blob: d1aa33ccbc746ce091118c7c756b424120763266 [file] [log] [blame]
Milind Upadhyay7c205222022-11-16 18:20:58 -08001#include "frc971/vision/target_mapper.h"
2
Milind Upadhyayc5beba12022-12-17 17:41:20 -08003#include "absl/strings/str_format.h"
Philipp Schrader790cb542023-07-05 21:06:52 -07004
Milind Upadhyay7c205222022-11-16 18:20:58 -08005#include "frc971/control_loops/control_loop.h"
Milind Upadhyayc5beba12022-12-17 17:41:20 -08006#include "frc971/vision/ceres/pose_graph_3d_error_term.h"
Milind Upadhyay7c205222022-11-16 18:20:58 -08007#include "frc971/vision/geometry.h"
8
9DEFINE_uint64(max_num_iterations, 100,
10 "Maximum number of iterations for the ceres solver");
milind-ud62f80a2023-03-04 16:37:09 -080011DEFINE_double(distortion_noise_scalar, 1.0,
12 "Scale the target pose distortion factor by this when computing "
13 "the noise.");
milind-u8f4e43e2023-04-09 17:11:19 -070014DEFINE_int32(
milind-u6ff399f2023-03-24 18:33:38 -070015 frozen_target_id, 1,
16 "Freeze the pose of this target so the map can have one fixed point.");
milind-u8f4e43e2023-04-09 17:11:19 -070017DEFINE_int32(min_target_id, 1, "Minimum target id to solve for");
18DEFINE_int32(max_target_id, 8, "Maximum target id to solve for");
19DEFINE_bool(visualize_solver, false, "If true, visualize the solving process.");
milind-u401de982023-04-14 17:32:03 -070020// This does seem like a strict threshold for a constaint to be considered an
21// outlier, but most inliers were very close together and this is what worked
22// best for map solving.
23DEFINE_double(outlier_std_devs, 1.0,
24 "Number of standard deviations above average error needed for a "
25 "constraint to be considered an outlier and get removed.");
Jim Ostrowski463ee592024-03-07 00:08:24 -080026DEFINE_bool(do_map_fitting, false,
27 "Whether to do a final fit of the solved map to the original map");
Milind Upadhyay7c205222022-11-16 18:20:58 -080028
29namespace frc971::vision {
Milind Upadhyayc5beba12022-12-17 17:41:20 -080030Eigen::Affine3d PoseUtils::Pose3dToAffine3d(
31 const ceres::examples::Pose3d &pose3d) {
Milind Upadhyay7c205222022-11-16 18:20:58 -080032 Eigen::Affine3d H_world_pose =
Milind Upadhyayc5beba12022-12-17 17:41:20 -080033 Eigen::Translation3d(pose3d.p(0), pose3d.p(1), pose3d.p(2)) * pose3d.q;
Milind Upadhyay7c205222022-11-16 18:20:58 -080034 return H_world_pose;
35}
36
Milind Upadhyayc5beba12022-12-17 17:41:20 -080037ceres::examples::Pose3d PoseUtils::Affine3dToPose3d(const Eigen::Affine3d &H) {
38 return ceres::examples::Pose3d{.p = H.translation(),
39 .q = Eigen::Quaterniond(H.rotation())};
Milind Upadhyay7c205222022-11-16 18:20:58 -080040}
41
Milind Upadhyayc5beba12022-12-17 17:41:20 -080042ceres::examples::Pose3d PoseUtils::ComputeRelativePose(
43 const ceres::examples::Pose3d &pose_1,
44 const ceres::examples::Pose3d &pose_2) {
45 Eigen::Affine3d H_world_1 = Pose3dToAffine3d(pose_1);
46 Eigen::Affine3d H_world_2 = Pose3dToAffine3d(pose_2);
Milind Upadhyay7c205222022-11-16 18:20:58 -080047
48 // Get the location of 2 in the 1 frame
49 Eigen::Affine3d H_1_2 = H_world_1.inverse() * H_world_2;
Milind Upadhyayc5beba12022-12-17 17:41:20 -080050 return Affine3dToPose3d(H_1_2);
Milind Upadhyay7c205222022-11-16 18:20:58 -080051}
52
Milind Upadhyayc5beba12022-12-17 17:41:20 -080053ceres::examples::Pose3d PoseUtils::ComputeOffsetPose(
54 const ceres::examples::Pose3d &pose_1,
55 const ceres::examples::Pose3d &pose_2_relative) {
56 auto H_world_1 = Pose3dToAffine3d(pose_1);
57 auto H_1_2 = Pose3dToAffine3d(pose_2_relative);
Milind Upadhyay7c205222022-11-16 18:20:58 -080058 auto H_world_2 = H_world_1 * H_1_2;
59
Milind Upadhyayc5beba12022-12-17 17:41:20 -080060 return Affine3dToPose3d(H_world_2);
Milind Upadhyay7c205222022-11-16 18:20:58 -080061}
62
Milind Upadhyayc5beba12022-12-17 17:41:20 -080063Eigen::Quaterniond PoseUtils::EulerAnglesToQuaternion(
64 const Eigen::Vector3d &rpy) {
65 Eigen::AngleAxisd roll_angle(rpy.x(), Eigen::Vector3d::UnitX());
66 Eigen::AngleAxisd pitch_angle(rpy.y(), Eigen::Vector3d::UnitY());
67 Eigen::AngleAxisd yaw_angle(rpy.z(), Eigen::Vector3d::UnitZ());
68
69 return yaw_angle * pitch_angle * roll_angle;
Milind Upadhyay7c205222022-11-16 18:20:58 -080070}
71
Milind Upadhyayc5beba12022-12-17 17:41:20 -080072Eigen::Vector3d PoseUtils::QuaternionToEulerAngles(
73 const Eigen::Quaterniond &q) {
74 return RotationMatrixToEulerAngles(q.toRotationMatrix());
Milind Upadhyay7c205222022-11-16 18:20:58 -080075}
76
Milind Upadhyayc5beba12022-12-17 17:41:20 -080077Eigen::Vector3d PoseUtils::RotationMatrixToEulerAngles(
78 const Eigen::Matrix3d &R) {
79 double roll = aos::math::NormalizeAngle(std::atan2(R(2, 1), R(2, 2)));
80 double pitch = aos::math::NormalizeAngle(-std::asin(R(2, 0)));
81 double yaw = aos::math::NormalizeAngle(std::atan2(R(1, 0), R(0, 0)));
82
83 return Eigen::Vector3d(roll, pitch, yaw);
84}
85
milind-u3f5f83c2023-01-29 15:23:51 -080086flatbuffers::Offset<TargetPoseFbs> PoseUtils::TargetPoseToFbs(
87 const TargetMapper::TargetPose &target_pose,
88 flatbuffers::FlatBufferBuilder *fbb) {
89 const auto position_offset =
90 CreatePosition(*fbb, target_pose.pose.p(0), target_pose.pose.p(1),
91 target_pose.pose.p(2));
92 const auto orientation_offset =
93 CreateQuaternion(*fbb, target_pose.pose.q.w(), target_pose.pose.q.x(),
94 target_pose.pose.q.y(), target_pose.pose.q.z());
95 return CreateTargetPoseFbs(*fbb, target_pose.id, position_offset,
96 orientation_offset);
97}
98
99TargetMapper::TargetPose PoseUtils::TargetPoseFromFbs(
100 const TargetPoseFbs &target_pose_fbs) {
101 return {.id = static_cast<TargetMapper::TargetId>(target_pose_fbs.id()),
102 .pose = ceres::examples::Pose3d{
103 Eigen::Vector3d(target_pose_fbs.position()->x(),
104 target_pose_fbs.position()->y(),
105 target_pose_fbs.position()->z()),
106 Eigen::Quaterniond(target_pose_fbs.orientation()->w(),
107 target_pose_fbs.orientation()->x(),
108 target_pose_fbs.orientation()->y(),
James Kuszmaulfeb89082024-02-21 14:00:15 -0800109 target_pose_fbs.orientation()->z())
110 .normalized()}};
milind-u3f5f83c2023-01-29 15:23:51 -0800111}
112
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800113ceres::examples::VectorOfConstraints DataAdapter::MatchTargetDetections(
Milind Upadhyayec493912022-12-18 21:33:15 -0800114 const std::vector<DataAdapter::TimestampedDetection>
115 &timestamped_target_detections,
116 aos::distributed_clock::duration max_dt) {
117 CHECK_GE(timestamped_target_detections.size(), 2ul)
118 << "Must have at least 2 detections";
119
120 // Match consecutive detections
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800121 ceres::examples::VectorOfConstraints target_constraints;
milind-ud62f80a2023-03-04 16:37:09 -0800122 for (auto detection = timestamped_target_detections.begin() + 1;
123 detection < timestamped_target_detections.end(); detection++) {
Maxwell Henderson9beb5692024-03-17 18:36:11 -0700124 for (int past = 1;
125 past <=
126 std::min<int>(4, detection - timestamped_target_detections.begin());
127 ++past) {
128 auto last_detection = detection - past;
Milind Upadhyayec493912022-12-18 21:33:15 -0800129
Maxwell Henderson9beb5692024-03-17 18:36:11 -0700130 // Skip two consecutive detections of the same target, because the solver
131 // doesn't allow this
132 if (detection->id == last_detection->id) {
133 continue;
134 }
135
136 // Don't take into account constraints too far apart in time, because the
137 // recording device could have moved too much
138 if ((detection->time - last_detection->time) > max_dt) {
139 continue;
140 }
141
142 auto confidence = ComputeConfidence(*last_detection, *detection);
143 target_constraints.emplace_back(
144 ComputeTargetConstraint(*last_detection, *detection, confidence));
Milind Upadhyayec493912022-12-18 21:33:15 -0800145 }
Milind Upadhyayec493912022-12-18 21:33:15 -0800146 }
147
148 return target_constraints;
149}
150
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800151TargetMapper::ConfidenceMatrix DataAdapter::ComputeConfidence(
milind-ud62f80a2023-03-04 16:37:09 -0800152 const TimestampedDetection &detection_start,
153 const TimestampedDetection &detection_end) {
Milind Upadhyay7c205222022-11-16 18:20:58 -0800154 constexpr size_t kX = 0;
155 constexpr size_t kY = 1;
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800156 constexpr size_t kZ = 2;
157 constexpr size_t kOrientation1 = 3;
158 constexpr size_t kOrientation2 = 4;
159 constexpr size_t kOrientation3 = 5;
Milind Upadhyay7c205222022-11-16 18:20:58 -0800160
161 // Uncertainty matrix between start and end
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800162 TargetMapper::ConfidenceMatrix P = TargetMapper::ConfidenceMatrix::Zero();
Milind Upadhyay7c205222022-11-16 18:20:58 -0800163
164 {
165 // Noise for odometry-based robot position measurements
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800166 TargetMapper::ConfidenceMatrix Q_odometry =
167 TargetMapper::ConfidenceMatrix::Zero();
Milind Upadhyay7c205222022-11-16 18:20:58 -0800168 Q_odometry(kX, kX) = std::pow(0.045, 2);
169 Q_odometry(kY, kY) = std::pow(0.045, 2);
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800170 Q_odometry(kZ, kZ) = std::pow(0.045, 2);
171 Q_odometry(kOrientation1, kOrientation1) = std::pow(0.01, 2);
172 Q_odometry(kOrientation2, kOrientation2) = std::pow(0.01, 2);
173 Q_odometry(kOrientation3, kOrientation3) = std::pow(0.01, 2);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800174
175 // Add uncertainty for robot position measurements from start to end
milind-ud62f80a2023-03-04 16:37:09 -0800176 int iterations = (detection_end.time - detection_start.time) /
177 frc971::controls::kLoopFrequency;
Milind Upadhyay7c205222022-11-16 18:20:58 -0800178 P += static_cast<double>(iterations) * Q_odometry;
179 }
180
181 {
Milind Upadhyayebf93ee2023-01-05 14:12:58 -0800182 // Noise for vision-based target localizations. Multiplying this matrix by
milind-u6ff399f2023-03-24 18:33:38 -0700183 // the distance from camera to target squared results in the uncertainty
184 // in that measurement
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800185 TargetMapper::ConfidenceMatrix Q_vision =
186 TargetMapper::ConfidenceMatrix::Zero();
Milind Upadhyayebf93ee2023-01-05 14:12:58 -0800187 Q_vision(kX, kX) = std::pow(0.045, 2);
188 Q_vision(kY, kY) = std::pow(0.045, 2);
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800189 Q_vision(kZ, kZ) = std::pow(0.045, 2);
190 Q_vision(kOrientation1, kOrientation1) = std::pow(0.02, 2);
191 Q_vision(kOrientation2, kOrientation2) = std::pow(0.02, 2);
192 Q_vision(kOrientation3, kOrientation3) = std::pow(0.02, 2);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800193
194 // Add uncertainty for the 2 vision measurements (1 at start and 1 at end)
milind-ufbc5c812023-04-06 21:24:29 -0700195 P += Q_vision * std::pow(detection_start.distance_from_camera *
196 (1.0 + FLAGS_distortion_noise_scalar *
197 detection_start.distortion_factor),
198 2);
199 P += Q_vision * std::pow(detection_end.distance_from_camera *
200 (1.0 + FLAGS_distortion_noise_scalar *
201 detection_end.distortion_factor),
202 2);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800203 }
204
205 return P.inverse();
206}
207
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800208ceres::examples::Constraint3d DataAdapter::ComputeTargetConstraint(
Milind Upadhyay7c205222022-11-16 18:20:58 -0800209 const TimestampedDetection &target_detection_start,
Milind Upadhyay7c205222022-11-16 18:20:58 -0800210 const TimestampedDetection &target_detection_end,
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800211 const TargetMapper::ConfidenceMatrix &confidence) {
Milind Upadhyay7c205222022-11-16 18:20:58 -0800212 // Compute the relative pose (constraint) between the two targets
213 Eigen::Affine3d H_targetstart_targetend =
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800214 target_detection_start.H_robot_target.inverse() *
Milind Upadhyay7c205222022-11-16 18:20:58 -0800215 target_detection_end.H_robot_target;
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800216 ceres::examples::Pose3d target_constraint =
217 PoseUtils::Affine3dToPose3d(H_targetstart_targetend);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800218
milind-uf3ab8ba2023-02-04 17:56:16 -0800219 const auto constraint_3d =
220 ceres::examples::Constraint3d{target_detection_start.id,
221 target_detection_end.id,
222 {target_constraint.p, target_constraint.q},
223 confidence};
224
225 VLOG(2) << "Computed constraint: " << constraint_3d;
226 return constraint_3d;
Milind Upadhyayec493912022-12-18 21:33:15 -0800227}
228
Milind Upadhyay7c205222022-11-16 18:20:58 -0800229TargetMapper::TargetMapper(
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800230 std::string_view target_poses_path,
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800231 const ceres::examples::VectorOfConstraints &target_constraints)
milind-u8f4e43e2023-04-09 17:11:19 -0700232 : target_constraints_(target_constraints),
233 T_frozen_actual_(Eigen::Vector3d::Zero()),
234 R_frozen_actual_(Eigen::Quaterniond::Identity()),
Jim Ostrowski68e56172023-09-17 23:44:15 -0700235 vis_robot_(cv::Size(kImageWidth_, kImageHeight_)) {
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800236 aos::FlatbufferDetachedBuffer<TargetMap> target_map =
237 aos::JsonFileToFlatbuffer<TargetMap>(target_poses_path);
238 for (const auto *target_pose_fbs : *target_map.message().target_poses()) {
milind-u8f4e43e2023-04-09 17:11:19 -0700239 ideal_target_poses_[target_pose_fbs->id()] =
milind-u3f5f83c2023-01-29 15:23:51 -0800240 PoseUtils::TargetPoseFromFbs(*target_pose_fbs).pose;
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800241 }
milind-u8f4e43e2023-04-09 17:11:19 -0700242 target_poses_ = ideal_target_poses_;
milind-u526d5672023-04-17 20:09:10 -0700243 CountConstraints();
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800244}
245
246TargetMapper::TargetMapper(
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800247 const ceres::examples::MapOfPoses &target_poses,
248 const ceres::examples::VectorOfConstraints &target_constraints)
milind-u8f4e43e2023-04-09 17:11:19 -0700249 : ideal_target_poses_(target_poses),
250 target_poses_(ideal_target_poses_),
251 target_constraints_(target_constraints),
252 T_frozen_actual_(Eigen::Vector3d::Zero()),
253 R_frozen_actual_(Eigen::Quaterniond::Identity()),
Jim Ostrowski68e56172023-09-17 23:44:15 -0700254 vis_robot_(cv::Size(kImageWidth_, kImageHeight_)) {
milind-u526d5672023-04-17 20:09:10 -0700255 CountConstraints();
256}
257
258namespace {
259std::pair<TargetMapper::TargetId, TargetMapper::TargetId> MakeIdPair(
260 const ceres::examples::Constraint3d &constraint) {
261 auto min_id = std::min(constraint.id_begin, constraint.id_end);
262 auto max_id = std::max(constraint.id_begin, constraint.id_end);
263 return std::make_pair(min_id, max_id);
264}
265} // namespace
266
267void TargetMapper::CountConstraints() {
268 for (const auto &constraint : target_constraints_) {
269 auto id_pair = MakeIdPair(constraint);
270 if (constraint_counts_.count(id_pair) == 0) {
271 constraint_counts_[id_pair] = 0;
272 }
273 constraint_counts_[id_pair]++;
274 }
275}
Milind Upadhyay7c205222022-11-16 18:20:58 -0800276
277std::optional<TargetMapper::TargetPose> TargetMapper::GetTargetPoseById(
278 std::vector<TargetMapper::TargetPose> target_poses, TargetId target_id) {
279 for (auto target_pose : target_poses) {
280 if (target_pose.id == target_id) {
281 return target_pose;
282 }
283 }
284
285 return std::nullopt;
286}
287
Jim Ostrowski49be8232023-03-23 01:00:14 -0700288std::optional<TargetMapper::TargetPose> TargetMapper::GetTargetPoseById(
milind-u2ab4db12023-03-25 21:59:23 -0700289 TargetId target_id) const {
Jim Ostrowski49be8232023-03-23 01:00:14 -0700290 if (target_poses_.count(target_id) > 0) {
milind-u2ab4db12023-03-25 21:59:23 -0700291 return TargetMapper::TargetPose{target_id, target_poses_.at(target_id)};
Jim Ostrowski49be8232023-03-23 01:00:14 -0700292 }
293
294 return std::nullopt;
295}
296
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800297// Taken from ceres/examples/slam/pose_graph_3d/pose_graph_3d.cc
298// Constructs the nonlinear least squares optimization problem from the pose
299// graph constraints.
milind-u8f4e43e2023-04-09 17:11:19 -0700300void TargetMapper::BuildTargetPoseOptimizationProblem(
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800301 const ceres::examples::VectorOfConstraints &constraints,
302 ceres::examples::MapOfPoses *poses, ceres::Problem *problem) {
303 CHECK(poses != nullptr);
304 CHECK(problem != nullptr);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800305 if (constraints.empty()) {
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800306 LOG(INFO) << "No constraints, no problem to optimize.";
Milind Upadhyay7c205222022-11-16 18:20:58 -0800307 return;
308 }
309
milind-u13ff1a52023-01-22 17:10:49 -0800310 ceres::LossFunction *loss_function = new ceres::HuberLoss(2.0);
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800311 ceres::LocalParameterization *quaternion_local_parameterization =
312 new ceres::EigenQuaternionParameterization;
Milind Upadhyay7c205222022-11-16 18:20:58 -0800313
Jim Ostrowski2f2685f2023-03-25 11:57:54 -0700314 int min_constraint_id = std::numeric_limits<int>::max();
315 int max_constraint_id = std::numeric_limits<int>::min();
316
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800317 for (ceres::examples::VectorOfConstraints::const_iterator constraints_iter =
318 constraints.begin();
Milind Upadhyay7c205222022-11-16 18:20:58 -0800319 constraints_iter != constraints.end(); ++constraints_iter) {
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800320 const ceres::examples::Constraint3d &constraint = *constraints_iter;
Milind Upadhyay7c205222022-11-16 18:20:58 -0800321
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800322 ceres::examples::MapOfPoses::iterator pose_begin_iter =
Milind Upadhyay7c205222022-11-16 18:20:58 -0800323 poses->find(constraint.id_begin);
324 CHECK(pose_begin_iter != poses->end())
325 << "Pose with ID: " << constraint.id_begin << " not found.";
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800326 ceres::examples::MapOfPoses::iterator pose_end_iter =
Milind Upadhyay7c205222022-11-16 18:20:58 -0800327 poses->find(constraint.id_end);
328 CHECK(pose_end_iter != poses->end())
329 << "Pose with ID: " << constraint.id_end << " not found.";
330
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800331 const Eigen::Matrix<double, 6, 6> sqrt_information =
Milind Upadhyay7c205222022-11-16 18:20:58 -0800332 constraint.information.llt().matrixL();
milind-u526d5672023-04-17 20:09:10 -0700333
334 auto id_pair = MakeIdPair(constraint);
335 CHECK_GT(constraint_counts_.count(id_pair), 0ul)
336 << "Should have counted constraints for " << id_pair.first << "->"
337 << id_pair.second;
338
Jim Ostrowski2f2685f2023-03-25 11:57:54 -0700339 VLOG(1) << "Adding constraint pair: " << id_pair.first << " and "
340 << id_pair.second;
341 // Store min & max id's; assumes first id < second id
342 if (id_pair.first < min_constraint_id) {
343 min_constraint_id = id_pair.first;
344 }
345 if (id_pair.second > max_constraint_id) {
346 max_constraint_id = id_pair.second;
347 }
milind-u526d5672023-04-17 20:09:10 -0700348 // Normalize constraint cost by occurances
349 size_t constraint_count = constraint_counts_[id_pair];
350 // Scale all costs so the total cost comes out to more reasonable numbers
351 constexpr double kGlobalWeight = 1000.0;
352 double constraint_weight =
353 kGlobalWeight / static_cast<double>(constraint_count);
354
Milind Upadhyay7c205222022-11-16 18:20:58 -0800355 // Ceres will take ownership of the pointer.
356 ceres::CostFunction *cost_function =
milind-u526d5672023-04-17 20:09:10 -0700357 ceres::examples::PoseGraph3dErrorTerm::Create(
358 constraint.t_be, sqrt_information, constraint_weight);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800359
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800360 problem->AddResidualBlock(cost_function, loss_function,
361 pose_begin_iter->second.p.data(),
362 pose_begin_iter->second.q.coeffs().data(),
363 pose_end_iter->second.p.data(),
364 pose_end_iter->second.q.coeffs().data());
365
366 problem->SetParameterization(pose_begin_iter->second.q.coeffs().data(),
367 quaternion_local_parameterization);
368 problem->SetParameterization(pose_end_iter->second.q.coeffs().data(),
369 quaternion_local_parameterization);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800370 }
371
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800372 // The pose graph optimization problem has six DOFs that are not fully
milind-u3f5f83c2023-01-29 15:23:51 -0800373 // constrained. This is typically referred to as gauge freedom. You can
374 // apply a rigid body transformation to all the nodes and the optimization
375 // problem will still have the exact same cost. The Levenberg-Marquardt
376 // algorithm has internal damping which mitigates this issue, but it is
377 // better to properly constrain the gauge freedom. This can be done by
378 // setting one of the poses as constant so the optimizer cannot change it.
milind-u6ff399f2023-03-24 18:33:38 -0700379 CHECK_NE(poses->count(FLAGS_frozen_target_id), 0ul)
380 << "Got no poses for frozen target id " << FLAGS_frozen_target_id;
Jim Ostrowski2f2685f2023-03-25 11:57:54 -0700381 CHECK_GE(FLAGS_frozen_target_id, min_constraint_id)
382 << "target to freeze index " << FLAGS_frozen_target_id
383 << " must be in range of constraints, > " << min_constraint_id;
384 CHECK_LE(FLAGS_frozen_target_id, max_constraint_id)
385 << "target to freeze index " << FLAGS_frozen_target_id
386 << " must be in range of constraints, < " << max_constraint_id;
milind-u6ff399f2023-03-24 18:33:38 -0700387 ceres::examples::MapOfPoses::iterator pose_start_iter =
388 poses->find(FLAGS_frozen_target_id);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800389 CHECK(pose_start_iter != poses->end()) << "There are no poses.";
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800390 problem->SetParameterBlockConstant(pose_start_iter->second.p.data());
391 problem->SetParameterBlockConstant(pose_start_iter->second.q.coeffs().data());
Milind Upadhyay7c205222022-11-16 18:20:58 -0800392}
393
milind-u401de982023-04-14 17:32:03 -0700394std::unique_ptr<ceres::CostFunction>
395TargetMapper::BuildMapFittingOptimizationProblem(ceres::Problem *problem) {
Philipp Schradera6712522023-07-05 20:25:11 -0700396 // Set up robot visualization.
milind-u8f4e43e2023-04-09 17:11:19 -0700397 vis_robot_.ClearImage();
Jim Ostrowski68e56172023-09-17 23:44:15 -0700398 // Compute focal length so that image shows field with viewpoint at 10m above
399 // it (default for viewer)
400 const double kFocalLength = kImageWidth_ * 10.0 / kFieldWidth_;
401 vis_robot_.SetDefaultViewpoint(kImageWidth_, kFocalLength);
milind-u8f4e43e2023-04-09 17:11:19 -0700402
403 const size_t num_targets = FLAGS_max_target_id - FLAGS_min_target_id;
404 // Translation and rotation error for each target
405 const size_t num_residuals = num_targets * 6;
406 // Set up the only cost function (also known as residual). This uses
407 // auto-differentiation to obtain the derivative (jacobian).
milind-u401de982023-04-14 17:32:03 -0700408 std::unique_ptr<ceres::CostFunction> cost_function = std::make_unique<
409 ceres::AutoDiffCostFunction<TargetMapper, ceres::DYNAMIC, 3, 4>>(
410 this, num_residuals, ceres::DO_NOT_TAKE_OWNERSHIP);
milind-u8f4e43e2023-04-09 17:11:19 -0700411
412 ceres::LossFunction *loss_function = new ceres::HuberLoss(2.0);
413 ceres::LocalParameterization *quaternion_local_parameterization =
414 new ceres::EigenQuaternionParameterization;
415
milind-u401de982023-04-14 17:32:03 -0700416 problem->AddResidualBlock(cost_function.get(), loss_function,
milind-u8f4e43e2023-04-09 17:11:19 -0700417 T_frozen_actual_.vector().data(),
418 R_frozen_actual_.coeffs().data());
419 problem->SetParameterization(R_frozen_actual_.coeffs().data(),
420 quaternion_local_parameterization);
milind-u401de982023-04-14 17:32:03 -0700421 return cost_function;
milind-u8f4e43e2023-04-09 17:11:19 -0700422}
423
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800424// Taken from ceres/examples/slam/pose_graph_3d/pose_graph_3d.cc
Milind Upadhyay7c205222022-11-16 18:20:58 -0800425bool TargetMapper::SolveOptimizationProblem(ceres::Problem *problem) {
426 CHECK_NOTNULL(problem);
427
428 ceres::Solver::Options options;
429 options.max_num_iterations = FLAGS_max_num_iterations;
430 options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;
milind-u401de982023-04-14 17:32:03 -0700431 options.minimizer_progress_to_stdout = false;
Milind Upadhyay7c205222022-11-16 18:20:58 -0800432
433 ceres::Solver::Summary summary;
434 ceres::Solve(options, problem, &summary);
435
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800436 LOG(INFO) << summary.FullReport() << '\n';
Milind Upadhyay7c205222022-11-16 18:20:58 -0800437
438 return summary.IsSolutionUsable();
439}
440
Milind Upadhyay05652cb2022-12-07 20:51:51 -0800441void TargetMapper::Solve(std::string_view field_name,
442 std::optional<std::string_view> output_dir) {
milind-u401de982023-04-14 17:32:03 -0700443 ceres::Problem target_pose_problem_1;
milind-u8f4e43e2023-04-09 17:11:19 -0700444 BuildTargetPoseOptimizationProblem(target_constraints_, &target_poses_,
milind-u401de982023-04-14 17:32:03 -0700445 &target_pose_problem_1);
446 CHECK(SolveOptimizationProblem(&target_pose_problem_1))
447 << "The target pose solve 1 was not successful, exiting.";
Milind Upadhyay7c205222022-11-16 18:20:58 -0800448
milind-u401de982023-04-14 17:32:03 -0700449 RemoveOutlierConstraints();
450
451 // Solve again once we've thrown out bad constraints
452 ceres::Problem target_pose_problem_2;
453 BuildTargetPoseOptimizationProblem(target_constraints_, &target_poses_,
454 &target_pose_problem_2);
455 CHECK(SolveOptimizationProblem(&target_pose_problem_2))
456 << "The target pose solve 2 was not successful, exiting.";
457
Jim Ostrowski463ee592024-03-07 00:08:24 -0800458 if (FLAGS_do_map_fitting) {
459 LOG(INFO) << "Solving the overall map's best alignment to the previous map";
460 ceres::Problem map_fitting_problem(
461 {.loss_function_ownership = ceres::DO_NOT_TAKE_OWNERSHIP});
462 std::unique_ptr<ceres::CostFunction> map_fitting_cost_function =
463 BuildMapFittingOptimizationProblem(&map_fitting_problem);
464 CHECK(SolveOptimizationProblem(&map_fitting_problem))
465 << "The map fitting solve was not successful, exiting.";
466 map_fitting_cost_function.release();
milind-u8f4e43e2023-04-09 17:11:19 -0700467
Jim Ostrowski463ee592024-03-07 00:08:24 -0800468 Eigen::Affine3d H_frozen_actual = T_frozen_actual_ * R_frozen_actual_;
469 LOG(INFO) << "H_frozen_actual: "
470 << PoseUtils::Affine3dToPose3d(H_frozen_actual);
milind-u8f4e43e2023-04-09 17:11:19 -0700471
Jim Ostrowski463ee592024-03-07 00:08:24 -0800472 auto H_world_frozen =
473 PoseUtils::Pose3dToAffine3d(target_poses_[FLAGS_frozen_target_id]);
474 auto H_world_frozenactual = H_world_frozen * H_frozen_actual;
milind-u8f4e43e2023-04-09 17:11:19 -0700475
Jim Ostrowski463ee592024-03-07 00:08:24 -0800476 // Offset the solved poses to become the actual ones
477 for (auto &[id, pose] : target_poses_) {
478 // Don't offset targets we didn't solve for
479 if (id < FLAGS_min_target_id || id > FLAGS_max_target_id) {
480 continue;
481 }
482
483 // Take the delta between the frozen target and the solved target, and put
484 // that on top of the actual pose of the frozen target
485 auto H_world_solved = PoseUtils::Pose3dToAffine3d(pose);
486 auto H_frozen_solved = H_world_frozen.inverse() * H_world_solved;
487 auto H_world_actual = H_world_frozenactual * H_frozen_solved;
488 pose = PoseUtils::Affine3dToPose3d(H_world_actual);
milind-u8f4e43e2023-04-09 17:11:19 -0700489 }
milind-u8f4e43e2023-04-09 17:11:19 -0700490 }
Milind Upadhyay7c205222022-11-16 18:20:58 -0800491
Milind Upadhyay05652cb2022-12-07 20:51:51 -0800492 auto map_json = MapToJson(field_name);
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800493 VLOG(1) << "Solved target poses: " << map_json;
Milind Upadhyay05652cb2022-12-07 20:51:51 -0800494
495 if (output_dir.has_value()) {
496 std::string output_path =
497 absl::StrCat(output_dir.value(), "/", field_name, ".json");
498 LOG(INFO) << "Writing map to file: " << output_path;
499 aos::util::WriteStringToFileOrDie(output_path, map_json);
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800500 }
milind-u401de982023-04-14 17:32:03 -0700501
502 for (TargetId id_start = FLAGS_min_target_id; id_start < FLAGS_max_target_id;
503 id_start++) {
504 for (TargetId id_end = id_start + 1; id_end <= FLAGS_max_target_id;
505 id_end++) {
506 auto H_start_end =
507 PoseUtils::Pose3dToAffine3d(target_poses_.at(id_start)).inverse() *
508 PoseUtils::Pose3dToAffine3d(target_poses_.at(id_end));
509 auto constraint = PoseUtils::Affine3dToPose3d(H_start_end);
Jim Ostrowski2f2685f2023-03-25 11:57:54 -0700510 VLOG(1) << id_start << "->" << id_end << ": " << constraint.p.norm()
511 << " meters";
milind-u401de982023-04-14 17:32:03 -0700512 }
513 }
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800514}
515
Milind Upadhyay05652cb2022-12-07 20:51:51 -0800516std::string TargetMapper::MapToJson(std::string_view field_name) const {
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800517 flatbuffers::FlatBufferBuilder fbb;
518
519 // Convert poses to flatbuffers
520 std::vector<flatbuffers::Offset<TargetPoseFbs>> target_poses_fbs;
521 for (const auto &[id, pose] : target_poses_) {
milind-u3f5f83c2023-01-29 15:23:51 -0800522 target_poses_fbs.emplace_back(
523 PoseUtils::TargetPoseToFbs(TargetPose{.id = id, .pose = pose}, &fbb));
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800524 }
525
Milind Upadhyay05652cb2022-12-07 20:51:51 -0800526 const auto field_name_offset = fbb.CreateString(field_name);
527 flatbuffers::Offset<TargetMap> target_map_offset = CreateTargetMap(
528 fbb, fbb.CreateVector(target_poses_fbs), field_name_offset);
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800529
530 return aos::FlatbufferToJson(
531 flatbuffers::GetMutableTemporaryPointer(fbb, target_map_offset),
532 {.multi_line = true});
Milind Upadhyay7c205222022-11-16 18:20:58 -0800533}
534
milind-u8f4e43e2023-04-09 17:11:19 -0700535namespace {
milind-u8f4e43e2023-04-09 17:11:19 -0700536// Hacks to extract a double from a scalar, which is either a ceres jet or a
537// double. Only used for debugging and displaying.
538template <typename S>
539double ScalarToDouble(S s) {
540 const double *ptr = reinterpret_cast<double *>(&s);
541 return *ptr;
542}
543
544template <typename S>
545Eigen::Affine3d ScalarAffineToDouble(Eigen::Transform<S, 3, Eigen::Affine> H) {
546 Eigen::Affine3d H_double;
547 for (size_t i = 0; i < H.rows(); i++) {
548 for (size_t j = 0; j < H.cols(); j++) {
549 H_double(i, j) = ScalarToDouble(H(i, j));
550 }
551 }
552 return H_double;
553}
554
555} // namespace
556
557template <typename S>
558bool TargetMapper::operator()(const S *const translation,
559 const S *const rotation, S *residual) const {
560 using Affine3s = Eigen::Transform<S, 3, Eigen::Affine>;
561 Eigen::Quaternion<S> R_frozen_actual(rotation[3], rotation[1], rotation[2],
562 rotation[0]);
563 Eigen::Translation<S, 3> T_frozen_actual(translation[0], translation[1],
564 translation[2]);
565 // Actual target pose in the frame of the fixed pose.
566 Affine3s H_frozen_actual = T_frozen_actual * R_frozen_actual;
567 VLOG(2) << "H_frozen_actual: "
568 << PoseUtils::Affine3dToPose3d(ScalarAffineToDouble(H_frozen_actual));
569
570 Affine3s H_world_frozen =
571 PoseUtils::Pose3dToAffine3d(target_poses_.at(FLAGS_frozen_target_id))
572 .cast<S>();
573 Affine3s H_world_frozenactual = H_world_frozen * H_frozen_actual;
574
575 size_t residual_index = 0;
576 if (FLAGS_visualize_solver) {
577 vis_robot_.ClearImage();
578 }
579
580 for (const auto &[id, solved_pose] : target_poses_) {
581 if (id < FLAGS_min_target_id || id > FLAGS_max_target_id) {
582 continue;
583 }
584
585 Affine3s H_world_ideal =
586 PoseUtils::Pose3dToAffine3d(ideal_target_poses_.at(id)).cast<S>();
587 Affine3s H_world_solved =
588 PoseUtils::Pose3dToAffine3d(solved_pose).cast<S>();
589 // Take the delta between the frozen target and the solved target, and put
590 // that on top of the actual pose of the frozen target
591 auto H_frozen_solved = H_world_frozen.inverse() * H_world_solved;
592 auto H_world_actual = H_world_frozenactual * H_frozen_solved;
593 VLOG(2) << id << ": " << H_world_actual.translation();
594 Affine3s H_ideal_actual = H_world_ideal.inverse() * H_world_actual;
595 auto T_ideal_actual = H_ideal_actual.translation();
596 VLOG(2) << "T_ideal_actual: " << T_ideal_actual;
597 VLOG(2);
598 auto R_ideal_actual = Eigen::AngleAxis<S>(H_ideal_actual.rotation());
599
milind-u401de982023-04-14 17:32:03 -0700600 // Weight translation errors higher than rotation.
601 // 1 m in position error = 0.01 radian (or ~0.573 degrees)
602 constexpr double kTranslationScalar = 1000.0;
603 constexpr double kRotationScalar = 100.0;
milind-u8f4e43e2023-04-09 17:11:19 -0700604
605 // Penalize based on how much our actual poses matches the ideal
606 // ones. We've already solved for the relative poses, now figure out
607 // where all of them fit in the world.
608 residual[residual_index++] = kTranslationScalar * T_ideal_actual(0);
609 residual[residual_index++] = kTranslationScalar * T_ideal_actual(1);
610 residual[residual_index++] = kTranslationScalar * T_ideal_actual(2);
611 residual[residual_index++] =
612 kRotationScalar * R_ideal_actual.angle() * R_ideal_actual.axis().x();
613 residual[residual_index++] =
614 kRotationScalar * R_ideal_actual.angle() * R_ideal_actual.axis().y();
615 residual[residual_index++] =
616 kRotationScalar * R_ideal_actual.angle() * R_ideal_actual.axis().z();
617
618 if (FLAGS_visualize_solver) {
Jim Ostrowski68e56172023-09-17 23:44:15 -0700619 LOG(INFO) << std::to_string(id) + std::string("-est") << " at "
620 << ScalarAffineToDouble(H_world_actual).matrix();
milind-u8f4e43e2023-04-09 17:11:19 -0700621 vis_robot_.DrawFrameAxes(ScalarAffineToDouble(H_world_actual),
Jim Ostrowski68e56172023-09-17 23:44:15 -0700622 std::to_string(id) + std::string("-est"),
623 cv::Scalar(0, 255, 0));
milind-u8f4e43e2023-04-09 17:11:19 -0700624 vis_robot_.DrawFrameAxes(ScalarAffineToDouble(H_world_ideal),
625 std::to_string(id), cv::Scalar(255, 255, 255));
626 }
627 }
628 if (FLAGS_visualize_solver) {
629 cv::imshow("Target maps", vis_robot_.image_);
630 cv::waitKey(0);
631 }
632
633 // Ceres can't handle residual values of exactly zero
634 for (size_t i = 0; i < residual_index; i++) {
635 if (residual[i] == S(0)) {
636 residual[i] = S(1e-9);
637 }
638 }
639
640 return true;
641}
642
milind-u401de982023-04-14 17:32:03 -0700643TargetMapper::PoseError TargetMapper::ComputeError(
644 const ceres::examples::Constraint3d &constraint) const {
645 // Compute the difference between the map-based transform of the end target
646 // in the start target frame, to the one from this constraint
647 auto H_start_end_map =
648 PoseUtils::Pose3dToAffine3d(target_poses_.at(constraint.id_begin))
649 .inverse() *
650 PoseUtils::Pose3dToAffine3d(target_poses_.at(constraint.id_end));
651 auto H_start_end_constraint = PoseUtils::Pose3dToAffine3d(constraint.t_be);
652 ceres::examples::Pose3d delta_pose = PoseUtils::Affine3dToPose3d(
653 H_start_end_map.inverse() * H_start_end_constraint);
654 double distance = delta_pose.p.norm();
655 Eigen::AngleAxisd err_angle(delta_pose.q);
656 double angle = std::abs(err_angle.angle());
657 return {.angle = angle, .distance = distance};
658}
659
660TargetMapper::Stats TargetMapper::ComputeStats() const {
661 Stats stats{.avg_err = {.angle = 0.0, .distance = 0.0},
662 .std_dev = {.angle = 0.0, .distance = 0.0},
663 .max_err = {.angle = 0.0, .distance = 0.0}};
664
665 for (const auto &constraint : target_constraints_) {
666 PoseError err = ComputeError(constraint);
667
668 // Update our statistics
669 stats.avg_err.distance += err.distance;
670 if (err.distance > stats.max_err.distance) {
671 stats.max_err.distance = err.distance;
672 }
673
674 stats.avg_err.angle += err.angle;
675 if (err.angle > stats.max_err.angle) {
676 stats.max_err.angle = err.angle;
677 }
678 }
679
680 stats.avg_err.distance /= static_cast<double>(target_constraints_.size());
681 stats.avg_err.angle /= static_cast<double>(target_constraints_.size());
682
683 for (const auto &constraint : target_constraints_) {
684 PoseError err = ComputeError(constraint);
685
686 // Update our statistics
687 stats.std_dev.distance +=
688 std::pow(err.distance - stats.avg_err.distance, 2);
689
690 stats.std_dev.angle += std::pow(err.angle - stats.avg_err.angle, 2);
691 }
692
693 stats.std_dev.distance = std::sqrt(
694 stats.std_dev.distance / static_cast<double>(target_constraints_.size()));
695 stats.std_dev.angle = std::sqrt(
696 stats.std_dev.angle / static_cast<double>(target_constraints_.size()));
697
698 return stats;
699}
700
701void TargetMapper::RemoveOutlierConstraints() {
702 stats_with_outliers_ = ComputeStats();
703 size_t original_size = target_constraints_.size();
704 target_constraints_.erase(
705 std::remove_if(
706 target_constraints_.begin(), target_constraints_.end(),
707 [&](const auto &constraint) {
708 PoseError err = ComputeError(constraint);
709 // Remove constraints with errors significantly above
710 // the average
711 if (err.distance > stats_with_outliers_.avg_err.distance +
712 FLAGS_outlier_std_devs *
713 stats_with_outliers_.std_dev.distance) {
714 return true;
715 }
716 if (err.angle > stats_with_outliers_.avg_err.angle +
717 FLAGS_outlier_std_devs *
718 stats_with_outliers_.std_dev.angle) {
719 return true;
720 }
721 return false;
722 }),
723 target_constraints_.end());
724
725 LOG(INFO) << "Removed " << (original_size - target_constraints_.size())
726 << " outlier constraints out of " << original_size << " total";
727}
728
729void TargetMapper::DumpStats(std::string_view path) const {
730 LOG(INFO) << "Dumping mapping stats to " << path;
731 Stats stats = ComputeStats();
732 std::ofstream fout(path.data());
733 fout << "Stats after outlier rejection: " << std::endl;
734 fout << "Average error - angle: " << stats.avg_err.angle
735 << ", distance: " << stats.avg_err.distance << std::endl
736 << std::endl;
737 fout << "Standard deviation - angle: " << stats.std_dev.angle
738 << ", distance: " << stats.std_dev.distance << std::endl
739 << std::endl;
740 fout << "Max error - angle: " << stats.max_err.angle
741 << ", distance: " << stats.max_err.distance << std::endl;
742
743 fout << std::endl << "Stats before outlier rejection:" << std::endl;
744 fout << "Average error - angle: " << stats_with_outliers_.avg_err.angle
745 << ", distance: " << stats_with_outliers_.avg_err.distance << std::endl
746 << std::endl;
747 fout << "Standard deviation - angle: " << stats_with_outliers_.std_dev.angle
748 << ", distance: " << stats_with_outliers_.std_dev.distance << std::endl
749 << std::endl;
750 fout << "Max error - angle: " << stats_with_outliers_.max_err.angle
751 << ", distance: " << stats_with_outliers_.max_err.distance << std::endl;
752
753 fout.flush();
754 fout.close();
755}
756
757void TargetMapper::DumpConstraints(std::string_view path) const {
758 LOG(INFO) << "Dumping target constraints to " << path;
759 std::ofstream fout(path.data());
760 for (const auto &constraint : target_constraints_) {
761 fout << constraint << std::endl;
762 }
763 fout.flush();
764 fout.close();
765}
766
milind-ufbc5c812023-04-06 21:24:29 -0700767} // namespace frc971::vision
768
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800769std::ostream &operator<<(std::ostream &os, ceres::examples::Pose3d pose) {
milind-ufbc5c812023-04-06 21:24:29 -0700770 auto rpy = frc971::vision::PoseUtils::QuaternionToEulerAngles(pose.q);
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800771 os << absl::StrFormat(
772 "{x: %.3f, y: %.3f, z: %.3f, roll: %.3f, pitch: "
773 "%.3f, yaw: %.3f}",
774 pose.p(0), pose.p(1), pose.p(2), rpy(0), rpy(1), rpy(2));
775 return os;
776}
777
778std::ostream &operator<<(std::ostream &os,
779 ceres::examples::Constraint3d constraint) {
780 os << absl::StrFormat("{id_begin: %d, id_end: %d, pose: ",
781 constraint.id_begin, constraint.id_end)
782 << constraint.t_be << "}";
783 return os;
784}