Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 1 | #include "frc971/vision/target_mapper.h" |
| 2 | |
| 3 | #include "frc971/control_loops/control_loop.h" |
| 4 | #include "frc971/vision/ceres/angle_local_parameterization.h" |
| 5 | #include "frc971/vision/ceres/normalize_angle.h" |
| 6 | #include "frc971/vision/ceres/pose_graph_2d_error_term.h" |
| 7 | #include "frc971/vision/geometry.h" |
| 8 | |
| 9 | DEFINE_uint64(max_num_iterations, 100, |
| 10 | "Maximum number of iterations for the ceres solver"); |
| 11 | |
| 12 | namespace frc971::vision { |
| 13 | |
| 14 | Eigen::Affine3d PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d pose2d) { |
| 15 | Eigen::Affine3d H_world_pose = |
| 16 | Eigen::Translation3d(pose2d.x, pose2d.y, 0.0) * |
| 17 | Eigen::AngleAxisd(pose2d.yaw_radians, Eigen::Vector3d::UnitZ()); |
| 18 | return H_world_pose; |
| 19 | } |
| 20 | |
| 21 | ceres::examples::Pose2d PoseUtils::Affine3dToPose2d(Eigen::Affine3d H) { |
| 22 | Eigen::Vector3d T = H.translation(); |
| 23 | double heading = std::atan2(H.rotation()(1, 0), H.rotation()(0, 0)); |
| 24 | return ceres::examples::Pose2d{T[0], T[1], |
| 25 | ceres::examples::NormalizeAngle(heading)}; |
| 26 | } |
| 27 | |
| 28 | ceres::examples::Pose2d PoseUtils::ComputeRelativePose( |
| 29 | ceres::examples::Pose2d pose_1, ceres::examples::Pose2d pose_2) { |
| 30 | Eigen::Affine3d H_world_1 = Pose2dToAffine3d(pose_1); |
| 31 | Eigen::Affine3d H_world_2 = Pose2dToAffine3d(pose_2); |
| 32 | |
| 33 | // Get the location of 2 in the 1 frame |
| 34 | Eigen::Affine3d H_1_2 = H_world_1.inverse() * H_world_2; |
| 35 | return Affine3dToPose2d(H_1_2); |
| 36 | } |
| 37 | |
| 38 | ceres::examples::Pose2d PoseUtils::ComputeOffsetPose( |
| 39 | ceres::examples::Pose2d pose_1, ceres::examples::Pose2d pose_2_relative) { |
| 40 | auto H_world_1 = Pose2dToAffine3d(pose_1); |
| 41 | auto H_1_2 = Pose2dToAffine3d(pose_2_relative); |
| 42 | auto H_world_2 = H_world_1 * H_1_2; |
| 43 | |
| 44 | return Affine3dToPose2d(H_world_2); |
| 45 | } |
| 46 | |
| 47 | namespace { |
| 48 | double ExponentiatedSinTerm(double theta) { |
| 49 | return (theta == 0.0 ? 1.0 : std::sin(theta) / theta); |
| 50 | } |
| 51 | |
| 52 | double ExponentiatedCosTerm(double theta) { |
| 53 | return (theta == 0.0 ? 0.0 : (1 - std::cos(theta)) / theta); |
| 54 | } |
| 55 | } // namespace |
| 56 | |
| 57 | ceres::examples::Pose2d DataAdapter::InterpolatePose( |
| 58 | const TimestampedPose &pose_start, const TimestampedPose &pose_end, |
| 59 | aos::distributed_clock::time_point time) { |
| 60 | auto delta_pose = |
| 61 | PoseUtils::ComputeRelativePose(pose_start.pose, pose_end.pose); |
| 62 | // Time from start of period, on the scale 0-1 where 1 is the end. |
| 63 | double interpolation_scalar = |
| 64 | static_cast<double>((time - pose_start.time).count()) / |
| 65 | static_cast<double>((pose_end.time - pose_start.time).count()); |
| 66 | |
| 67 | double theta = delta_pose.yaw_radians; |
| 68 | // Take the log of the transformation matrix: |
| 69 | // https://mathoverflow.net/questions/118533/how-to-compute-se2-group-exponential-and-logarithm |
| 70 | StdFormLine dx_line = {.a = ExponentiatedSinTerm(theta), |
| 71 | .b = -ExponentiatedCosTerm(theta), |
| 72 | .c = delta_pose.x}; |
| 73 | StdFormLine dy_line = {.a = ExponentiatedCosTerm(theta), |
| 74 | .b = ExponentiatedSinTerm(theta), |
| 75 | .c = delta_pose.y}; |
| 76 | |
| 77 | std::optional<cv::Point2d> solution = dx_line.Intersection(dy_line); |
| 78 | CHECK(solution.has_value()); |
| 79 | |
| 80 | // Re-exponentiate with the new values scaled by the interpolation scalar to |
| 81 | // get an interpolated tranformation matrix |
| 82 | double a = solution->x * interpolation_scalar; |
| 83 | double b = solution->y * interpolation_scalar; |
| 84 | double alpha = theta * interpolation_scalar; |
| 85 | |
| 86 | ceres::examples::Pose2d interpolated_pose = { |
| 87 | .x = a * ExponentiatedSinTerm(theta) - b * ExponentiatedCosTerm(theta), |
| 88 | .y = a * ExponentiatedCosTerm(theta) + b * ExponentiatedSinTerm(theta), |
| 89 | .yaw_radians = alpha}; |
| 90 | |
| 91 | return PoseUtils::ComputeOffsetPose(pose_start.pose, interpolated_pose); |
| 92 | } // namespace frc971::vision |
| 93 | |
| 94 | std::pair<std::vector<ceres::examples::Constraint2d>, |
| 95 | std::vector<ceres::examples::Pose2d>> |
| 96 | DataAdapter::MatchTargetDetections( |
| 97 | const std::vector<TimestampedPose> ×tamped_robot_poses, |
| 98 | const std::vector<TimestampedDetection> ×tamped_target_detections) { |
| 99 | // Interpolate robot poses |
| 100 | std::map<aos::distributed_clock::time_point, ceres::examples::Pose2d> |
| 101 | interpolated_poses; |
| 102 | |
| 103 | CHECK_GT(timestamped_robot_poses.size(), 1ul) |
| 104 | << "Need more than 1 robot pose"; |
| 105 | auto robot_pose_it = timestamped_robot_poses.begin(); |
| 106 | for (const auto ×tamped_detection : timestamped_target_detections) { |
| 107 | aos::distributed_clock::time_point target_time = timestamped_detection.time; |
Milind Upadhyay | 81420a2 | 2022-12-14 21:13:06 -0800 | [diff] [blame] | 108 | |
| 109 | // Skip this target detection if we have no robot poses before it |
| 110 | if (robot_pose_it->time > target_time) { |
| 111 | continue; |
| 112 | } |
| 113 | |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 114 | // Find the robot point right before this localization |
| 115 | while (robot_pose_it->time > target_time || |
| 116 | (robot_pose_it + 1)->time <= target_time) { |
| 117 | robot_pose_it++; |
| 118 | CHECK(robot_pose_it < timestamped_robot_poses.end() - 1) |
| 119 | << "Need a robot pose before and after every target detection"; |
| 120 | } |
| 121 | |
| 122 | auto start = robot_pose_it; |
| 123 | auto end = robot_pose_it + 1; |
| 124 | interpolated_poses.emplace(target_time, |
| 125 | InterpolatePose(*start, *end, target_time)); |
| 126 | } |
| 127 | |
Milind Upadhyay | 81420a2 | 2022-12-14 21:13:06 -0800 | [diff] [blame] | 128 | // In the case that all target detections were before the first robot |
| 129 | // detection, we would have no interpolated poses at this point |
| 130 | CHECK_GT(interpolated_poses.size(), 0ul) |
| 131 | << "Need a robot pose before and after every target detection"; |
| 132 | |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 133 | // Match consecutive detections |
| 134 | std::vector<ceres::examples::Constraint2d> target_constraints; |
| 135 | std::vector<ceres::examples::Pose2d> robot_delta_poses; |
| 136 | |
| 137 | auto last_detection = timestamped_target_detections[0]; |
| 138 | auto last_robot_pose = |
| 139 | interpolated_poses[timestamped_target_detections[0].time]; |
| 140 | |
| 141 | for (auto it = timestamped_target_detections.begin() + 1; |
| 142 | it < timestamped_target_detections.end(); it++) { |
| 143 | // Skip two consecutive detections of the same target, because the solver |
| 144 | // doesn't allow this |
| 145 | if (it->id == last_detection.id) { |
| 146 | continue; |
| 147 | } |
| 148 | |
| 149 | auto robot_pose = interpolated_poses[it->time]; |
| 150 | auto robot_delta_pose = |
| 151 | PoseUtils::ComputeRelativePose(last_robot_pose, robot_pose); |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 152 | auto confidence = ComputeConfidence(last_detection.time, it->time, |
| 153 | last_detection.distance_from_camera, |
| 154 | it->distance_from_camera); |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 155 | |
| 156 | target_constraints.emplace_back(ComputeTargetConstraint( |
| 157 | last_detection, PoseUtils::Pose2dToAffine3d(robot_delta_pose), *it, |
| 158 | confidence)); |
| 159 | robot_delta_poses.emplace_back(robot_delta_pose); |
| 160 | |
| 161 | last_detection = *it; |
| 162 | last_robot_pose = robot_pose; |
| 163 | } |
| 164 | |
| 165 | return {target_constraints, robot_delta_poses}; |
| 166 | } |
| 167 | |
Milind Upadhyay | ec49391 | 2022-12-18 21:33:15 -0800 | [diff] [blame] | 168 | std::vector<ceres::examples::Constraint2d> DataAdapter::MatchTargetDetections( |
| 169 | const std::vector<DataAdapter::TimestampedDetection> |
| 170 | ×tamped_target_detections, |
| 171 | aos::distributed_clock::duration max_dt) { |
| 172 | CHECK_GE(timestamped_target_detections.size(), 2ul) |
| 173 | << "Must have at least 2 detections"; |
| 174 | |
| 175 | // Match consecutive detections |
| 176 | std::vector<ceres::examples::Constraint2d> target_constraints; |
| 177 | for (auto it = timestamped_target_detections.begin() + 1; |
| 178 | it < timestamped_target_detections.end(); it++) { |
| 179 | auto last_detection = *(it - 1); |
| 180 | |
| 181 | // Skip two consecutive detections of the same target, because the solver |
| 182 | // doesn't allow this |
| 183 | if (it->id == last_detection.id) { |
| 184 | continue; |
| 185 | } |
| 186 | |
| 187 | // Don't take into account constraints too far apart in time, because the |
| 188 | // recording device could have moved too much |
| 189 | if ((it->time - last_detection.time) > max_dt) { |
| 190 | continue; |
| 191 | } |
| 192 | |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 193 | auto confidence = ComputeConfidence(last_detection.time, it->time, |
| 194 | last_detection.distance_from_camera, |
| 195 | it->distance_from_camera); |
Milind Upadhyay | ec49391 | 2022-12-18 21:33:15 -0800 | [diff] [blame] | 196 | target_constraints.emplace_back( |
| 197 | ComputeTargetConstraint(last_detection, *it, confidence)); |
| 198 | } |
| 199 | |
| 200 | return target_constraints; |
| 201 | } |
| 202 | |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 203 | Eigen::Matrix3d DataAdapter::ComputeConfidence( |
| 204 | aos::distributed_clock::time_point start, |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 205 | aos::distributed_clock::time_point end, double distance_from_camera_start, |
| 206 | double distance_from_camera_end) { |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 207 | constexpr size_t kX = 0; |
| 208 | constexpr size_t kY = 1; |
| 209 | constexpr size_t kTheta = 2; |
| 210 | |
| 211 | // Uncertainty matrix between start and end |
| 212 | Eigen::Matrix3d P = Eigen::Matrix3d::Zero(); |
| 213 | |
| 214 | { |
| 215 | // Noise for odometry-based robot position measurements |
| 216 | Eigen::Matrix3d Q_odometry = Eigen::Matrix3d::Zero(); |
| 217 | Q_odometry(kX, kX) = std::pow(0.045, 2); |
| 218 | Q_odometry(kY, kY) = std::pow(0.045, 2); |
| 219 | Q_odometry(kTheta, kTheta) = std::pow(0.01, 2); |
| 220 | |
| 221 | // Add uncertainty for robot position measurements from start to end |
| 222 | int iterations = (end - start) / frc971::controls::kLoopFrequency; |
| 223 | P += static_cast<double>(iterations) * Q_odometry; |
| 224 | } |
| 225 | |
| 226 | { |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 227 | // Noise for vision-based target localizations. Multiplying this matrix by |
| 228 | // the distance from camera to target squared results in the uncertainty in |
| 229 | // that measurement |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 230 | Eigen::Matrix3d Q_vision = Eigen::Matrix3d::Zero(); |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 231 | Q_vision(kX, kX) = std::pow(0.045, 2); |
| 232 | Q_vision(kY, kY) = std::pow(0.045, 2); |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 233 | Q_vision(kTheta, kTheta) = std::pow(0.02, 2); |
| 234 | |
| 235 | // Add uncertainty for the 2 vision measurements (1 at start and 1 at end) |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 236 | P += Q_vision * std::pow(distance_from_camera_start, 2); |
| 237 | P += Q_vision * std::pow(distance_from_camera_end, 2); |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 238 | } |
| 239 | |
| 240 | return P.inverse(); |
| 241 | } |
| 242 | |
| 243 | ceres::examples::Constraint2d DataAdapter::ComputeTargetConstraint( |
| 244 | const TimestampedDetection &target_detection_start, |
| 245 | const Eigen::Affine3d &H_robotstart_robotend, |
| 246 | const TimestampedDetection &target_detection_end, |
| 247 | const Eigen::Matrix3d &confidence) { |
| 248 | // Compute the relative pose (constraint) between the two targets |
| 249 | Eigen::Affine3d H_targetstart_targetend = |
| 250 | target_detection_start.H_robot_target.inverse() * H_robotstart_robotend * |
| 251 | target_detection_end.H_robot_target; |
| 252 | ceres::examples::Pose2d target_constraint = |
| 253 | PoseUtils::Affine3dToPose2d(H_targetstart_targetend); |
| 254 | |
| 255 | return ceres::examples::Constraint2d{ |
| 256 | target_detection_start.id, target_detection_end.id, |
| 257 | target_constraint.x, target_constraint.y, |
| 258 | target_constraint.yaw_radians, confidence}; |
| 259 | } |
| 260 | |
Milind Upadhyay | ec49391 | 2022-12-18 21:33:15 -0800 | [diff] [blame] | 261 | ceres::examples::Constraint2d DataAdapter::ComputeTargetConstraint( |
| 262 | const TimestampedDetection &target_detection_start, |
| 263 | const TimestampedDetection &target_detection_end, |
| 264 | const Eigen::Matrix3d &confidence) { |
| 265 | return ComputeTargetConstraint(target_detection_start, |
| 266 | Eigen::Affine3d(Eigen::Matrix4d::Identity()), |
| 267 | target_detection_end, confidence); |
| 268 | } |
| 269 | |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 270 | TargetMapper::TargetMapper( |
Milind Upadhyay | cd677a3 | 2022-12-04 13:06:43 -0800 | [diff] [blame] | 271 | std::string_view target_poses_path, |
| 272 | std::vector<ceres::examples::Constraint2d> target_constraints) |
| 273 | : target_constraints_(target_constraints) { |
| 274 | aos::FlatbufferDetachedBuffer<TargetMap> target_map = |
| 275 | aos::JsonFileToFlatbuffer<TargetMap>(target_poses_path); |
| 276 | for (const auto *target_pose_fbs : *target_map.message().target_poses()) { |
| 277 | target_poses_[target_pose_fbs->id()] = ceres::examples::Pose2d{ |
| 278 | target_pose_fbs->x(), target_pose_fbs->y(), target_pose_fbs->yaw()}; |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | TargetMapper::TargetMapper( |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 283 | std::map<TargetId, ceres::examples::Pose2d> target_poses, |
| 284 | std::vector<ceres::examples::Constraint2d> target_constraints) |
| 285 | : target_poses_(target_poses), target_constraints_(target_constraints) {} |
| 286 | |
| 287 | std::optional<TargetMapper::TargetPose> TargetMapper::GetTargetPoseById( |
| 288 | std::vector<TargetMapper::TargetPose> target_poses, TargetId target_id) { |
| 289 | for (auto target_pose : target_poses) { |
| 290 | if (target_pose.id == target_id) { |
| 291 | return target_pose; |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | return std::nullopt; |
| 296 | } |
| 297 | |
| 298 | // Taken from ceres/examples/slam/pose_graph_2d/pose_graph_2d.cc |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 299 | void TargetMapper::BuildOptimizationProblem( |
| 300 | std::map<int, ceres::examples::Pose2d> *poses, |
| 301 | const std::vector<ceres::examples::Constraint2d> &constraints, |
| 302 | ceres::Problem *problem) { |
| 303 | CHECK_NOTNULL(poses); |
| 304 | CHECK_NOTNULL(problem); |
| 305 | if (constraints.empty()) { |
| 306 | LOG(WARNING) << "No constraints, no problem to optimize."; |
| 307 | return; |
| 308 | } |
| 309 | |
| 310 | ceres::LossFunction *loss_function = new ceres::HuberLoss(2.0); |
| 311 | ceres::LocalParameterization *angle_local_parameterization = |
| 312 | ceres::examples::AngleLocalParameterization::Create(); |
| 313 | |
| 314 | for (std::vector<ceres::examples::Constraint2d>::const_iterator |
| 315 | constraints_iter = constraints.begin(); |
| 316 | constraints_iter != constraints.end(); ++constraints_iter) { |
| 317 | const ceres::examples::Constraint2d &constraint = *constraints_iter; |
| 318 | |
| 319 | std::map<int, ceres::examples::Pose2d>::iterator pose_begin_iter = |
| 320 | poses->find(constraint.id_begin); |
| 321 | CHECK(pose_begin_iter != poses->end()) |
| 322 | << "Pose with ID: " << constraint.id_begin << " not found."; |
| 323 | std::map<int, ceres::examples::Pose2d>::iterator pose_end_iter = |
| 324 | poses->find(constraint.id_end); |
| 325 | CHECK(pose_end_iter != poses->end()) |
| 326 | << "Pose with ID: " << constraint.id_end << " not found."; |
| 327 | |
| 328 | const Eigen::Matrix3d sqrt_information = |
| 329 | constraint.information.llt().matrixL(); |
| 330 | // Ceres will take ownership of the pointer. |
| 331 | ceres::CostFunction *cost_function = |
| 332 | ceres::examples::PoseGraph2dErrorTerm::Create( |
| 333 | constraint.x, constraint.y, constraint.yaw_radians, |
| 334 | sqrt_information); |
| 335 | problem->AddResidualBlock( |
| 336 | cost_function, loss_function, &pose_begin_iter->second.x, |
| 337 | &pose_begin_iter->second.y, &pose_begin_iter->second.yaw_radians, |
| 338 | &pose_end_iter->second.x, &pose_end_iter->second.y, |
| 339 | &pose_end_iter->second.yaw_radians); |
| 340 | |
| 341 | problem->SetParameterization(&pose_begin_iter->second.yaw_radians, |
| 342 | angle_local_parameterization); |
| 343 | problem->SetParameterization(&pose_end_iter->second.yaw_radians, |
| 344 | angle_local_parameterization); |
| 345 | } |
| 346 | |
| 347 | // The pose graph optimization problem has three DOFs that are not fully |
| 348 | // constrained. This is typically referred to as gauge freedom. You can apply |
| 349 | // a rigid body transformation to all the nodes and the optimization problem |
| 350 | // will still have the exact same cost. The Levenberg-Marquardt algorithm has |
| 351 | // internal damping which mitigates this issue, but it is better to properly |
| 352 | // constrain the gauge freedom. This can be done by setting one of the poses |
| 353 | // as constant so the optimizer cannot change it. |
| 354 | std::map<int, ceres::examples::Pose2d>::iterator pose_start_iter = |
| 355 | poses->begin(); |
| 356 | CHECK(pose_start_iter != poses->end()) << "There are no poses."; |
| 357 | problem->SetParameterBlockConstant(&pose_start_iter->second.x); |
| 358 | problem->SetParameterBlockConstant(&pose_start_iter->second.y); |
| 359 | problem->SetParameterBlockConstant(&pose_start_iter->second.yaw_radians); |
| 360 | } |
| 361 | |
| 362 | // Taken from ceres/examples/slam/pose_graph_2d/pose_graph_2d.cc |
| 363 | bool TargetMapper::SolveOptimizationProblem(ceres::Problem *problem) { |
| 364 | CHECK_NOTNULL(problem); |
| 365 | |
| 366 | ceres::Solver::Options options; |
| 367 | options.max_num_iterations = FLAGS_max_num_iterations; |
| 368 | options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY; |
| 369 | |
| 370 | ceres::Solver::Summary summary; |
| 371 | ceres::Solve(options, problem, &summary); |
| 372 | |
Milind Upadhyay | cd677a3 | 2022-12-04 13:06:43 -0800 | [diff] [blame] | 373 | LOG(INFO) << summary.FullReport() << '\n'; |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 374 | |
| 375 | return summary.IsSolutionUsable(); |
| 376 | } |
| 377 | |
Milind Upadhyay | 05652cb | 2022-12-07 20:51:51 -0800 | [diff] [blame] | 378 | void TargetMapper::Solve(std::string_view field_name, |
| 379 | std::optional<std::string_view> output_dir) { |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 380 | ceres::Problem problem; |
| 381 | BuildOptimizationProblem(&target_poses_, target_constraints_, &problem); |
| 382 | |
| 383 | CHECK(SolveOptimizationProblem(&problem)) |
| 384 | << "The solve was not successful, exiting."; |
| 385 | |
Milind Upadhyay | cd677a3 | 2022-12-04 13:06:43 -0800 | [diff] [blame] | 386 | // TODO(milind): add origin to first target offset to all poses |
| 387 | |
Milind Upadhyay | 05652cb | 2022-12-07 20:51:51 -0800 | [diff] [blame] | 388 | auto map_json = MapToJson(field_name); |
Milind Upadhyay | cd677a3 | 2022-12-04 13:06:43 -0800 | [diff] [blame] | 389 | VLOG(1) << "Solved target poses: " << map_json; |
Milind Upadhyay | 05652cb | 2022-12-07 20:51:51 -0800 | [diff] [blame] | 390 | |
| 391 | if (output_dir.has_value()) { |
| 392 | std::string output_path = |
| 393 | absl::StrCat(output_dir.value(), "/", field_name, ".json"); |
| 394 | LOG(INFO) << "Writing map to file: " << output_path; |
| 395 | aos::util::WriteStringToFileOrDie(output_path, map_json); |
Milind Upadhyay | cd677a3 | 2022-12-04 13:06:43 -0800 | [diff] [blame] | 396 | } |
| 397 | } |
| 398 | |
Milind Upadhyay | 05652cb | 2022-12-07 20:51:51 -0800 | [diff] [blame] | 399 | std::string TargetMapper::MapToJson(std::string_view field_name) const { |
Milind Upadhyay | cd677a3 | 2022-12-04 13:06:43 -0800 | [diff] [blame] | 400 | flatbuffers::FlatBufferBuilder fbb; |
| 401 | |
| 402 | // Convert poses to flatbuffers |
| 403 | std::vector<flatbuffers::Offset<TargetPoseFbs>> target_poses_fbs; |
| 404 | for (const auto &[id, pose] : target_poses_) { |
| 405 | TargetPoseFbs::Builder target_pose_builder(fbb); |
| 406 | target_pose_builder.add_id(id); |
Milind Upadhyay | cf75777 | 2022-12-14 20:57:36 -0800 | [diff] [blame] | 407 | target_pose_builder.add_x(pose.x); |
| 408 | target_pose_builder.add_y(pose.y); |
| 409 | target_pose_builder.add_yaw(pose.yaw_radians); |
Milind Upadhyay | cd677a3 | 2022-12-04 13:06:43 -0800 | [diff] [blame] | 410 | |
| 411 | target_poses_fbs.emplace_back(target_pose_builder.Finish()); |
| 412 | } |
| 413 | |
Milind Upadhyay | 05652cb | 2022-12-07 20:51:51 -0800 | [diff] [blame] | 414 | const auto field_name_offset = fbb.CreateString(field_name); |
| 415 | flatbuffers::Offset<TargetMap> target_map_offset = CreateTargetMap( |
| 416 | fbb, fbb.CreateVector(target_poses_fbs), field_name_offset); |
Milind Upadhyay | cd677a3 | 2022-12-04 13:06:43 -0800 | [diff] [blame] | 417 | |
| 418 | return aos::FlatbufferToJson( |
| 419 | flatbuffers::GetMutableTemporaryPointer(fbb, target_map_offset), |
| 420 | {.multi_line = true}); |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 421 | } |
| 422 | |
| 423 | } // namespace frc971::vision |