Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/Eigen/src/Geometry/Transform.h b/Eigen/src/Geometry/Transform.h
new file mode 100644
index 0000000..e786e53
--- /dev/null
+++ b/Eigen/src/Geometry/Transform.h
@@ -0,0 +1,1455 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_TRANSFORM_H
+#define EIGEN_TRANSFORM_H
+
+namespace Eigen { 
+
+namespace internal {
+
+template<typename Transform>
+struct transform_traits
+{
+  enum
+  {
+    Dim = Transform::Dim,
+    HDim = Transform::HDim,
+    Mode = Transform::Mode,
+    IsProjective = (int(Mode)==int(Projective))
+  };
+};
+
+template< typename TransformType,
+          typename MatrixType,
+          int Case = transform_traits<TransformType>::IsProjective ? 0
+                   : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1
+                   : 2>
+struct transform_right_product_impl;
+
+template< typename Other,
+          int Mode,
+          int Options,
+          int Dim,
+          int HDim,
+          int OtherRows=Other::RowsAtCompileTime,
+          int OtherCols=Other::ColsAtCompileTime>
+struct transform_left_product_impl;
+
+template< typename Lhs,
+          typename Rhs,
+          bool AnyProjective = 
+            transform_traits<Lhs>::IsProjective ||
+            transform_traits<Rhs>::IsProjective>
+struct transform_transform_product_impl;
+
+template< typename Other,
+          int Mode,
+          int Options,
+          int Dim,
+          int HDim,
+          int OtherRows=Other::RowsAtCompileTime,
+          int OtherCols=Other::ColsAtCompileTime>
+struct transform_construct_from_matrix;
+
+template<typename TransformType> struct transform_take_affine_part;
+
+template<int Mode> struct transform_make_affine;
+
+} // end namespace internal
+
+/** \geometry_module \ingroup Geometry_Module
+  *
+  * \class Transform
+  *
+  * \brief Represents an homogeneous transformation in a N dimensional space
+  *
+  * \tparam _Scalar the scalar type, i.e., the type of the coefficients
+  * \tparam _Dim the dimension of the space
+  * \tparam _Mode the type of the transformation. Can be:
+  *              - #Affine: the transformation is stored as a (Dim+1)^2 matrix,
+  *                         where the last row is assumed to be [0 ... 0 1].
+  *              - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix.
+  *              - #Projective: the transformation is stored as a (Dim+1)^2 matrix
+  *                             without any assumption.
+  * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor.
+  *                  These Options are passed directly to the underlying matrix type.
+  *
+  * The homography is internally represented and stored by a matrix which
+  * is available through the matrix() method. To understand the behavior of
+  * this class you have to think a Transform object as its internal
+  * matrix representation. The chosen convention is right multiply:
+  *
+  * \code v' = T * v \endcode
+  *
+  * Therefore, an affine transformation matrix M is shaped like this:
+  *
+  * \f$ \left( \begin{array}{cc}
+  * linear & translation\\
+  * 0 ... 0 & 1
+  * \end{array} \right) \f$
+  *
+  * Note that for a projective transformation the last row can be anything,
+  * and then the interpretation of different parts might be sightly different.
+  *
+  * However, unlike a plain matrix, the Transform class provides many features
+  * simplifying both its assembly and usage. In particular, it can be composed
+  * with any other transformations (Transform,Translation,RotationBase,Matrix)
+  * and can be directly used to transform implicit homogeneous vectors. All these
+  * operations are handled via the operator*. For the composition of transformations,
+  * its principle consists to first convert the right/left hand sides of the product
+  * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product.
+  * Of course, internally, operator* tries to perform the minimal number of operations
+  * according to the nature of each terms. Likewise, when applying the transform
+  * to non homogeneous vectors, the latters are automatically promoted to homogeneous
+  * one before doing the matrix product. The convertions to homogeneous representations
+  * are performed as follow:
+  *
+  * \b Translation t (Dim)x(1):
+  * \f$ \left( \begin{array}{cc}
+  * I & t \\
+  * 0\,...\,0 & 1
+  * \end{array} \right) \f$
+  *
+  * \b Rotation R (Dim)x(Dim):
+  * \f$ \left( \begin{array}{cc}
+  * R & 0\\
+  * 0\,...\,0 & 1
+  * \end{array} \right) \f$
+  *
+  * \b Linear \b Matrix L (Dim)x(Dim):
+  * \f$ \left( \begin{array}{cc}
+  * L & 0\\
+  * 0\,...\,0 & 1
+  * \end{array} \right) \f$
+  *
+  * \b Affine \b Matrix A (Dim)x(Dim+1):
+  * \f$ \left( \begin{array}{c}
+  * A\\
+  * 0\,...\,0\,1
+  * \end{array} \right) \f$
+  *
+  * \b Column \b vector v (Dim)x(1):
+  * \f$ \left( \begin{array}{c}
+  * v\\
+  * 1
+  * \end{array} \right) \f$
+  *
+  * \b Set \b of \b column \b vectors V1...Vn (Dim)x(n):
+  * \f$ \left( \begin{array}{ccc}
+  * v_1 & ... & v_n\\
+  * 1 & ... & 1
+  * \end{array} \right) \f$
+  *
+  * The concatenation of a Transform object with any kind of other transformation
+  * always returns a Transform object.
+  *
+  * A little exception to the "as pure matrix product" rule is the case of the
+  * transformation of non homogeneous vectors by an affine transformation. In
+  * that case the last matrix row can be ignored, and the product returns non
+  * homogeneous vectors.
+  *
+  * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation,
+  * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix.
+  * The solution is either to use a Dim x Dynamic matrix or explicitly request a
+  * vector transformation by making the vector homogeneous:
+  * \code
+  * m' = T * m.colwise().homogeneous();
+  * \endcode
+  * Note that there is zero overhead.
+  *
+  * Conversion methods from/to Qt's QMatrix and QTransform are available if the
+  * preprocessor token EIGEN_QT_SUPPORT is defined.
+  *
+  * This class can be extended with the help of the plugin mechanism described on the page
+  * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN.
+  *
+  * \sa class Matrix, class Quaternion
+  */
+template<typename _Scalar, int _Dim, int _Mode, int _Options>
+class Transform
+{
+public:
+  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
+  enum {
+    Mode = _Mode,
+    Options = _Options,
+    Dim = _Dim,     ///< space dimension in which the transformation holds
+    HDim = _Dim+1,  ///< size of a respective homogeneous vector
+    Rows = int(Mode)==(AffineCompact) ? Dim : HDim
+  };
+  /** the scalar type of the coefficients */
+  typedef _Scalar Scalar;
+  typedef DenseIndex Index;
+  /** type of the matrix used to represent the transformation */
+  typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType;
+  /** constified MatrixType */
+  typedef const MatrixType ConstMatrixType;
+  /** type of the matrix used to represent the linear part of the transformation */
+  typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType;
+  /** type of read/write reference to the linear part of the transformation */
+  typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> LinearPart;
+  /** type of read reference to the linear part of the transformation */
+  typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> ConstLinearPart;
+  /** type of read/write reference to the affine part of the transformation */
+  typedef typename internal::conditional<int(Mode)==int(AffineCompact),
+                              MatrixType&,
+                              Block<MatrixType,Dim,HDim> >::type AffinePart;
+  /** type of read reference to the affine part of the transformation */
+  typedef typename internal::conditional<int(Mode)==int(AffineCompact),
+                              const MatrixType&,
+                              const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart;
+  /** type of a vector */
+  typedef Matrix<Scalar,Dim,1> VectorType;
+  /** type of a read/write reference to the translation part of the rotation */
+  typedef Block<MatrixType,Dim,1,int(Mode)==(AffineCompact)> TranslationPart;
+  /** type of a read reference to the translation part of the rotation */
+  typedef const Block<ConstMatrixType,Dim,1,int(Mode)==(AffineCompact)> ConstTranslationPart;
+  /** corresponding translation type */
+  typedef Translation<Scalar,Dim> TranslationType;
+  
+  // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0
+  enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) };
+  /** The return type of the product between a diagonal matrix and a transform */
+  typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType;
+
+protected:
+
+  MatrixType m_matrix;
+
+public:
+
+  /** Default constructor without initialization of the meaningful coefficients.
+    * If Mode==Affine, then the last row is set to [0 ... 0 1] */
+  inline Transform()
+  {
+    check_template_params();
+    internal::transform_make_affine<(int(Mode)==Affine) ? Affine : AffineCompact>::run(m_matrix);
+  }
+
+  inline Transform(const Transform& other)
+  {
+    check_template_params();
+    m_matrix = other.m_matrix;
+  }
+
+  inline explicit Transform(const TranslationType& t)
+  {
+    check_template_params();
+    *this = t;
+  }
+  inline explicit Transform(const UniformScaling<Scalar>& s)
+  {
+    check_template_params();
+    *this = s;
+  }
+  template<typename Derived>
+  inline explicit Transform(const RotationBase<Derived, Dim>& r)
+  {
+    check_template_params();
+    *this = r;
+  }
+
+  inline Transform& operator=(const Transform& other)
+  { m_matrix = other.m_matrix; return *this; }
+
+  typedef internal::transform_take_affine_part<Transform> take_affine_part;
+
+  /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
+  template<typename OtherDerived>
+  inline explicit Transform(const EigenBase<OtherDerived>& other)
+  {
+    EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
+      YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
+
+    check_template_params();
+    internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
+  }
+
+  /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */
+  template<typename OtherDerived>
+  inline Transform& operator=(const EigenBase<OtherDerived>& other)
+  {
+    EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
+      YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
+
+    internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
+    return *this;
+  }
+  
+  template<int OtherOptions>
+  inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other)
+  {
+    check_template_params();
+    // only the options change, we can directly copy the matrices
+    m_matrix = other.matrix();
+  }
+
+  template<int OtherMode,int OtherOptions>
+  inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other)
+  {
+    check_template_params();
+    // prevent conversions as:
+    // Affine | AffineCompact | Isometry = Projective
+    EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)),
+                        YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
+
+    // prevent conversions as:
+    // Isometry = Affine | AffineCompact
+    EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)),
+                        YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
+
+    enum { ModeIsAffineCompact = Mode == int(AffineCompact),
+           OtherModeIsAffineCompact = OtherMode == int(AffineCompact)
+    };
+
+    if(ModeIsAffineCompact == OtherModeIsAffineCompact)
+    {
+      // We need the block expression because the code is compiled for all
+      // combinations of transformations and will trigger a compile time error
+      // if one tries to assign the matrices directly
+      m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0);
+      makeAffine();
+    }
+    else if(OtherModeIsAffineCompact)
+    {
+      typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType;
+      internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix());
+    }
+    else
+    {
+      // here we know that Mode == AffineCompact and OtherMode != AffineCompact.
+      // if OtherMode were Projective, the static assert above would already have caught it.
+      // So the only possibility is that OtherMode == Affine
+      linear() = other.linear();
+      translation() = other.translation();
+    }
+  }
+
+  template<typename OtherDerived>
+  Transform(const ReturnByValue<OtherDerived>& other)
+  {
+    check_template_params();
+    other.evalTo(*this);
+  }
+
+  template<typename OtherDerived>
+  Transform& operator=(const ReturnByValue<OtherDerived>& other)
+  {
+    other.evalTo(*this);
+    return *this;
+  }
+
+  #ifdef EIGEN_QT_SUPPORT
+  inline Transform(const QMatrix& other);
+  inline Transform& operator=(const QMatrix& other);
+  inline QMatrix toQMatrix(void) const;
+  inline Transform(const QTransform& other);
+  inline Transform& operator=(const QTransform& other);
+  inline QTransform toQTransform(void) const;
+  #endif
+
+  /** shortcut for m_matrix(row,col);
+    * \sa MatrixBase::operator(Index,Index) const */
+  inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); }
+  /** shortcut for m_matrix(row,col);
+    * \sa MatrixBase::operator(Index,Index) */
+  inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); }
+
+  /** \returns a read-only expression of the transformation matrix */
+  inline const MatrixType& matrix() const { return m_matrix; }
+  /** \returns a writable expression of the transformation matrix */
+  inline MatrixType& matrix() { return m_matrix; }
+
+  /** \returns a read-only expression of the linear part of the transformation */
+  inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); }
+  /** \returns a writable expression of the linear part of the transformation */
+  inline LinearPart linear() { return LinearPart(m_matrix,0,0); }
+
+  /** \returns a read-only expression of the Dim x HDim affine part of the transformation */
+  inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); }
+  /** \returns a writable expression of the Dim x HDim affine part of the transformation */
+  inline AffinePart affine() { return take_affine_part::run(m_matrix); }
+
+  /** \returns a read-only expression of the translation vector of the transformation */
+  inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); }
+  /** \returns a writable expression of the translation vector of the transformation */
+  inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); }
+
+  /** \returns an expression of the product between the transform \c *this and a matrix expression \a other
+    *
+    * The right hand side \a other might be either:
+    * \li a vector of size Dim,
+    * \li an homogeneous vector of size Dim+1,
+    * \li a set of vectors of size Dim x Dynamic,
+    * \li a set of homogeneous vectors of size Dim+1 x Dynamic,
+    * \li a linear transformation matrix of size Dim x Dim,
+    * \li an affine transformation matrix of size Dim x Dim+1,
+    * \li a transformation matrix of size Dim+1 x Dim+1.
+    */
+  // note: this function is defined here because some compilers cannot find the respective declaration
+  template<typename OtherDerived>
+  EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, OtherDerived>::ResultType
+  operator * (const EigenBase<OtherDerived> &other) const
+  { return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); }
+
+  /** \returns the product expression of a transformation matrix \a a times a transform \a b
+    *
+    * The left hand side \a other might be either:
+    * \li a linear transformation matrix of size Dim x Dim,
+    * \li an affine transformation matrix of size Dim x Dim+1,
+    * \li a general transformation matrix of size Dim+1 x Dim+1.
+    */
+  template<typename OtherDerived> friend
+  inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType
+    operator * (const EigenBase<OtherDerived> &a, const Transform &b)
+  { return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); }
+
+  /** \returns The product expression of a transform \a a times a diagonal matrix \a b
+    *
+    * The rhs diagonal matrix is interpreted as an affine scaling transformation. The
+    * product results in a Transform of the same type (mode) as the lhs only if the lhs 
+    * mode is no isometry. In that case, the returned transform is an affinity.
+    */
+  template<typename DiagonalDerived>
+  inline const TransformTimeDiagonalReturnType
+    operator * (const DiagonalBase<DiagonalDerived> &b) const
+  {
+    TransformTimeDiagonalReturnType res(*this);
+    res.linear() *= b;
+    return res;
+  }
+
+  /** \returns The product expression of a diagonal matrix \a a times a transform \a b
+    *
+    * The lhs diagonal matrix is interpreted as an affine scaling transformation. The
+    * product results in a Transform of the same type (mode) as the lhs only if the lhs 
+    * mode is no isometry. In that case, the returned transform is an affinity.
+    */
+  template<typename DiagonalDerived>
+  friend inline TransformTimeDiagonalReturnType
+    operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b)
+  {
+    TransformTimeDiagonalReturnType res;
+    res.linear().noalias() = a*b.linear();
+    res.translation().noalias() = a*b.translation();
+    if (Mode!=int(AffineCompact))
+      res.matrix().row(Dim) = b.matrix().row(Dim);
+    return res;
+  }
+
+  template<typename OtherDerived>
+  inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; }
+
+  /** Concatenates two transformations */
+  inline const Transform operator * (const Transform& other) const
+  {
+    return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other);
+  }
+  
+  #ifdef __INTEL_COMPILER
+private:
+  // this intermediate structure permits to workaround a bug in ICC 11:
+  //   error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0>
+  //             (const Eigen::Transform<double, 3, 2, 0> &) const"
+  //  (the meaning of a name may have changed since the template declaration -- the type of the template is:
+  // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>,
+  //     Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const")
+  // 
+  template<int OtherMode,int OtherOptions> struct icc_11_workaround
+  {
+    typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType;
+    typedef typename ProductType::ResultType ResultType;
+  };
+  
+public:
+  /** Concatenates two different transformations */
+  template<int OtherMode,int OtherOptions>
+  inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType
+    operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
+  {
+    typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType;
+    return ProductType::run(*this,other);
+  }
+  #else
+  /** Concatenates two different transformations */
+  template<int OtherMode,int OtherOptions>
+  inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType
+    operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
+  {
+    return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other);
+  }
+  #endif
+
+  /** \sa MatrixBase::setIdentity() */
+  void setIdentity() { m_matrix.setIdentity(); }
+
+  /**
+   * \brief Returns an identity transformation.
+   * \todo In the future this function should be returning a Transform expression.
+   */
+  static const Transform Identity()
+  {
+    return Transform(MatrixType::Identity());
+  }
+
+  template<typename OtherDerived>
+  inline Transform& scale(const MatrixBase<OtherDerived> &other);
+
+  template<typename OtherDerived>
+  inline Transform& prescale(const MatrixBase<OtherDerived> &other);
+
+  inline Transform& scale(const Scalar& s);
+  inline Transform& prescale(const Scalar& s);
+
+  template<typename OtherDerived>
+  inline Transform& translate(const MatrixBase<OtherDerived> &other);
+
+  template<typename OtherDerived>
+  inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
+
+  template<typename RotationType>
+  inline Transform& rotate(const RotationType& rotation);
+
+  template<typename RotationType>
+  inline Transform& prerotate(const RotationType& rotation);
+
+  Transform& shear(const Scalar& sx, const Scalar& sy);
+  Transform& preshear(const Scalar& sx, const Scalar& sy);
+
+  inline Transform& operator=(const TranslationType& t);
+  inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
+  inline Transform operator*(const TranslationType& t) const;
+
+  inline Transform& operator=(const UniformScaling<Scalar>& t);
+  inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
+  inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode))> operator*(const UniformScaling<Scalar>& s) const
+  {
+    Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode)),Options> res = *this;
+    res.scale(s.factor());
+    return res;
+  }
+
+  inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linear() *= s; return *this; }
+
+  template<typename Derived>
+  inline Transform& operator=(const RotationBase<Derived,Dim>& r);
+  template<typename Derived>
+  inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
+  template<typename Derived>
+  inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
+
+  const LinearMatrixType rotation() const;
+  template<typename RotationMatrixType, typename ScalingMatrixType>
+  void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
+  template<typename ScalingMatrixType, typename RotationMatrixType>
+  void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
+
+  template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
+  Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
+    const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
+
+  inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const;
+
+  /** \returns a const pointer to the column major internal matrix */
+  const Scalar* data() const { return m_matrix.data(); }
+  /** \returns a non-const pointer to the column major internal matrix */
+  Scalar* data() { return m_matrix.data(); }
+
+  /** \returns \c *this with scalar type casted to \a NewScalarType
+    *
+    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
+    * then this function smartly returns a const reference to \c *this.
+    */
+  template<typename NewScalarType>
+  inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const
+  { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); }
+
+  /** Copy constructor with scalar type conversion */
+  template<typename OtherScalarType>
+  inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other)
+  {
+    check_template_params();
+    m_matrix = other.matrix().template cast<Scalar>();
+  }
+
+  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
+    * determined by \a prec.
+    *
+    * \sa MatrixBase::isApprox() */
+  bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
+  { return m_matrix.isApprox(other.m_matrix, prec); }
+
+  /** Sets the last row to [0 ... 0 1]
+    */
+  void makeAffine()
+  {
+    internal::transform_make_affine<int(Mode)>::run(m_matrix);
+  }
+
+  /** \internal
+    * \returns the Dim x Dim linear part if the transformation is affine,
+    *          and the HDim x Dim part for projective transformations.
+    */
+  inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt()
+  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
+  /** \internal
+    * \returns the Dim x Dim linear part if the transformation is affine,
+    *          and the HDim x Dim part for projective transformations.
+    */
+  inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const
+  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
+
+  /** \internal
+    * \returns the translation part if the transformation is affine,
+    *          and the last column for projective transformations.
+    */
+  inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt()
+  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
+  /** \internal
+    * \returns the translation part if the transformation is affine,
+    *          and the last column for projective transformations.
+    */
+  inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const
+  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
+
+
+  #ifdef EIGEN_TRANSFORM_PLUGIN
+  #include EIGEN_TRANSFORM_PLUGIN
+  #endif
+  
+protected:
+  #ifndef EIGEN_PARSED_BY_DOXYGEN
+    static EIGEN_STRONG_INLINE void check_template_params()
+    {
+      EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS)
+    }
+  #endif
+
+};
+
+/** \ingroup Geometry_Module */
+typedef Transform<float,2,Isometry> Isometry2f;
+/** \ingroup Geometry_Module */
+typedef Transform<float,3,Isometry> Isometry3f;
+/** \ingroup Geometry_Module */
+typedef Transform<double,2,Isometry> Isometry2d;
+/** \ingroup Geometry_Module */
+typedef Transform<double,3,Isometry> Isometry3d;
+
+/** \ingroup Geometry_Module */
+typedef Transform<float,2,Affine> Affine2f;
+/** \ingroup Geometry_Module */
+typedef Transform<float,3,Affine> Affine3f;
+/** \ingroup Geometry_Module */
+typedef Transform<double,2,Affine> Affine2d;
+/** \ingroup Geometry_Module */
+typedef Transform<double,3,Affine> Affine3d;
+
+/** \ingroup Geometry_Module */
+typedef Transform<float,2,AffineCompact> AffineCompact2f;
+/** \ingroup Geometry_Module */
+typedef Transform<float,3,AffineCompact> AffineCompact3f;
+/** \ingroup Geometry_Module */
+typedef Transform<double,2,AffineCompact> AffineCompact2d;
+/** \ingroup Geometry_Module */
+typedef Transform<double,3,AffineCompact> AffineCompact3d;
+
+/** \ingroup Geometry_Module */
+typedef Transform<float,2,Projective> Projective2f;
+/** \ingroup Geometry_Module */
+typedef Transform<float,3,Projective> Projective3f;
+/** \ingroup Geometry_Module */
+typedef Transform<double,2,Projective> Projective2d;
+/** \ingroup Geometry_Module */
+typedef Transform<double,3,Projective> Projective3d;
+
+/**************************
+*** Optional QT support ***
+**************************/
+
+#ifdef EIGEN_QT_SUPPORT
+/** Initializes \c *this from a QMatrix assuming the dimension is 2.
+  *
+  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
+  */
+template<typename Scalar, int Dim, int Mode,int Options>
+Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other)
+{
+  check_template_params();
+  *this = other;
+}
+
+/** Set \c *this from a QMatrix assuming the dimension is 2.
+  *
+  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
+  */
+template<typename Scalar, int Dim, int Mode,int Options>
+Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other)
+{
+  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
+  m_matrix << other.m11(), other.m21(), other.dx(),
+              other.m12(), other.m22(), other.dy(),
+              0, 0, 1;
+  return *this;
+}
+
+/** \returns a QMatrix from \c *this assuming the dimension is 2.
+  *
+  * \warning this conversion might loss data if \c *this is not affine
+  *
+  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const
+{
+  check_template_params();
+  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
+  return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
+                 m_matrix.coeff(0,1), m_matrix.coeff(1,1),
+                 m_matrix.coeff(0,2), m_matrix.coeff(1,2));
+}
+
+/** Initializes \c *this from a QTransform assuming the dimension is 2.
+  *
+  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
+  */
+template<typename Scalar, int Dim, int Mode,int Options>
+Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other)
+{
+  check_template_params();
+  *this = other;
+}
+
+/** Set \c *this from a QTransform assuming the dimension is 2.
+  *
+  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other)
+{
+  check_template_params();
+  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
+  if (Mode == int(AffineCompact))
+    m_matrix << other.m11(), other.m21(), other.dx(),
+                other.m12(), other.m22(), other.dy();
+  else
+    m_matrix << other.m11(), other.m21(), other.dx(),
+                other.m12(), other.m22(), other.dy(),
+                other.m13(), other.m23(), other.m33();
+  return *this;
+}
+
+/** \returns a QTransform from \c *this assuming the dimension is 2.
+  *
+  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const
+{
+  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
+  if (Mode == int(AffineCompact))
+    return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
+                      m_matrix.coeff(0,1), m_matrix.coeff(1,1),
+                      m_matrix.coeff(0,2), m_matrix.coeff(1,2));
+  else
+    return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
+                      m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
+                      m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
+}
+#endif
+
+/*********************
+*** Procedural API ***
+*********************/
+
+/** Applies on the right the non uniform scale transformation represented
+  * by the vector \a other to \c *this and returns a reference to \c *this.
+  * \sa prescale()
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename OtherDerived>
+Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other)
+{
+  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
+  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
+  linearExt().noalias() = (linearExt() * other.asDiagonal());
+  return *this;
+}
+
+/** Applies on the right a uniform scale of a factor \a c to \c *this
+  * and returns a reference to \c *this.
+  * \sa prescale(Scalar)
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s)
+{
+  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
+  linearExt() *= s;
+  return *this;
+}
+
+/** Applies on the left the non uniform scale transformation represented
+  * by the vector \a other to \c *this and returns a reference to \c *this.
+  * \sa scale()
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename OtherDerived>
+Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other)
+{
+  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
+  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
+  m_matrix.template block<Dim,HDim>(0,0).noalias() = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0));
+  return *this;
+}
+
+/** Applies on the left a uniform scale of a factor \a c to \c *this
+  * and returns a reference to \c *this.
+  * \sa scale(Scalar)
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s)
+{
+  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
+  m_matrix.template topRows<Dim>() *= s;
+  return *this;
+}
+
+/** Applies on the right the translation matrix represented by the vector \a other
+  * to \c *this and returns a reference to \c *this.
+  * \sa pretranslate()
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename OtherDerived>
+Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other)
+{
+  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
+  translationExt() += linearExt() * other;
+  return *this;
+}
+
+/** Applies on the left the translation matrix represented by the vector \a other
+  * to \c *this and returns a reference to \c *this.
+  * \sa translate()
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename OtherDerived>
+Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other)
+{
+  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
+  if(int(Mode)==int(Projective))
+    affine() += other * m_matrix.row(Dim);
+  else
+    translation() += other;
+  return *this;
+}
+
+/** Applies on the right the rotation represented by the rotation \a rotation
+  * to \c *this and returns a reference to \c *this.
+  *
+  * The template parameter \a RotationType is the type of the rotation which
+  * must be known by internal::toRotationMatrix<>.
+  *
+  * Natively supported types includes:
+  *   - any scalar (2D),
+  *   - a Dim x Dim matrix expression,
+  *   - a Quaternion (3D),
+  *   - a AngleAxis (3D)
+  *
+  * This mechanism is easily extendable to support user types such as Euler angles,
+  * or a pair of Quaternion for 4D rotations.
+  *
+  * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename RotationType>
+Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation)
+{
+  linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation);
+  return *this;
+}
+
+/** Applies on the left the rotation represented by the rotation \a rotation
+  * to \c *this and returns a reference to \c *this.
+  *
+  * See rotate() for further details.
+  *
+  * \sa rotate()
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename RotationType>
+Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation)
+{
+  m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation)
+                                         * m_matrix.template block<Dim,HDim>(0,0);
+  return *this;
+}
+
+/** Applies on the right the shear transformation represented
+  * by the vector \a other to \c *this and returns a reference to \c *this.
+  * \warning 2D only.
+  * \sa preshear()
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy)
+{
+  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
+  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
+  VectorType tmp = linear().col(0)*sy + linear().col(1);
+  linear() << linear().col(0) + linear().col(1)*sx, tmp;
+  return *this;
+}
+
+/** Applies on the left the shear transformation represented
+  * by the vector \a other to \c *this and returns a reference to \c *this.
+  * \warning 2D only.
+  * \sa shear()
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy)
+{
+  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
+  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
+  m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
+  return *this;
+}
+
+/******************************************************
+*** Scaling, Translation and Rotation compatibility ***
+******************************************************/
+
+template<typename Scalar, int Dim, int Mode, int Options>
+inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t)
+{
+  linear().setIdentity();
+  translation() = t.vector();
+  makeAffine();
+  return *this;
+}
+
+template<typename Scalar, int Dim, int Mode, int Options>
+inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const
+{
+  Transform res = *this;
+  res.translate(t.vector());
+  return res;
+}
+
+template<typename Scalar, int Dim, int Mode, int Options>
+inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s)
+{
+  m_matrix.setZero();
+  linear().diagonal().fill(s.factor());
+  makeAffine();
+  return *this;
+}
+
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename Derived>
+inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r)
+{
+  linear() = internal::toRotationMatrix<Scalar,Dim>(r);
+  translation().setZero();
+  makeAffine();
+  return *this;
+}
+
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename Derived>
+inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const
+{
+  Transform res = *this;
+  res.rotate(r.derived());
+  return res;
+}
+
+/************************
+*** Special functions ***
+************************/
+
+/** \returns the rotation part of the transformation
+  *
+  *
+  * \svd_module
+  *
+  * \sa computeRotationScaling(), computeScalingRotation(), class SVD
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+const typename Transform<Scalar,Dim,Mode,Options>::LinearMatrixType
+Transform<Scalar,Dim,Mode,Options>::rotation() const
+{
+  LinearMatrixType result;
+  computeRotationScaling(&result, (LinearMatrixType*)0);
+  return result;
+}
+
+
+/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
+  * not necessarily positive.
+  *
+  * If either pointer is zero, the corresponding computation is skipped.
+  *
+  *
+  *
+  * \svd_module
+  *
+  * \sa computeScalingRotation(), rotation(), class SVD
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename RotationMatrixType, typename ScalingMatrixType>
+void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
+{
+  JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
+
+  Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
+  VectorType sv(svd.singularValues());
+  sv.coeffRef(0) *= x;
+  if(scaling) scaling->lazyAssign(svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint());
+  if(rotation)
+  {
+    LinearMatrixType m(svd.matrixU());
+    m.col(0) /= x;
+    rotation->lazyAssign(m * svd.matrixV().adjoint());
+  }
+}
+
+/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
+  * not necessarily positive.
+  *
+  * If either pointer is zero, the corresponding computation is skipped.
+  *
+  *
+  *
+  * \svd_module
+  *
+  * \sa computeRotationScaling(), rotation(), class SVD
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename ScalingMatrixType, typename RotationMatrixType>
+void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
+{
+  JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
+
+  Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
+  VectorType sv(svd.singularValues());
+  sv.coeffRef(0) *= x;
+  if(scaling) scaling->lazyAssign(svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint());
+  if(rotation)
+  {
+    LinearMatrixType m(svd.matrixU());
+    m.col(0) /= x;
+    rotation->lazyAssign(m * svd.matrixV().adjoint());
+  }
+}
+
+/** Convenient method to set \c *this from a position, orientation and scale
+  * of a 3D object.
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
+Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
+  const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
+{
+  linear() = internal::toRotationMatrix<Scalar,Dim>(orientation);
+  linear() *= scale.asDiagonal();
+  translation() = position;
+  makeAffine();
+  return *this;
+}
+
+namespace internal {
+
+template<int Mode>
+struct transform_make_affine
+{
+  template<typename MatrixType>
+  static void run(MatrixType &mat)
+  {
+    static const int Dim = MatrixType::ColsAtCompileTime-1;
+    mat.template block<1,Dim>(Dim,0).setZero();
+    mat.coeffRef(Dim,Dim) = typename MatrixType::Scalar(1);
+  }
+};
+
+template<>
+struct transform_make_affine<AffineCompact>
+{
+  template<typename MatrixType> static void run(MatrixType &) { }
+};
+    
+// selector needed to avoid taking the inverse of a 3x4 matrix
+template<typename TransformType, int Mode=TransformType::Mode>
+struct projective_transform_inverse
+{
+  static inline void run(const TransformType&, TransformType&)
+  {}
+};
+
+template<typename TransformType>
+struct projective_transform_inverse<TransformType, Projective>
+{
+  static inline void run(const TransformType& m, TransformType& res)
+  {
+    res.matrix() = m.matrix().inverse();
+  }
+};
+
+} // end namespace internal
+
+
+/**
+  *
+  * \returns the inverse transformation according to some given knowledge
+  * on \c *this.
+  *
+  * \param hint allows to optimize the inversion process when the transformation
+  * is known to be not a general transformation (optional). The possible values are:
+  *  - #Projective if the transformation is not necessarily affine, i.e., if the
+  *    last row is not guaranteed to be [0 ... 0 1]
+  *  - #Affine if the last row can be assumed to be [0 ... 0 1]
+  *  - #Isometry if the transformation is only a concatenations of translations
+  *    and rotations.
+  *  The default is the template class parameter \c Mode.
+  *
+  * \warning unless \a traits is always set to NoShear or NoScaling, this function
+  * requires the generic inverse method of MatrixBase defined in the LU module. If
+  * you forget to include this module, then you will get hard to debug linking errors.
+  *
+  * \sa MatrixBase::inverse()
+  */
+template<typename Scalar, int Dim, int Mode, int Options>
+Transform<Scalar,Dim,Mode,Options>
+Transform<Scalar,Dim,Mode,Options>::inverse(TransformTraits hint) const
+{
+  Transform res;
+  if (hint == Projective)
+  {
+    internal::projective_transform_inverse<Transform>::run(*this, res);
+  }
+  else
+  {
+    if (hint == Isometry)
+    {
+      res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose();
+    }
+    else if(hint&Affine)
+    {
+      res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse();
+    }
+    else
+    {
+      eigen_assert(false && "Invalid transform traits in Transform::Inverse");
+    }
+    // translation and remaining parts
+    res.matrix().template topRightCorner<Dim,1>()
+      = - res.matrix().template topLeftCorner<Dim,Dim>() * translation();
+    res.makeAffine(); // we do need this, because in the beginning res is uninitialized
+  }
+  return res;
+}
+
+namespace internal {
+
+/*****************************************************
+*** Specializations of take affine part            ***
+*****************************************************/
+
+template<typename TransformType> struct transform_take_affine_part {
+  typedef typename TransformType::MatrixType MatrixType;
+  typedef typename TransformType::AffinePart AffinePart;
+  typedef typename TransformType::ConstAffinePart ConstAffinePart;
+  static inline AffinePart run(MatrixType& m)
+  { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
+  static inline ConstAffinePart run(const MatrixType& m)
+  { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
+};
+
+template<typename Scalar, int Dim, int Options>
+struct transform_take_affine_part<Transform<Scalar,Dim,AffineCompact, Options> > {
+  typedef typename Transform<Scalar,Dim,AffineCompact,Options>::MatrixType MatrixType;
+  static inline MatrixType& run(MatrixType& m) { return m; }
+  static inline const MatrixType& run(const MatrixType& m) { return m; }
+};
+
+/*****************************************************
+*** Specializations of construct from matrix       ***
+*****************************************************/
+
+template<typename Other, int Mode, int Options, int Dim, int HDim>
+struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,Dim>
+{
+  static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
+  {
+    transform->linear() = other;
+    transform->translation().setZero();
+    transform->makeAffine();
+  }
+};
+
+template<typename Other, int Mode, int Options, int Dim, int HDim>
+struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,HDim>
+{
+  static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
+  {
+    transform->affine() = other;
+    transform->makeAffine();
+  }
+};
+
+template<typename Other, int Mode, int Options, int Dim, int HDim>
+struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, HDim,HDim>
+{
+  static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
+  { transform->matrix() = other; }
+};
+
+template<typename Other, int Options, int Dim, int HDim>
+struct transform_construct_from_matrix<Other, AffineCompact,Options,Dim,HDim, HDim,HDim>
+{
+  static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact,Options> *transform, const Other& other)
+  { transform->matrix() = other.template block<Dim,HDim>(0,0); }
+};
+
+/**********************************************************
+***   Specializations of operator* with rhs EigenBase   ***
+**********************************************************/
+
+template<int LhsMode,int RhsMode>
+struct transform_product_result
+{
+  enum 
+  { 
+    Mode =
+      (LhsMode == (int)Projective    || RhsMode == (int)Projective    ) ? Projective :
+      (LhsMode == (int)Affine        || RhsMode == (int)Affine        ) ? Affine :
+      (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact :
+      (LhsMode == (int)Isometry      || RhsMode == (int)Isometry      ) ? Isometry : Projective
+  };
+};
+
+template< typename TransformType, typename MatrixType >
+struct transform_right_product_impl< TransformType, MatrixType, 0 >
+{
+  typedef typename MatrixType::PlainObject ResultType;
+
+  static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
+  {
+    return T.matrix() * other;
+  }
+};
+
+template< typename TransformType, typename MatrixType >
+struct transform_right_product_impl< TransformType, MatrixType, 1 >
+{
+  enum { 
+    Dim = TransformType::Dim, 
+    HDim = TransformType::HDim,
+    OtherRows = MatrixType::RowsAtCompileTime,
+    OtherCols = MatrixType::ColsAtCompileTime
+  };
+
+  typedef typename MatrixType::PlainObject ResultType;
+
+  static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
+  {
+    EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
+
+    typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime)==Dim> TopLeftLhs;
+
+    ResultType res(other.rows(),other.cols());
+    TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other;
+    res.row(OtherRows-1) = other.row(OtherRows-1);
+    
+    return res;
+  }
+};
+
+template< typename TransformType, typename MatrixType >
+struct transform_right_product_impl< TransformType, MatrixType, 2 >
+{
+  enum { 
+    Dim = TransformType::Dim, 
+    HDim = TransformType::HDim,
+    OtherRows = MatrixType::RowsAtCompileTime,
+    OtherCols = MatrixType::ColsAtCompileTime
+  };
+
+  typedef typename MatrixType::PlainObject ResultType;
+
+  static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
+  {
+    EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
+
+    typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs;
+    ResultType res(Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(),1,other.cols()));
+    TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other;
+
+    return res;
+  }
+};
+
+/**********************************************************
+***   Specializations of operator* with lhs EigenBase   ***
+**********************************************************/
+
+// generic HDim x HDim matrix * T => Projective
+template<typename Other,int Mode, int Options, int Dim, int HDim>
+struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, HDim,HDim>
+{
+  typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
+  typedef typename TransformType::MatrixType MatrixType;
+  typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
+  static ResultType run(const Other& other,const TransformType& tr)
+  { return ResultType(other * tr.matrix()); }
+};
+
+// generic HDim x HDim matrix * AffineCompact => Projective
+template<typename Other, int Options, int Dim, int HDim>
+struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, HDim,HDim>
+{
+  typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
+  typedef typename TransformType::MatrixType MatrixType;
+  typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
+  static ResultType run(const Other& other,const TransformType& tr)
+  {
+    ResultType res;
+    res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix();
+    res.matrix().col(Dim) += other.col(Dim);
+    return res;
+  }
+};
+
+// affine matrix * T
+template<typename Other,int Mode, int Options, int Dim, int HDim>
+struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,HDim>
+{
+  typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
+  typedef typename TransformType::MatrixType MatrixType;
+  typedef TransformType ResultType;
+  static ResultType run(const Other& other,const TransformType& tr)
+  {
+    ResultType res;
+    res.affine().noalias() = other * tr.matrix();
+    res.matrix().row(Dim) = tr.matrix().row(Dim);
+    return res;
+  }
+};
+
+// affine matrix * AffineCompact
+template<typename Other, int Options, int Dim, int HDim>
+struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, Dim,HDim>
+{
+  typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
+  typedef typename TransformType::MatrixType MatrixType;
+  typedef TransformType ResultType;
+  static ResultType run(const Other& other,const TransformType& tr)
+  {
+    ResultType res;
+    res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix();
+    res.translation() += other.col(Dim);
+    return res;
+  }
+};
+
+// linear matrix * T
+template<typename Other,int Mode, int Options, int Dim, int HDim>
+struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,Dim>
+{
+  typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
+  typedef typename TransformType::MatrixType MatrixType;
+  typedef TransformType ResultType;
+  static ResultType run(const Other& other, const TransformType& tr)
+  {
+    TransformType res;
+    if(Mode!=int(AffineCompact))
+      res.matrix().row(Dim) = tr.matrix().row(Dim);
+    res.matrix().template topRows<Dim>().noalias()
+      = other * tr.matrix().template topRows<Dim>();
+    return res;
+  }
+};
+
+/**********************************************************
+*** Specializations of operator* with another Transform ***
+**********************************************************/
+
+template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
+struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,false >
+{
+  enum { ResultMode = transform_product_result<LhsMode,RhsMode>::Mode };
+  typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
+  typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
+  typedef Transform<Scalar,Dim,ResultMode,LhsOptions> ResultType;
+  static ResultType run(const Lhs& lhs, const Rhs& rhs)
+  {
+    ResultType res;
+    res.linear() = lhs.linear() * rhs.linear();
+    res.translation() = lhs.linear() * rhs.translation() + lhs.translation();
+    res.makeAffine();
+    return res;
+  }
+};
+
+template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
+struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,true >
+{
+  typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
+  typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
+  typedef Transform<Scalar,Dim,Projective> ResultType;
+  static ResultType run(const Lhs& lhs, const Rhs& rhs)
+  {
+    return ResultType( lhs.matrix() * rhs.matrix() );
+  }
+};
+
+template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
+struct transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact,LhsOptions>,Transform<Scalar,Dim,Projective,RhsOptions>,true >
+{
+  typedef Transform<Scalar,Dim,AffineCompact,LhsOptions> Lhs;
+  typedef Transform<Scalar,Dim,Projective,RhsOptions> Rhs;
+  typedef Transform<Scalar,Dim,Projective> ResultType;
+  static ResultType run(const Lhs& lhs, const Rhs& rhs)
+  {
+    ResultType res;
+    res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix();
+    res.matrix().row(Dim) = rhs.matrix().row(Dim);
+    return res;
+  }
+};
+
+template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
+struct transform_transform_product_impl<Transform<Scalar,Dim,Projective,LhsOptions>,Transform<Scalar,Dim,AffineCompact,RhsOptions>,true >
+{
+  typedef Transform<Scalar,Dim,Projective,LhsOptions> Lhs;
+  typedef Transform<Scalar,Dim,AffineCompact,RhsOptions> Rhs;
+  typedef Transform<Scalar,Dim,Projective> ResultType;
+  static ResultType run(const Lhs& lhs, const Rhs& rhs)
+  {
+    ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix());
+    res.matrix().col(Dim) += lhs.matrix().col(Dim);
+    return res;
+  }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_TRANSFORM_H