<typename Scalar, int Dim, int Mode, int Options> |
| 964 | template<typename Derived> |
| 965 | inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r) |
| 966 | { |
| 967 | linear() = internal::toRotationMatrix<Scalar,Dim>(r); |
| 968 | translation().setZero(); |
| 969 | makeAffine(); |
| 970 | return *this; |
| 971 | } |
| 972 | |
| 973 | template<typename Scalar, int Dim, int Mode, int Options> |
| 974 | template<typename Derived> |
| 975 | inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const |
| 976 | { |
| 977 | Transform res = *this; |
| 978 | res.rotate(r.derived()); |
| 979 | return res; |
| 980 | } |
| 981 | |
| 982 | /************************ |
| 983 | *** Special functions *** |
| 984 | ************************/ |
| 985 | |
| 986 | /** \returns the rotation part of the transformation |
| 987 | * |
| 988 | * |
| 989 | * \svd_module |
| 990 | * |
| 991 | * \sa computeRotationScaling(), computeScalingRotation(), class SVD |
| 992 | */ |
| 993 | template<typename Scalar, int Dim, int Mode, int Options> |
| 994 | const typename Transform<Scalar,Dim,Mode,Options>::LinearMatrixType |
| 995 | Transform<Scalar,Dim,Mode,Options>::rotation() const |
| 996 | { |
| 997 | LinearMatrixType result; |
| 998 | computeRotationScaling(&result, (LinearMatrixType*)0); |
| 999 | return result; |
| 1000 | } |
| 1001 | |
| 1002 | |
| 1003 | /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being |
| 1004 | * not necessarily positive. |
| 1005 | * |
| 1006 | * If either pointer is zero, the corresponding computation is skipped. |
| 1007 | * |
| 1008 | * |
| 1009 | * |
| 1010 | * \svd_module |
| 1011 | * |
| 1012 | * \sa computeScalingRotation(), rotation(), class SVD |
| 1013 | */ |
| 1014 | template<typename Scalar, int Dim, int Mode, int Options> |
| 1015 | template<typename RotationMatrixType, typename ScalingMatrixType> |
| 1016 | void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const |
| 1017 | { |
| 1018 | JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV); |
| 1019 | |
| 1020 | Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 |
| 1021 | VectorType sv(svd.singularValues()); |
| 1022 | sv.coeffRef(0) *= x; |
| 1023 | if(scaling) scaling->lazyAssign(svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint()); |
| 1024 | if(rotation) |
| 1025 | { |
| 1026 | LinearMatrixType m(svd.matrixU()); |
| 1027 | m.col(0) /= x; |
| 1028 | rotation->lazyAssign(m * svd.matrixV().adjoint()); |
| 1029 | } |
| 1030 | } |
| 1031 | |
| 1032 | /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being |
| 1033 | * not necessarily positive. |
| 1034 | * |
| 1035 | * If either pointer is zero, the corresponding computation is skipped. |
| 1036 | * |
| 1037 | * |
| 1038 | * |
| 1039 | * \svd_module |
| 1040 | * |
| 1041 | * \sa computeRotationScaling(), rotation(), class SVD |
| 1042 | */ |
| 1043 | template<typename Scalar, int Dim, int Mode, int Options> |
| 1044 | template<typename ScalingMatrixType, typename RotationMatrixType> |
| 1045 | void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const |
| 1046 | { |
| 1047 | JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV); |
| 1048 | |
| 1049 | Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 |
| 1050 | VectorType sv(svd.singularValues()); |
| 1051 | sv.coeffRef(0) *= x; |
| 1052 | if(scaling) scaling->lazyAssign(svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint()); |
| 1053 | if(rotation) |
| 1054 | { |
| 1055 | LinearMatrixType m(svd.matrixU()); |
| 1056 | m.col(0) /= x; |
| 1057 | rotation->lazyAssign(m * svd.matrixV().adjoint()); |
| 1058 | } |
| 1059 | } |
| 1060 | |
| 1061 | /** Convenient method to set \c *this from a position, orientation and scale |
| 1062 | * of a 3D object. |
| 1063 | */ |
| 1064 | template<typename Scalar, int Dim, int Mode, int Options> |
| 1065 | template<typename PositionDerived, typename OrientationType, typename ScaleDerived> |
| 1066 | Transform<Scalar,Dim,Mode,Options>& |
| 1067 | Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, |
| 1068 | const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale) |
| 1069 | { |
| 1070 | linear() = internal::toRotationMatrix<Scalar,Dim>(orientation); |
| 1071 | linear() *= scale.asDiagonal(); |
| 1072 | translation() = position; |
| 1073 | makeAffine(); |
| 1074 | return *this; |
| 1075 | } |
| 1076 | |
| 1077 | namespace internal { |
| 1078 | |
| 1079 | template<int Mode> |
| 1080 | struct transform_make_affine |
| 1081 | { |
| 1082 | template<typename MatrixType> |
| 1083 | static void run(MatrixType &mat) |
| 1084 | { |
| 1085 | static const int Dim = MatrixType::ColsAtCompileTime-1; |
| 1086 | mat.template block<1,Dim>(Dim,0).setZero(); |
| 1087 | mat.coeffRef(Dim,Dim) = typename MatrixType::Scalar(1); |
| 1088 | } |
| 1089 | }; |
| 1090 | |
| 1091 | template<> |
| 1092 | struct transform_make_affine<AffineCompact> |
| 1093 | { |
| 1094 | template<typename MatrixType> static void run(MatrixType &) { } |
| 1095 | }; |
| 1096 | |
| 1097 | // selector needed to avoid taking the inverse of a 3x4 matrix |
| 1098 | template<typename TransformType, int Mode=TransformType::Mode> |
| 1099 | struct projective_transform_inverse |
| 1100 | { |
| 1101 | static inline void run(const TransformType&, TransformType&) |
| 1102 | {} |
| 1103 | }; |
| 1104 | |
| 1105 | template<typename TransformType> |
| 1106 | struct projective_transform_inverse<TransformType, Projective> |
| 1107 | { |
| 1108 | static inline void run(const TransformType& m, TransformType& res) |
| 1109 | { |
| 1110 | res.matrix() = m.matrix().inverse(); |
| 1111 | } |
| 1112 | }; |
| 1113 | |
| 1114 | } // end namespace internal |
| 1115 | |
| 1116 | |
| 1117 | /** |
| 1118 | * |
| 1119 | * \returns the inverse transformation according to some given knowledge |
| 1120 | * on \c *this. |
| 1121 | * |
| 1122 | * \param hint allows to optimize the inversion process when the transformation |
| 1123 | * is known to be not a general transformation (optional). The possible values are: |
| 1124 | * - #Projective if the transformation is not necessarily affine, i.e., if the |
| 1125 | * last row is not guaranteed to be [0 ... 0 1] |
| 1126 | * - #Affine if the last row can be assumed to be [0 ... 0 1] |
| 1127 | * - #Isometry if the transformation is only a concatenations of translations |
| 1128 | * and rotations. |
| 1129 | * The default is the template class parameter \c Mode. |
| 1130 | * |
| 1131 | * \warning unless \a traits is always set to NoShear or NoScaling, this function |
| 1132 | * requires the generic inverse method of MatrixBase defined in the LU module. If |
| 1133 | * you forget to include this module, then you will get hard to debug linking errors. |
| 1134 | * |
| 1135 | * \sa MatrixBase::inverse() |
| 1136 | */ |
| 1137 | template<typename Scalar, int Dim, int Mode, int Options> |
| 1138 | Transform<Scalar,Dim,Mode,Options> |
| 1139 | Transform<Scalar,Dim,Mode,Options>::inverse(TransformTraits hint) const |
| 1140 | { |
| 1141 | Transform res; |
| 1142 | if (hint == Projective) |
| 1143 | { |
| 1144 | internal::projective_transform_inverse<Transform>::run(*this, res); |
| 1145 | } |
| 1146 | else |
| 1147 | { |
| 1148 | if (hint == Isometry) |
| 1149 | { |
| 1150 | res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose(); |
| 1151 | } |
| 1152 | else if(hint&Affine) |
| 1153 | { |
| 1154 | res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse(); |
| 1155 | } |
| 1156 | else |
| 1157 | { |
| 1158 | eigen_assert(false && "Invalid transform traits in Transform::Inverse"); |
| 1159 | } |
| 1160 | // translation and remaining parts |
| 1161 | res.matrix().template topRightCorner<Dim,1>() |
| 1162 | = - res.matrix().template topLeftCorner<Dim,Dim>() * translation(); |
| 1163 | res.makeAffine(); // we do need this, because in the beginning res is uninitialized |
| 1164 | } |
| 1165 | return res; |
| 1166 | } |
| 1167 | |
| 1168 | namespace internal { |
| 1169 | |
| 1170 | /***************************************************** |
| 1171 | *** Specializations of take affine part *** |
| 1172 | *****************************************************/ |
| 1173 | |
| 1174 | template<typename TransformType> struct transform_take_affine_part { |
| 1175 | typedef typename TransformType::MatrixType MatrixType; |
| 1176 | typedef typename TransformType::AffinePart AffinePart; |
| 1177 | typedef typename TransformType::ConstAffinePart ConstAffinePart; |
| 1178 | static inline AffinePart run(MatrixType& m) |
| 1179 | { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); } |
| 1180 | static inline ConstAffinePart run(const MatrixType& m) |
| 1181 | { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); } |
| 1182 | }; |
| 1183 | |
| 1184 | template<typename Scalar, int Dim, int Options> |
| 1185 | struct transform_take_affine_part<Transform<Scalar,Dim,AffineCompact, Options> > { |
| 1186 | typedef typename Transform<Scalar,Dim,AffineCompact,Options>::MatrixType MatrixType; |
| 1187 | static inline MatrixType& run(MatrixType& m) { return m; } |
| 1188 | static inline const MatrixType& run(const MatrixType& m) { return m; } |
| 1189 | }; |
| 1190 | |
| 1191 | /***************************************************** |
| 1192 | *** Specializations of construct from matrix *** |
| 1193 | *****************************************************/ |
| 1194 | |
| 1195 | template<typename Other, int Mode, int Options, int Dim, int HDim> |
| 1196 | struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,Dim> |
| 1197 | { |
| 1198 | static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) |
| 1199 | { |
| 1200 | transform->linear() = other; |
| 1201 | transform->translation().setZero(); |
| 1202 | transform->makeAffine(); |
| 1203 | } |
| 1204 | }; |
| 1205 | |
| 1206 | template<typename Other, int Mode, int Options, int Dim, int HDim> |
| 1207 | struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,HDim> |
| 1208 | { |
| 1209 | static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) |
| 1210 | { |
| 1211 | transform->affine() = other; |
| 1212 | transform->makeAffine(); |
| 1213 | } |
| 1214 | }; |
| 1215 | |
| 1216 | template<typename Other, int Mode, int Options, int Dim, int HDim> |
| 1217 | struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, HDim,HDim> |
| 1218 | { |
| 1219 | static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) |
| 1220 | { transform->matrix() = other; } |
| 1221 | }; |
| 1222 | |
| 1223 | template<typename Other, int Options, int Dim, int HDim> |
| 1224 | struct transform_construct_from_matrix<Other, AffineCompact,Options,Dim,HDim, HDim,HDim> |
| 1225 | { |
| 1226 | static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact,Options> *transform, const Other& other) |
| 1227 | { transform->matrix() = other.template block<Dim,HDim>(0,0); } |
| 1228 | }; |
| 1229 | |
| 1230 | /********************************************************** |
| 1231 | *** Specializations of operator* with rhs EigenBase *** |
| 1232 | **********************************************************/ |
| 1233 | |
| 1234 | template<int LhsMode,int RhsMode> |
| 1235 | struct transform_product_result |
| 1236 | { |
| 1237 | enum |
| 1238 | { |
| 1239 | Mode = |
| 1240 | (LhsMode == (int)Projective || RhsMode == (int)Projective ) ? Projective : |
| 1241 | (LhsMode == (int)Affine || RhsMode == (int)Affine ) ? Affine : |
| 1242 | (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact : |
| 1243 | (LhsMode == (int)Isometry || RhsMode == (int)Isometry ) ? Isometry : Projective |
| 1244 | }; |
| 1245 | }; |
| 1246 | |
| 1247 | template< typename TransformType, typename MatrixType > |
| 1248 | struct transform_right_product_impl< TransformType, MatrixType, 0 > |
| 1249 | { |
| 1250 | typedef typename MatrixType::PlainObject ResultType; |
| 1251 | |
| 1252 | static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) |
| 1253 | { |
| 1254 | return T.matrix() * other; |
| 1255 | } |
| 1256 | }; |
| 1257 | |
| 1258 | template< typename TransformType, typename MatrixType > |
| 1259 | struct transform_right_product_impl< TransformType, MatrixType, 1 > |
| 1260 | { |
| 1261 | enum { |
| 1262 | Dim = TransformType::Dim, |
| 1263 | HDim = TransformType::HDim, |
| 1264 | OtherRows = MatrixType::RowsAtCompileTime, |
| 1265 | OtherCols = MatrixType::ColsAtCompileTime |
| 1266 | }; |
| 1267 | |
| 1268 | typedef typename MatrixType::PlainObject ResultType; |
| 1269 | |
| 1270 | static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) |
| 1271 | { |
| 1272 | EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); |
| 1273 | |
| 1274 | typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime)==Dim> TopLeftLhs; |
| 1275 | |
| 1276 | ResultType res(other.rows(),other.cols()); |
| 1277 | TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other; |
| 1278 | res.row(OtherRows-1) = other.row(OtherRows-1); |
| 1279 | |
| 1280 | return res; |
| 1281 | } |
| 1282 | }; |
| 1283 | |
| 1284 | template< typename TransformType, typename MatrixType > |
| 1285 | struct transform_right_product_impl< TransformType, MatrixType, 2 > |
| 1286 | { |
| 1287 | enum { |
| 1288 | Dim = TransformType::Dim, |
| 1289 | HDim = TransformType::HDim, |
| 1290 | OtherRows = MatrixType::RowsAtCompileTime, |
| 1291 | OtherCols = MatrixType::ColsAtCompileTime |
| 1292 | }; |
| 1293 | |
| 1294 | typedef typename MatrixType::PlainObject ResultType; |
| 1295 | |
| 1296 | static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) |
| 1297 | { |
| 1298 | EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); |
| 1299 | |
| 1300 | typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs; |
| 1301 | ResultType res(Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(),1,other.cols())); |
| 1302 | TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other; |
| 1303 | |
| 1304 | return res; |
| 1305 | } |
| 1306 | }; |
| 1307 | |
| 1308 | /********************************************************** |
| 1309 | *** Specializations of operator* with lhs EigenBase *** |
| 1310 | **********************************************************/ |
| 1311 | |
| 1312 | // generic HDim x HDim matrix * T => Projective |
| 1313 | template<typename Other,int Mode, int Options, int Dim, int HDim> |
| 1314 | struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, HDim,HDim> |
| 1315 | { |
| 1316 | typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; |
| 1317 | typedef typename TransformType::MatrixType MatrixType; |
| 1318 | typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType; |
| 1319 | static ResultType run(const Other& other,const TransformType& tr) |
| 1320 | { return ResultType(other * tr.matrix()); } |
| 1321 | }; |
| 1322 | |
| 1323 | // generic HDim x HDim matrix * AffineCompact => Projective |
| 1324 | template<typename Other, int Options, int Dim, int HDim> |
| 1325 | struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, HDim,HDim> |
| 1326 | { |
| 1327 | typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType; |
| 1328 | typedef typename TransformType::MatrixType MatrixType; |
| 1329 | typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType; |
| 1330 | static ResultType run(const Other& other,const TransformType& tr) |
| 1331 | { |
| 1332 | ResultType res; |
| 1333 | res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix(); |
| 1334 | res.matrix().col(Dim) += other.col(Dim); |
| 1335 | return res; |
| 1336 | } |
| 1337 | }; |
| 1338 | |
| 1339 | // affine matrix * T |
| 1340 | template<typename Other,int Mode, int Options, int Dim, int HDim> |
| 1341 | struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,HDim> |
| 1342 | { |
| 1343 | typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; |
| 1344 | typedef typename TransformType::MatrixType MatrixType; |
| 1345 | typedef TransformType ResultType; |
| 1346 | static ResultType run(const Other& other,const TransformType& tr) |
| 1347 | { |
| 1348 | ResultType res; |
| 1349 | res.affine().noalias() = other * tr.matrix(); |
| 1350 | res.matrix().row(Dim) = tr.matrix().row(Dim); |
| 1351 | return res; |
| 1352 | } |
| 1353 | }; |
| 1354 | |
| 1355 | // affine matrix * AffineCompact |
| 1356 | template<typename Other, int Options, int Dim, int HDim> |
| 1357 | struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, Dim,HDim> |
| 1358 | { |
| 1359 | typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType; |
| 1360 | typedef typename TransformType::MatrixType MatrixType; |
| 1361 | typedef TransformType ResultType; |
| 1362 | static ResultType run(const Other& other,const TransformType& tr) |
| 1363 | { |
| 1364 | ResultType res; |
| 1365 | res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix(); |
| 1366 | res.translation() += other.col(Dim); |
| 1367 | return res; |
| 1368 | } |
| 1369 | }; |
| 1370 | |
| 1371 | // linear matrix * T |
| 1372 | template<typename Other,int Mode, int Options, int Dim, int HDim> |
| 1373 | struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,Dim> |
| 1374 | { |
| 1375 | typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; |
| 1376 | typedef typename TransformType::MatrixType MatrixType; |
| 1377 | typedef TransformType ResultType; |
| 1378 | static ResultType run(const Other& other, const TransformType& tr) |
| 1379 | { |
| 1380 | TransformType res; |
| 1381 | if(Mode!=int(AffineCompact)) |
| 1382 | res.matrix().row(Dim) = tr.matrix().row(Dim); |
| 1383 | res.matrix().template topRows<Dim>().noalias() |
| 1384 | = other * tr.matrix().template topRows<Dim>(); |
| 1385 | return res; |
| 1386 | } |
| 1387 | }; |
| 1388 | |
| 1389 | /********************************************************** |
| 1390 | *** Specializations of operator* with another Transform *** |
| 1391 | **********************************************************/ |
| 1392 | |
| 1393 | template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions> |
| 1394 | struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,false > |
| 1395 | { |
| 1396 | enum { ResultMode = transform_product_result<LhsMode,RhsMode>::Mode }; |
| 1397 | typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs; |
| 1398 | typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs; |
| 1399 | typedef Transform<Scalar,Dim,ResultMode,LhsOptions> ResultType; |
| 1400 | static ResultType run(const Lhs& lhs, const Rhs& rhs) |
| 1401 | { |
| 1402 | ResultType res; |
| 1403 | res.linear() = lhs.linear() * rhs.linear(); |
| 1404 | res.translation() = lhs.linear() * rhs.translation() + lhs.translation(); |
| 1405 | res.makeAffine(); |
| 1406 | return res; |
| 1407 | } |
| 1408 | }; |
| 1409 | |
| 1410 | template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions> |
| 1411 | struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,true > |
| 1412 | { |
| 1413 | typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs; |
| 1414 | typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs; |
| 1415 | typedef Transform<Scalar,Dim,Projective> ResultType; |
| 1416 | static ResultType run(const Lhs& lhs, const Rhs& rhs) |
| 1417 | { |
| 1418 | return ResultType( lhs.matrix() * rhs.matrix() ); |
| 1419 | } |
| 1420 | }; |
| 1421 | |
| 1422 | template<typename Scalar, int Dim, int LhsOptions, int RhsOptions> |
| 1423 | struct transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact,LhsOptions>,Transform<Scalar,Dim,Projective,RhsOptions>,true > |
| 1424 | { |
| 1425 | typedef Transform<Scalar,Dim,AffineCompact,LhsOptions> Lhs; |
| 1426 | typedef Transform<Scalar,Dim,Projective,RhsOptions> Rhs; |
| 1427 | typedef Transform<Scalar,Dim,Projective> ResultType; |
| 1428 | static ResultType run(const Lhs& lhs, const Rhs& rhs) |
| 1429 | { |
| 1430 | ResultType res; |
| 1431 | res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix(); |
| 1432 | res.matrix().row(Dim) = rhs.matrix().row(Dim); |
| 1433 | return res; |
| 1434 | } |
| 1435 | }; |
| 1436 | |
| 1437 | template<typename Scalar, int Dim, int LhsOptions, int RhsOptions> |
| 1438 | struct transform_transform_product_impl<Transform<Scalar,Dim,Projective,LhsOptions>,Transform<Scalar,Dim,AffineCompact,RhsOptions>,true > |
| 1439 | { |
| 1440 | typedef Transform<Scalar,Dim,Projective,LhsOptions> Lhs; |
| 1441 | typedef Transform<Scalar,Dim,AffineCompact,RhsOptions> Rhs; |
| 1442 | typedef Transform<Scalar,Dim,Projective> ResultType; |
| 1443 | static ResultType run(const Lhs& lhs, const Rhs& rhs) |
| 1444 | { |
| 1445 | ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix()); |
| 1446 | res.matrix().col(Dim) += lhs.matrix().col(Dim); |
| 1447 | return res; |
| 1448 | } |
| 1449 | }; |
| 1450 | |
| 1451 | } // end namespace internal |
| 1452 | |
| 1453 | } // end namespace Eigen |
| 1454 | |
| 1455 | #endif // EIGEN_TRANSFORM_H |