blob: 21bd443cfe80fb5feaeb613ebfd35940f341b4f3 [file] [log] [blame]
Milind Upadhyay7c205222022-11-16 18:20:58 -08001#include "frc971/vision/target_mapper.h"
2
Milind Upadhyayc5beba12022-12-17 17:41:20 -08003#include "absl/strings/str_format.h"
Milind Upadhyay7c205222022-11-16 18:20:58 -08004#include "frc971/control_loops/control_loop.h"
Milind Upadhyayc5beba12022-12-17 17:41:20 -08005#include "frc971/vision/ceres/pose_graph_3d_error_term.h"
Milind Upadhyay7c205222022-11-16 18:20:58 -08006#include "frc971/vision/geometry.h"
7
8DEFINE_uint64(max_num_iterations, 100,
9 "Maximum number of iterations for the ceres solver");
milind-ud62f80a2023-03-04 16:37:09 -080010DEFINE_double(distortion_noise_scalar, 1.0,
11 "Scale the target pose distortion factor by this when computing "
12 "the noise.");
milind-u8f4e43e2023-04-09 17:11:19 -070013DEFINE_int32(
milind-u6ff399f2023-03-24 18:33:38 -070014 frozen_target_id, 1,
15 "Freeze the pose of this target so the map can have one fixed point.");
milind-u8f4e43e2023-04-09 17:11:19 -070016DEFINE_int32(min_target_id, 1, "Minimum target id to solve for");
17DEFINE_int32(max_target_id, 8, "Maximum target id to solve for");
18DEFINE_bool(visualize_solver, false, "If true, visualize the solving process.");
milind-u401de982023-04-14 17:32:03 -070019// This does seem like a strict threshold for a constaint to be considered an
20// outlier, but most inliers were very close together and this is what worked
21// best for map solving.
22DEFINE_double(outlier_std_devs, 1.0,
23 "Number of standard deviations above average error needed for a "
24 "constraint to be considered an outlier and get removed.");
Milind Upadhyay7c205222022-11-16 18:20:58 -080025
26namespace frc971::vision {
Milind Upadhyayc5beba12022-12-17 17:41:20 -080027Eigen::Affine3d PoseUtils::Pose3dToAffine3d(
28 const ceres::examples::Pose3d &pose3d) {
Milind Upadhyay7c205222022-11-16 18:20:58 -080029 Eigen::Affine3d H_world_pose =
Milind Upadhyayc5beba12022-12-17 17:41:20 -080030 Eigen::Translation3d(pose3d.p(0), pose3d.p(1), pose3d.p(2)) * pose3d.q;
Milind Upadhyay7c205222022-11-16 18:20:58 -080031 return H_world_pose;
32}
33
Milind Upadhyayc5beba12022-12-17 17:41:20 -080034ceres::examples::Pose3d PoseUtils::Affine3dToPose3d(const Eigen::Affine3d &H) {
35 return ceres::examples::Pose3d{.p = H.translation(),
36 .q = Eigen::Quaterniond(H.rotation())};
Milind Upadhyay7c205222022-11-16 18:20:58 -080037}
38
Milind Upadhyayc5beba12022-12-17 17:41:20 -080039ceres::examples::Pose3d PoseUtils::ComputeRelativePose(
40 const ceres::examples::Pose3d &pose_1,
41 const ceres::examples::Pose3d &pose_2) {
42 Eigen::Affine3d H_world_1 = Pose3dToAffine3d(pose_1);
43 Eigen::Affine3d H_world_2 = Pose3dToAffine3d(pose_2);
Milind Upadhyay7c205222022-11-16 18:20:58 -080044
45 // Get the location of 2 in the 1 frame
46 Eigen::Affine3d H_1_2 = H_world_1.inverse() * H_world_2;
Milind Upadhyayc5beba12022-12-17 17:41:20 -080047 return Affine3dToPose3d(H_1_2);
Milind Upadhyay7c205222022-11-16 18:20:58 -080048}
49
Milind Upadhyayc5beba12022-12-17 17:41:20 -080050ceres::examples::Pose3d PoseUtils::ComputeOffsetPose(
51 const ceres::examples::Pose3d &pose_1,
52 const ceres::examples::Pose3d &pose_2_relative) {
53 auto H_world_1 = Pose3dToAffine3d(pose_1);
54 auto H_1_2 = Pose3dToAffine3d(pose_2_relative);
Milind Upadhyay7c205222022-11-16 18:20:58 -080055 auto H_world_2 = H_world_1 * H_1_2;
56
Milind Upadhyayc5beba12022-12-17 17:41:20 -080057 return Affine3dToPose3d(H_world_2);
Milind Upadhyay7c205222022-11-16 18:20:58 -080058}
59
Milind Upadhyayc5beba12022-12-17 17:41:20 -080060Eigen::Quaterniond PoseUtils::EulerAnglesToQuaternion(
61 const Eigen::Vector3d &rpy) {
62 Eigen::AngleAxisd roll_angle(rpy.x(), Eigen::Vector3d::UnitX());
63 Eigen::AngleAxisd pitch_angle(rpy.y(), Eigen::Vector3d::UnitY());
64 Eigen::AngleAxisd yaw_angle(rpy.z(), Eigen::Vector3d::UnitZ());
65
66 return yaw_angle * pitch_angle * roll_angle;
Milind Upadhyay7c205222022-11-16 18:20:58 -080067}
68
Milind Upadhyayc5beba12022-12-17 17:41:20 -080069Eigen::Vector3d PoseUtils::QuaternionToEulerAngles(
70 const Eigen::Quaterniond &q) {
71 return RotationMatrixToEulerAngles(q.toRotationMatrix());
Milind Upadhyay7c205222022-11-16 18:20:58 -080072}
73
Milind Upadhyayc5beba12022-12-17 17:41:20 -080074Eigen::Vector3d PoseUtils::RotationMatrixToEulerAngles(
75 const Eigen::Matrix3d &R) {
76 double roll = aos::math::NormalizeAngle(std::atan2(R(2, 1), R(2, 2)));
77 double pitch = aos::math::NormalizeAngle(-std::asin(R(2, 0)));
78 double yaw = aos::math::NormalizeAngle(std::atan2(R(1, 0), R(0, 0)));
79
80 return Eigen::Vector3d(roll, pitch, yaw);
81}
82
milind-u3f5f83c2023-01-29 15:23:51 -080083flatbuffers::Offset<TargetPoseFbs> PoseUtils::TargetPoseToFbs(
84 const TargetMapper::TargetPose &target_pose,
85 flatbuffers::FlatBufferBuilder *fbb) {
86 const auto position_offset =
87 CreatePosition(*fbb, target_pose.pose.p(0), target_pose.pose.p(1),
88 target_pose.pose.p(2));
89 const auto orientation_offset =
90 CreateQuaternion(*fbb, target_pose.pose.q.w(), target_pose.pose.q.x(),
91 target_pose.pose.q.y(), target_pose.pose.q.z());
92 return CreateTargetPoseFbs(*fbb, target_pose.id, position_offset,
93 orientation_offset);
94}
95
96TargetMapper::TargetPose PoseUtils::TargetPoseFromFbs(
97 const TargetPoseFbs &target_pose_fbs) {
98 return {.id = static_cast<TargetMapper::TargetId>(target_pose_fbs.id()),
99 .pose = ceres::examples::Pose3d{
100 Eigen::Vector3d(target_pose_fbs.position()->x(),
101 target_pose_fbs.position()->y(),
102 target_pose_fbs.position()->z()),
103 Eigen::Quaterniond(target_pose_fbs.orientation()->w(),
104 target_pose_fbs.orientation()->x(),
105 target_pose_fbs.orientation()->y(),
106 target_pose_fbs.orientation()->z())}};
107}
108
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800109ceres::examples::VectorOfConstraints DataAdapter::MatchTargetDetections(
Milind Upadhyayec493912022-12-18 21:33:15 -0800110 const std::vector<DataAdapter::TimestampedDetection>
111 &timestamped_target_detections,
112 aos::distributed_clock::duration max_dt) {
113 CHECK_GE(timestamped_target_detections.size(), 2ul)
114 << "Must have at least 2 detections";
115
116 // Match consecutive detections
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800117 ceres::examples::VectorOfConstraints target_constraints;
milind-ud62f80a2023-03-04 16:37:09 -0800118 for (auto detection = timestamped_target_detections.begin() + 1;
119 detection < timestamped_target_detections.end(); detection++) {
120 auto last_detection = detection - 1;
Milind Upadhyayec493912022-12-18 21:33:15 -0800121
122 // Skip two consecutive detections of the same target, because the solver
123 // doesn't allow this
milind-ud62f80a2023-03-04 16:37:09 -0800124 if (detection->id == last_detection->id) {
Milind Upadhyayec493912022-12-18 21:33:15 -0800125 continue;
126 }
127
128 // Don't take into account constraints too far apart in time, because the
129 // recording device could have moved too much
milind-ud62f80a2023-03-04 16:37:09 -0800130 if ((detection->time - last_detection->time) > max_dt) {
Milind Upadhyayec493912022-12-18 21:33:15 -0800131 continue;
132 }
133
milind-ud62f80a2023-03-04 16:37:09 -0800134 auto confidence = ComputeConfidence(*last_detection, *detection);
Milind Upadhyayec493912022-12-18 21:33:15 -0800135 target_constraints.emplace_back(
milind-ud62f80a2023-03-04 16:37:09 -0800136 ComputeTargetConstraint(*last_detection, *detection, confidence));
Milind Upadhyayec493912022-12-18 21:33:15 -0800137 }
138
139 return target_constraints;
140}
141
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800142TargetMapper::ConfidenceMatrix DataAdapter::ComputeConfidence(
milind-ud62f80a2023-03-04 16:37:09 -0800143 const TimestampedDetection &detection_start,
144 const TimestampedDetection &detection_end) {
Milind Upadhyay7c205222022-11-16 18:20:58 -0800145 constexpr size_t kX = 0;
146 constexpr size_t kY = 1;
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800147 constexpr size_t kZ = 2;
148 constexpr size_t kOrientation1 = 3;
149 constexpr size_t kOrientation2 = 4;
150 constexpr size_t kOrientation3 = 5;
Milind Upadhyay7c205222022-11-16 18:20:58 -0800151
152 // Uncertainty matrix between start and end
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800153 TargetMapper::ConfidenceMatrix P = TargetMapper::ConfidenceMatrix::Zero();
Milind Upadhyay7c205222022-11-16 18:20:58 -0800154
155 {
156 // Noise for odometry-based robot position measurements
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800157 TargetMapper::ConfidenceMatrix Q_odometry =
158 TargetMapper::ConfidenceMatrix::Zero();
Milind Upadhyay7c205222022-11-16 18:20:58 -0800159 Q_odometry(kX, kX) = std::pow(0.045, 2);
160 Q_odometry(kY, kY) = std::pow(0.045, 2);
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800161 Q_odometry(kZ, kZ) = std::pow(0.045, 2);
162 Q_odometry(kOrientation1, kOrientation1) = std::pow(0.01, 2);
163 Q_odometry(kOrientation2, kOrientation2) = std::pow(0.01, 2);
164 Q_odometry(kOrientation3, kOrientation3) = std::pow(0.01, 2);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800165
166 // Add uncertainty for robot position measurements from start to end
milind-ud62f80a2023-03-04 16:37:09 -0800167 int iterations = (detection_end.time - detection_start.time) /
168 frc971::controls::kLoopFrequency;
Milind Upadhyay7c205222022-11-16 18:20:58 -0800169 P += static_cast<double>(iterations) * Q_odometry;
170 }
171
172 {
Milind Upadhyayebf93ee2023-01-05 14:12:58 -0800173 // Noise for vision-based target localizations. Multiplying this matrix by
milind-u6ff399f2023-03-24 18:33:38 -0700174 // the distance from camera to target squared results in the uncertainty
175 // in that measurement
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800176 TargetMapper::ConfidenceMatrix Q_vision =
177 TargetMapper::ConfidenceMatrix::Zero();
Milind Upadhyayebf93ee2023-01-05 14:12:58 -0800178 Q_vision(kX, kX) = std::pow(0.045, 2);
179 Q_vision(kY, kY) = std::pow(0.045, 2);
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800180 Q_vision(kZ, kZ) = std::pow(0.045, 2);
181 Q_vision(kOrientation1, kOrientation1) = std::pow(0.02, 2);
182 Q_vision(kOrientation2, kOrientation2) = std::pow(0.02, 2);
183 Q_vision(kOrientation3, kOrientation3) = std::pow(0.02, 2);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800184
185 // Add uncertainty for the 2 vision measurements (1 at start and 1 at end)
milind-ufbc5c812023-04-06 21:24:29 -0700186 P += Q_vision * std::pow(detection_start.distance_from_camera *
187 (1.0 + FLAGS_distortion_noise_scalar *
188 detection_start.distortion_factor),
189 2);
190 P += Q_vision * std::pow(detection_end.distance_from_camera *
191 (1.0 + FLAGS_distortion_noise_scalar *
192 detection_end.distortion_factor),
193 2);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800194 }
195
196 return P.inverse();
197}
198
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800199ceres::examples::Constraint3d DataAdapter::ComputeTargetConstraint(
Milind Upadhyay7c205222022-11-16 18:20:58 -0800200 const TimestampedDetection &target_detection_start,
Milind Upadhyay7c205222022-11-16 18:20:58 -0800201 const TimestampedDetection &target_detection_end,
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800202 const TargetMapper::ConfidenceMatrix &confidence) {
Milind Upadhyay7c205222022-11-16 18:20:58 -0800203 // Compute the relative pose (constraint) between the two targets
204 Eigen::Affine3d H_targetstart_targetend =
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800205 target_detection_start.H_robot_target.inverse() *
Milind Upadhyay7c205222022-11-16 18:20:58 -0800206 target_detection_end.H_robot_target;
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800207 ceres::examples::Pose3d target_constraint =
208 PoseUtils::Affine3dToPose3d(H_targetstart_targetend);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800209
milind-uf3ab8ba2023-02-04 17:56:16 -0800210 const auto constraint_3d =
211 ceres::examples::Constraint3d{target_detection_start.id,
212 target_detection_end.id,
213 {target_constraint.p, target_constraint.q},
214 confidence};
215
216 VLOG(2) << "Computed constraint: " << constraint_3d;
217 return constraint_3d;
Milind Upadhyayec493912022-12-18 21:33:15 -0800218}
219
Milind Upadhyay7c205222022-11-16 18:20:58 -0800220TargetMapper::TargetMapper(
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800221 std::string_view target_poses_path,
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800222 const ceres::examples::VectorOfConstraints &target_constraints)
milind-u8f4e43e2023-04-09 17:11:19 -0700223 : target_constraints_(target_constraints),
224 T_frozen_actual_(Eigen::Vector3d::Zero()),
225 R_frozen_actual_(Eigen::Quaterniond::Identity()),
226 vis_robot_(cv::Size(1280, 1000)) {
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800227 aos::FlatbufferDetachedBuffer<TargetMap> target_map =
228 aos::JsonFileToFlatbuffer<TargetMap>(target_poses_path);
229 for (const auto *target_pose_fbs : *target_map.message().target_poses()) {
milind-u8f4e43e2023-04-09 17:11:19 -0700230 ideal_target_poses_[target_pose_fbs->id()] =
milind-u3f5f83c2023-01-29 15:23:51 -0800231 PoseUtils::TargetPoseFromFbs(*target_pose_fbs).pose;
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800232 }
milind-u8f4e43e2023-04-09 17:11:19 -0700233 target_poses_ = ideal_target_poses_;
milind-u526d5672023-04-17 20:09:10 -0700234 CountConstraints();
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800235}
236
237TargetMapper::TargetMapper(
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800238 const ceres::examples::MapOfPoses &target_poses,
239 const ceres::examples::VectorOfConstraints &target_constraints)
milind-u8f4e43e2023-04-09 17:11:19 -0700240 : ideal_target_poses_(target_poses),
241 target_poses_(ideal_target_poses_),
242 target_constraints_(target_constraints),
243 T_frozen_actual_(Eigen::Vector3d::Zero()),
244 R_frozen_actual_(Eigen::Quaterniond::Identity()),
milind-u526d5672023-04-17 20:09:10 -0700245 vis_robot_(cv::Size(1280, 1000)) {
246 CountConstraints();
247}
248
249namespace {
250std::pair<TargetMapper::TargetId, TargetMapper::TargetId> MakeIdPair(
251 const ceres::examples::Constraint3d &constraint) {
252 auto min_id = std::min(constraint.id_begin, constraint.id_end);
253 auto max_id = std::max(constraint.id_begin, constraint.id_end);
254 return std::make_pair(min_id, max_id);
255}
256} // namespace
257
258void TargetMapper::CountConstraints() {
259 for (const auto &constraint : target_constraints_) {
260 auto id_pair = MakeIdPair(constraint);
261 if (constraint_counts_.count(id_pair) == 0) {
262 constraint_counts_[id_pair] = 0;
263 }
264 constraint_counts_[id_pair]++;
265 }
266}
Milind Upadhyay7c205222022-11-16 18:20:58 -0800267
268std::optional<TargetMapper::TargetPose> TargetMapper::GetTargetPoseById(
269 std::vector<TargetMapper::TargetPose> target_poses, TargetId target_id) {
270 for (auto target_pose : target_poses) {
271 if (target_pose.id == target_id) {
272 return target_pose;
273 }
274 }
275
276 return std::nullopt;
277}
278
Jim Ostrowski49be8232023-03-23 01:00:14 -0700279std::optional<TargetMapper::TargetPose> TargetMapper::GetTargetPoseById(
milind-u2ab4db12023-03-25 21:59:23 -0700280 TargetId target_id) const {
Jim Ostrowski49be8232023-03-23 01:00:14 -0700281 if (target_poses_.count(target_id) > 0) {
milind-u2ab4db12023-03-25 21:59:23 -0700282 return TargetMapper::TargetPose{target_id, target_poses_.at(target_id)};
Jim Ostrowski49be8232023-03-23 01:00:14 -0700283 }
284
285 return std::nullopt;
286}
287
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800288// Taken from ceres/examples/slam/pose_graph_3d/pose_graph_3d.cc
289// Constructs the nonlinear least squares optimization problem from the pose
290// graph constraints.
milind-u8f4e43e2023-04-09 17:11:19 -0700291void TargetMapper::BuildTargetPoseOptimizationProblem(
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800292 const ceres::examples::VectorOfConstraints &constraints,
293 ceres::examples::MapOfPoses *poses, ceres::Problem *problem) {
294 CHECK(poses != nullptr);
295 CHECK(problem != nullptr);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800296 if (constraints.empty()) {
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800297 LOG(INFO) << "No constraints, no problem to optimize.";
Milind Upadhyay7c205222022-11-16 18:20:58 -0800298 return;
299 }
300
milind-u13ff1a52023-01-22 17:10:49 -0800301 ceres::LossFunction *loss_function = new ceres::HuberLoss(2.0);
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800302 ceres::LocalParameterization *quaternion_local_parameterization =
303 new ceres::EigenQuaternionParameterization;
Milind Upadhyay7c205222022-11-16 18:20:58 -0800304
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800305 for (ceres::examples::VectorOfConstraints::const_iterator constraints_iter =
306 constraints.begin();
Milind Upadhyay7c205222022-11-16 18:20:58 -0800307 constraints_iter != constraints.end(); ++constraints_iter) {
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800308 const ceres::examples::Constraint3d &constraint = *constraints_iter;
Milind Upadhyay7c205222022-11-16 18:20:58 -0800309
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800310 ceres::examples::MapOfPoses::iterator pose_begin_iter =
Milind Upadhyay7c205222022-11-16 18:20:58 -0800311 poses->find(constraint.id_begin);
312 CHECK(pose_begin_iter != poses->end())
313 << "Pose with ID: " << constraint.id_begin << " not found.";
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800314 ceres::examples::MapOfPoses::iterator pose_end_iter =
Milind Upadhyay7c205222022-11-16 18:20:58 -0800315 poses->find(constraint.id_end);
316 CHECK(pose_end_iter != poses->end())
317 << "Pose with ID: " << constraint.id_end << " not found.";
318
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800319 const Eigen::Matrix<double, 6, 6> sqrt_information =
Milind Upadhyay7c205222022-11-16 18:20:58 -0800320 constraint.information.llt().matrixL();
milind-u526d5672023-04-17 20:09:10 -0700321
322 auto id_pair = MakeIdPair(constraint);
323 CHECK_GT(constraint_counts_.count(id_pair), 0ul)
324 << "Should have counted constraints for " << id_pair.first << "->"
325 << id_pair.second;
326
327 // Normalize constraint cost by occurances
328 size_t constraint_count = constraint_counts_[id_pair];
329 // Scale all costs so the total cost comes out to more reasonable numbers
330 constexpr double kGlobalWeight = 1000.0;
331 double constraint_weight =
332 kGlobalWeight / static_cast<double>(constraint_count);
333
Milind Upadhyay7c205222022-11-16 18:20:58 -0800334 // Ceres will take ownership of the pointer.
335 ceres::CostFunction *cost_function =
milind-u526d5672023-04-17 20:09:10 -0700336 ceres::examples::PoseGraph3dErrorTerm::Create(
337 constraint.t_be, sqrt_information, constraint_weight);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800338
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800339 problem->AddResidualBlock(cost_function, loss_function,
340 pose_begin_iter->second.p.data(),
341 pose_begin_iter->second.q.coeffs().data(),
342 pose_end_iter->second.p.data(),
343 pose_end_iter->second.q.coeffs().data());
344
345 problem->SetParameterization(pose_begin_iter->second.q.coeffs().data(),
346 quaternion_local_parameterization);
347 problem->SetParameterization(pose_end_iter->second.q.coeffs().data(),
348 quaternion_local_parameterization);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800349 }
350
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800351 // The pose graph optimization problem has six DOFs that are not fully
milind-u3f5f83c2023-01-29 15:23:51 -0800352 // constrained. This is typically referred to as gauge freedom. You can
353 // apply a rigid body transformation to all the nodes and the optimization
354 // problem will still have the exact same cost. The Levenberg-Marquardt
355 // algorithm has internal damping which mitigates this issue, but it is
356 // better to properly constrain the gauge freedom. This can be done by
357 // setting one of the poses as constant so the optimizer cannot change it.
milind-u6ff399f2023-03-24 18:33:38 -0700358 CHECK_NE(poses->count(FLAGS_frozen_target_id), 0ul)
359 << "Got no poses for frozen target id " << FLAGS_frozen_target_id;
360 ceres::examples::MapOfPoses::iterator pose_start_iter =
361 poses->find(FLAGS_frozen_target_id);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800362 CHECK(pose_start_iter != poses->end()) << "There are no poses.";
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800363 problem->SetParameterBlockConstant(pose_start_iter->second.p.data());
364 problem->SetParameterBlockConstant(pose_start_iter->second.q.coeffs().data());
Milind Upadhyay7c205222022-11-16 18:20:58 -0800365}
366
milind-u401de982023-04-14 17:32:03 -0700367std::unique_ptr<ceres::CostFunction>
368TargetMapper::BuildMapFittingOptimizationProblem(ceres::Problem *problem) {
milind-u8f4e43e2023-04-09 17:11:19 -0700369 // Setup robot visualization
370 vis_robot_.ClearImage();
371 constexpr int kImageWidth = 1280;
372 constexpr double kFocalLength = 500.0;
373 vis_robot_.SetDefaultViewpoint(kImageWidth, kFocalLength);
374
375 const size_t num_targets = FLAGS_max_target_id - FLAGS_min_target_id;
376 // Translation and rotation error for each target
377 const size_t num_residuals = num_targets * 6;
378 // Set up the only cost function (also known as residual). This uses
379 // auto-differentiation to obtain the derivative (jacobian).
milind-u401de982023-04-14 17:32:03 -0700380 std::unique_ptr<ceres::CostFunction> cost_function = std::make_unique<
381 ceres::AutoDiffCostFunction<TargetMapper, ceres::DYNAMIC, 3, 4>>(
382 this, num_residuals, ceres::DO_NOT_TAKE_OWNERSHIP);
milind-u8f4e43e2023-04-09 17:11:19 -0700383
384 ceres::LossFunction *loss_function = new ceres::HuberLoss(2.0);
385 ceres::LocalParameterization *quaternion_local_parameterization =
386 new ceres::EigenQuaternionParameterization;
387
milind-u401de982023-04-14 17:32:03 -0700388 problem->AddResidualBlock(cost_function.get(), loss_function,
milind-u8f4e43e2023-04-09 17:11:19 -0700389 T_frozen_actual_.vector().data(),
390 R_frozen_actual_.coeffs().data());
391 problem->SetParameterization(R_frozen_actual_.coeffs().data(),
392 quaternion_local_parameterization);
milind-u401de982023-04-14 17:32:03 -0700393 return cost_function;
milind-u8f4e43e2023-04-09 17:11:19 -0700394}
395
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800396// Taken from ceres/examples/slam/pose_graph_3d/pose_graph_3d.cc
Milind Upadhyay7c205222022-11-16 18:20:58 -0800397bool TargetMapper::SolveOptimizationProblem(ceres::Problem *problem) {
398 CHECK_NOTNULL(problem);
399
400 ceres::Solver::Options options;
401 options.max_num_iterations = FLAGS_max_num_iterations;
402 options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;
milind-u401de982023-04-14 17:32:03 -0700403 options.minimizer_progress_to_stdout = false;
Milind Upadhyay7c205222022-11-16 18:20:58 -0800404
405 ceres::Solver::Summary summary;
406 ceres::Solve(options, problem, &summary);
407
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800408 LOG(INFO) << summary.FullReport() << '\n';
Milind Upadhyay7c205222022-11-16 18:20:58 -0800409
410 return summary.IsSolutionUsable();
411}
412
Milind Upadhyay05652cb2022-12-07 20:51:51 -0800413void TargetMapper::Solve(std::string_view field_name,
414 std::optional<std::string_view> output_dir) {
milind-u401de982023-04-14 17:32:03 -0700415 ceres::Problem target_pose_problem_1;
milind-u8f4e43e2023-04-09 17:11:19 -0700416 BuildTargetPoseOptimizationProblem(target_constraints_, &target_poses_,
milind-u401de982023-04-14 17:32:03 -0700417 &target_pose_problem_1);
418 CHECK(SolveOptimizationProblem(&target_pose_problem_1))
419 << "The target pose solve 1 was not successful, exiting.";
Milind Upadhyay7c205222022-11-16 18:20:58 -0800420
milind-u401de982023-04-14 17:32:03 -0700421 RemoveOutlierConstraints();
422
423 // Solve again once we've thrown out bad constraints
424 ceres::Problem target_pose_problem_2;
425 BuildTargetPoseOptimizationProblem(target_constraints_, &target_poses_,
426 &target_pose_problem_2);
427 CHECK(SolveOptimizationProblem(&target_pose_problem_2))
428 << "The target pose solve 2 was not successful, exiting.";
429
430 ceres::Problem map_fitting_problem(
431 {.loss_function_ownership = ceres::DO_NOT_TAKE_OWNERSHIP});
432 std::unique_ptr<ceres::CostFunction> map_fitting_cost_function =
433 BuildMapFittingOptimizationProblem(&map_fitting_problem);
milind-u8f4e43e2023-04-09 17:11:19 -0700434 CHECK(SolveOptimizationProblem(&map_fitting_problem))
435 << "The map fitting solve was not successful, exiting.";
milind-u401de982023-04-14 17:32:03 -0700436 map_fitting_cost_function.release();
milind-u8f4e43e2023-04-09 17:11:19 -0700437
438 Eigen::Affine3d H_frozen_actual = T_frozen_actual_ * R_frozen_actual_;
439 LOG(INFO) << "H_frozen_actual: "
440 << PoseUtils::Affine3dToPose3d(H_frozen_actual);
441
442 auto H_world_frozen =
443 PoseUtils::Pose3dToAffine3d(target_poses_[FLAGS_frozen_target_id]);
444 auto H_world_frozenactual = H_world_frozen * H_frozen_actual;
445
446 // Offset the solved poses to become the actual ones
447 for (auto &[id, pose] : target_poses_) {
448 // Don't offset targets we didn't solve for
449 if (id < FLAGS_min_target_id || id > FLAGS_max_target_id) {
450 continue;
451 }
452
453 // Take the delta between the frozen target and the solved target, and put
454 // that on top of the actual pose of the frozen target
455 auto H_world_solved = PoseUtils::Pose3dToAffine3d(pose);
456 auto H_frozen_solved = H_world_frozen.inverse() * H_world_solved;
457 auto H_world_actual = H_world_frozenactual * H_frozen_solved;
458 pose = PoseUtils::Affine3dToPose3d(H_world_actual);
459 }
Milind Upadhyay7c205222022-11-16 18:20:58 -0800460
Milind Upadhyay05652cb2022-12-07 20:51:51 -0800461 auto map_json = MapToJson(field_name);
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800462 VLOG(1) << "Solved target poses: " << map_json;
Milind Upadhyay05652cb2022-12-07 20:51:51 -0800463
464 if (output_dir.has_value()) {
465 std::string output_path =
466 absl::StrCat(output_dir.value(), "/", field_name, ".json");
467 LOG(INFO) << "Writing map to file: " << output_path;
468 aos::util::WriteStringToFileOrDie(output_path, map_json);
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800469 }
milind-u401de982023-04-14 17:32:03 -0700470
471 for (TargetId id_start = FLAGS_min_target_id; id_start < FLAGS_max_target_id;
472 id_start++) {
473 for (TargetId id_end = id_start + 1; id_end <= FLAGS_max_target_id;
474 id_end++) {
475 auto H_start_end =
476 PoseUtils::Pose3dToAffine3d(target_poses_.at(id_start)).inverse() *
477 PoseUtils::Pose3dToAffine3d(target_poses_.at(id_end));
478 auto constraint = PoseUtils::Affine3dToPose3d(H_start_end);
479 LOG(INFO) << id_start << "->" << id_end << ": " << constraint.p.norm()
480 << " meters";
481 }
482 }
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800483}
484
Milind Upadhyay05652cb2022-12-07 20:51:51 -0800485std::string TargetMapper::MapToJson(std::string_view field_name) const {
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800486 flatbuffers::FlatBufferBuilder fbb;
487
488 // Convert poses to flatbuffers
489 std::vector<flatbuffers::Offset<TargetPoseFbs>> target_poses_fbs;
490 for (const auto &[id, pose] : target_poses_) {
milind-u3f5f83c2023-01-29 15:23:51 -0800491 target_poses_fbs.emplace_back(
492 PoseUtils::TargetPoseToFbs(TargetPose{.id = id, .pose = pose}, &fbb));
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800493 }
494
Milind Upadhyay05652cb2022-12-07 20:51:51 -0800495 const auto field_name_offset = fbb.CreateString(field_name);
496 flatbuffers::Offset<TargetMap> target_map_offset = CreateTargetMap(
497 fbb, fbb.CreateVector(target_poses_fbs), field_name_offset);
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800498
499 return aos::FlatbufferToJson(
500 flatbuffers::GetMutableTemporaryPointer(fbb, target_map_offset),
501 {.multi_line = true});
Milind Upadhyay7c205222022-11-16 18:20:58 -0800502}
503
milind-u8f4e43e2023-04-09 17:11:19 -0700504namespace {
505
506// Hacks to extract a double from a scalar, which is either a ceres jet or a
507// double. Only used for debugging and displaying.
508template <typename S>
509double ScalarToDouble(S s) {
510 const double *ptr = reinterpret_cast<double *>(&s);
511 return *ptr;
512}
513
514template <typename S>
515Eigen::Affine3d ScalarAffineToDouble(Eigen::Transform<S, 3, Eigen::Affine> H) {
516 Eigen::Affine3d H_double;
517 for (size_t i = 0; i < H.rows(); i++) {
518 for (size_t j = 0; j < H.cols(); j++) {
519 H_double(i, j) = ScalarToDouble(H(i, j));
520 }
521 }
522 return H_double;
523}
524
525} // namespace
526
527template <typename S>
528bool TargetMapper::operator()(const S *const translation,
529 const S *const rotation, S *residual) const {
530 using Affine3s = Eigen::Transform<S, 3, Eigen::Affine>;
531 Eigen::Quaternion<S> R_frozen_actual(rotation[3], rotation[1], rotation[2],
532 rotation[0]);
533 Eigen::Translation<S, 3> T_frozen_actual(translation[0], translation[1],
534 translation[2]);
535 // Actual target pose in the frame of the fixed pose.
536 Affine3s H_frozen_actual = T_frozen_actual * R_frozen_actual;
537 VLOG(2) << "H_frozen_actual: "
538 << PoseUtils::Affine3dToPose3d(ScalarAffineToDouble(H_frozen_actual));
539
540 Affine3s H_world_frozen =
541 PoseUtils::Pose3dToAffine3d(target_poses_.at(FLAGS_frozen_target_id))
542 .cast<S>();
543 Affine3s H_world_frozenactual = H_world_frozen * H_frozen_actual;
544
545 size_t residual_index = 0;
546 if (FLAGS_visualize_solver) {
547 vis_robot_.ClearImage();
548 }
549
550 for (const auto &[id, solved_pose] : target_poses_) {
551 if (id < FLAGS_min_target_id || id > FLAGS_max_target_id) {
552 continue;
553 }
554
555 Affine3s H_world_ideal =
556 PoseUtils::Pose3dToAffine3d(ideal_target_poses_.at(id)).cast<S>();
557 Affine3s H_world_solved =
558 PoseUtils::Pose3dToAffine3d(solved_pose).cast<S>();
559 // Take the delta between the frozen target and the solved target, and put
560 // that on top of the actual pose of the frozen target
561 auto H_frozen_solved = H_world_frozen.inverse() * H_world_solved;
562 auto H_world_actual = H_world_frozenactual * H_frozen_solved;
563 VLOG(2) << id << ": " << H_world_actual.translation();
564 Affine3s H_ideal_actual = H_world_ideal.inverse() * H_world_actual;
565 auto T_ideal_actual = H_ideal_actual.translation();
566 VLOG(2) << "T_ideal_actual: " << T_ideal_actual;
567 VLOG(2);
568 auto R_ideal_actual = Eigen::AngleAxis<S>(H_ideal_actual.rotation());
569
milind-u401de982023-04-14 17:32:03 -0700570 // Weight translation errors higher than rotation.
571 // 1 m in position error = 0.01 radian (or ~0.573 degrees)
572 constexpr double kTranslationScalar = 1000.0;
573 constexpr double kRotationScalar = 100.0;
milind-u8f4e43e2023-04-09 17:11:19 -0700574
575 // Penalize based on how much our actual poses matches the ideal
576 // ones. We've already solved for the relative poses, now figure out
577 // where all of them fit in the world.
578 residual[residual_index++] = kTranslationScalar * T_ideal_actual(0);
579 residual[residual_index++] = kTranslationScalar * T_ideal_actual(1);
580 residual[residual_index++] = kTranslationScalar * T_ideal_actual(2);
581 residual[residual_index++] =
582 kRotationScalar * R_ideal_actual.angle() * R_ideal_actual.axis().x();
583 residual[residual_index++] =
584 kRotationScalar * R_ideal_actual.angle() * R_ideal_actual.axis().y();
585 residual[residual_index++] =
586 kRotationScalar * R_ideal_actual.angle() * R_ideal_actual.axis().z();
587
588 if (FLAGS_visualize_solver) {
589 vis_robot_.DrawFrameAxes(ScalarAffineToDouble(H_world_actual),
590 std::to_string(id), cv::Scalar(0, 255, 0));
591 vis_robot_.DrawFrameAxes(ScalarAffineToDouble(H_world_ideal),
592 std::to_string(id), cv::Scalar(255, 255, 255));
593 }
594 }
595 if (FLAGS_visualize_solver) {
596 cv::imshow("Target maps", vis_robot_.image_);
597 cv::waitKey(0);
598 }
599
600 // Ceres can't handle residual values of exactly zero
601 for (size_t i = 0; i < residual_index; i++) {
602 if (residual[i] == S(0)) {
603 residual[i] = S(1e-9);
604 }
605 }
606
607 return true;
608}
609
milind-u401de982023-04-14 17:32:03 -0700610TargetMapper::PoseError TargetMapper::ComputeError(
611 const ceres::examples::Constraint3d &constraint) const {
612 // Compute the difference between the map-based transform of the end target
613 // in the start target frame, to the one from this constraint
614 auto H_start_end_map =
615 PoseUtils::Pose3dToAffine3d(target_poses_.at(constraint.id_begin))
616 .inverse() *
617 PoseUtils::Pose3dToAffine3d(target_poses_.at(constraint.id_end));
618 auto H_start_end_constraint = PoseUtils::Pose3dToAffine3d(constraint.t_be);
619 ceres::examples::Pose3d delta_pose = PoseUtils::Affine3dToPose3d(
620 H_start_end_map.inverse() * H_start_end_constraint);
621 double distance = delta_pose.p.norm();
622 Eigen::AngleAxisd err_angle(delta_pose.q);
623 double angle = std::abs(err_angle.angle());
624 return {.angle = angle, .distance = distance};
625}
626
627TargetMapper::Stats TargetMapper::ComputeStats() const {
628 Stats stats{.avg_err = {.angle = 0.0, .distance = 0.0},
629 .std_dev = {.angle = 0.0, .distance = 0.0},
630 .max_err = {.angle = 0.0, .distance = 0.0}};
631
632 for (const auto &constraint : target_constraints_) {
633 PoseError err = ComputeError(constraint);
634
635 // Update our statistics
636 stats.avg_err.distance += err.distance;
637 if (err.distance > stats.max_err.distance) {
638 stats.max_err.distance = err.distance;
639 }
640
641 stats.avg_err.angle += err.angle;
642 if (err.angle > stats.max_err.angle) {
643 stats.max_err.angle = err.angle;
644 }
645 }
646
647 stats.avg_err.distance /= static_cast<double>(target_constraints_.size());
648 stats.avg_err.angle /= static_cast<double>(target_constraints_.size());
649
650 for (const auto &constraint : target_constraints_) {
651 PoseError err = ComputeError(constraint);
652
653 // Update our statistics
654 stats.std_dev.distance +=
655 std::pow(err.distance - stats.avg_err.distance, 2);
656
657 stats.std_dev.angle += std::pow(err.angle - stats.avg_err.angle, 2);
658 }
659
660 stats.std_dev.distance = std::sqrt(
661 stats.std_dev.distance / static_cast<double>(target_constraints_.size()));
662 stats.std_dev.angle = std::sqrt(
663 stats.std_dev.angle / static_cast<double>(target_constraints_.size()));
664
665 return stats;
666}
667
668void TargetMapper::RemoveOutlierConstraints() {
669 stats_with_outliers_ = ComputeStats();
670 size_t original_size = target_constraints_.size();
671 target_constraints_.erase(
672 std::remove_if(
673 target_constraints_.begin(), target_constraints_.end(),
674 [&](const auto &constraint) {
675 PoseError err = ComputeError(constraint);
676 // Remove constraints with errors significantly above
677 // the average
678 if (err.distance > stats_with_outliers_.avg_err.distance +
679 FLAGS_outlier_std_devs *
680 stats_with_outliers_.std_dev.distance) {
681 return true;
682 }
683 if (err.angle > stats_with_outliers_.avg_err.angle +
684 FLAGS_outlier_std_devs *
685 stats_with_outliers_.std_dev.angle) {
686 return true;
687 }
688 return false;
689 }),
690 target_constraints_.end());
691
692 LOG(INFO) << "Removed " << (original_size - target_constraints_.size())
693 << " outlier constraints out of " << original_size << " total";
694}
695
696void TargetMapper::DumpStats(std::string_view path) const {
697 LOG(INFO) << "Dumping mapping stats to " << path;
698 Stats stats = ComputeStats();
699 std::ofstream fout(path.data());
700 fout << "Stats after outlier rejection: " << std::endl;
701 fout << "Average error - angle: " << stats.avg_err.angle
702 << ", distance: " << stats.avg_err.distance << std::endl
703 << std::endl;
704 fout << "Standard deviation - angle: " << stats.std_dev.angle
705 << ", distance: " << stats.std_dev.distance << std::endl
706 << std::endl;
707 fout << "Max error - angle: " << stats.max_err.angle
708 << ", distance: " << stats.max_err.distance << std::endl;
709
710 fout << std::endl << "Stats before outlier rejection:" << std::endl;
711 fout << "Average error - angle: " << stats_with_outliers_.avg_err.angle
712 << ", distance: " << stats_with_outliers_.avg_err.distance << std::endl
713 << std::endl;
714 fout << "Standard deviation - angle: " << stats_with_outliers_.std_dev.angle
715 << ", distance: " << stats_with_outliers_.std_dev.distance << std::endl
716 << std::endl;
717 fout << "Max error - angle: " << stats_with_outliers_.max_err.angle
718 << ", distance: " << stats_with_outliers_.max_err.distance << std::endl;
719
720 fout.flush();
721 fout.close();
722}
723
724void TargetMapper::DumpConstraints(std::string_view path) const {
725 LOG(INFO) << "Dumping target constraints to " << path;
726 std::ofstream fout(path.data());
727 for (const auto &constraint : target_constraints_) {
728 fout << constraint << std::endl;
729 }
730 fout.flush();
731 fout.close();
732}
733
milind-ufbc5c812023-04-06 21:24:29 -0700734} // namespace frc971::vision
735
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800736std::ostream &operator<<(std::ostream &os, ceres::examples::Pose3d pose) {
milind-ufbc5c812023-04-06 21:24:29 -0700737 auto rpy = frc971::vision::PoseUtils::QuaternionToEulerAngles(pose.q);
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800738 os << absl::StrFormat(
739 "{x: %.3f, y: %.3f, z: %.3f, roll: %.3f, pitch: "
740 "%.3f, yaw: %.3f}",
741 pose.p(0), pose.p(1), pose.p(2), rpy(0), rpy(1), rpy(2));
742 return os;
743}
744
745std::ostream &operator<<(std::ostream &os,
746 ceres::examples::Constraint3d constraint) {
747 os << absl::StrFormat("{id_begin: %d, id_end: %d, pose: ",
748 constraint.id_begin, constraint.id_end)
749 << constraint.t_be << "}";
750 return os;
751}