Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_MATRIX_POWER |
| 11 | #define EIGEN_MATRIX_POWER |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | template<typename MatrixType> class MatrixPower; |
| 16 | |
| 17 | template<typename MatrixType> |
| 18 | class MatrixPowerRetval : public ReturnByValue< MatrixPowerRetval<MatrixType> > |
| 19 | { |
| 20 | public: |
| 21 | typedef typename MatrixType::RealScalar RealScalar; |
| 22 | typedef typename MatrixType::Index Index; |
| 23 | |
| 24 | MatrixPowerRetval(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p) |
| 25 | { } |
| 26 | |
| 27 | template<typename ResultType> |
| 28 | inline void evalTo(ResultType& res) const |
| 29 | { m_pow.compute(res, m_p); } |
| 30 | |
| 31 | Index rows() const { return m_pow.rows(); } |
| 32 | Index cols() const { return m_pow.cols(); } |
| 33 | |
| 34 | private: |
| 35 | MatrixPower<MatrixType>& m_pow; |
| 36 | const RealScalar m_p; |
| 37 | MatrixPowerRetval& operator=(const MatrixPowerRetval&); |
| 38 | }; |
| 39 | |
| 40 | template<typename MatrixType> |
| 41 | class MatrixPowerAtomic |
| 42 | { |
| 43 | private: |
| 44 | enum { |
| 45 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 46 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime |
| 47 | }; |
| 48 | typedef typename MatrixType::Scalar Scalar; |
| 49 | typedef typename MatrixType::RealScalar RealScalar; |
| 50 | typedef std::complex<RealScalar> ComplexScalar; |
| 51 | typedef typename MatrixType::Index Index; |
| 52 | typedef Array<Scalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> ArrayType; |
| 53 | |
| 54 | const MatrixType& m_A; |
| 55 | RealScalar m_p; |
| 56 | |
| 57 | void computePade(int degree, const MatrixType& IminusT, MatrixType& res) const; |
| 58 | void compute2x2(MatrixType& res, RealScalar p) const; |
| 59 | void computeBig(MatrixType& res) const; |
| 60 | static int getPadeDegree(float normIminusT); |
| 61 | static int getPadeDegree(double normIminusT); |
| 62 | static int getPadeDegree(long double normIminusT); |
| 63 | static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p); |
| 64 | static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p); |
| 65 | |
| 66 | public: |
| 67 | MatrixPowerAtomic(const MatrixType& T, RealScalar p); |
| 68 | void compute(MatrixType& res) const; |
| 69 | }; |
| 70 | |
| 71 | template<typename MatrixType> |
| 72 | MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) : |
| 73 | m_A(T), m_p(p) |
| 74 | { eigen_assert(T.rows() == T.cols()); } |
| 75 | |
| 76 | template<typename MatrixType> |
| 77 | void MatrixPowerAtomic<MatrixType>::compute(MatrixType& res) const |
| 78 | { |
| 79 | res.resizeLike(m_A); |
| 80 | switch (m_A.rows()) { |
| 81 | case 0: |
| 82 | break; |
| 83 | case 1: |
| 84 | res(0,0) = std::pow(m_A(0,0), m_p); |
| 85 | break; |
| 86 | case 2: |
| 87 | compute2x2(res, m_p); |
| 88 | break; |
| 89 | default: |
| 90 | computeBig(res); |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | template<typename MatrixType> |
| 95 | void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, MatrixType& res) const |
| 96 | { |
| 97 | int i = degree<<1; |
| 98 | res = (m_p-degree) / ((i-1)<<1) * IminusT; |
| 99 | for (--i; i; --i) { |
| 100 | res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>() |
| 101 | .solve((i==1 ? -m_p : i&1 ? (-m_p-(i>>1))/(i<<1) : (m_p-(i>>1))/((i-1)<<1)) * IminusT).eval(); |
| 102 | } |
| 103 | res += MatrixType::Identity(IminusT.rows(), IminusT.cols()); |
| 104 | } |
| 105 | |
| 106 | // This function assumes that res has the correct size (see bug 614) |
| 107 | template<typename MatrixType> |
| 108 | void MatrixPowerAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const |
| 109 | { |
| 110 | using std::abs; |
| 111 | using std::pow; |
| 112 | |
| 113 | res.coeffRef(0,0) = pow(m_A.coeff(0,0), p); |
| 114 | |
| 115 | for (Index i=1; i < m_A.cols(); ++i) { |
| 116 | res.coeffRef(i,i) = pow(m_A.coeff(i,i), p); |
| 117 | if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i)) |
| 118 | res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1); |
| 119 | else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1))) |
| 120 | res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1)); |
| 121 | else |
| 122 | res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p); |
| 123 | res.coeffRef(i-1,i) *= m_A.coeff(i-1,i); |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | template<typename MatrixType> |
| 128 | void MatrixPowerAtomic<MatrixType>::computeBig(MatrixType& res) const |
| 129 | { |
| 130 | const int digits = std::numeric_limits<RealScalar>::digits; |
| 131 | const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f: // sigle precision |
| 132 | digits <= 53? 2.789358995219730e-1: // double precision |
| 133 | digits <= 64? 2.4471944416607995472e-1L: // extended precision |
| 134 | digits <= 106? 1.1016843812851143391275867258512e-1L: // double-double |
| 135 | 9.134603732914548552537150753385375e-2L; // quadruple precision |
| 136 | MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>(); |
| 137 | RealScalar normIminusT; |
| 138 | int degree, degree2, numberOfSquareRoots = 0; |
| 139 | bool hasExtraSquareRoot = false; |
| 140 | |
| 141 | /* FIXME |
| 142 | * For singular T, norm(I - T) >= 1 but maxNormForPade < 1, leads to infinite |
| 143 | * loop. We should move 0 eigenvalues to bottom right corner. We need not |
| 144 | * worry about tiny values (e.g. 1e-300) because they will reach 1 if |
| 145 | * repetitively sqrt'ed. |
| 146 | * |
| 147 | * If the 0 eigenvalues are semisimple, they can form a 0 matrix at the |
| 148 | * bottom right corner. |
| 149 | * |
| 150 | * [ T A ]^p [ T^p (T^-1 T^p A) ] |
| 151 | * [ ] = [ ] |
| 152 | * [ 0 0 ] [ 0 0 ] |
| 153 | */ |
| 154 | for (Index i=0; i < m_A.cols(); ++i) |
| 155 | eigen_assert(m_A(i,i) != RealScalar(0)); |
| 156 | |
| 157 | while (true) { |
| 158 | IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T; |
| 159 | normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff(); |
| 160 | if (normIminusT < maxNormForPade) { |
| 161 | degree = getPadeDegree(normIminusT); |
| 162 | degree2 = getPadeDegree(normIminusT/2); |
| 163 | if (degree - degree2 <= 1 || hasExtraSquareRoot) |
| 164 | break; |
| 165 | hasExtraSquareRoot = true; |
| 166 | } |
| 167 | MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT); |
| 168 | T = sqrtT.template triangularView<Upper>(); |
| 169 | ++numberOfSquareRoots; |
| 170 | } |
| 171 | computePade(degree, IminusT, res); |
| 172 | |
| 173 | for (; numberOfSquareRoots; --numberOfSquareRoots) { |
| 174 | compute2x2(res, std::ldexp(m_p, -numberOfSquareRoots)); |
| 175 | res = res.template triangularView<Upper>() * res; |
| 176 | } |
| 177 | compute2x2(res, m_p); |
| 178 | } |
| 179 | |
| 180 | template<typename MatrixType> |
| 181 | inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT) |
| 182 | { |
| 183 | const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f }; |
| 184 | int degree = 3; |
| 185 | for (; degree <= 4; ++degree) |
| 186 | if (normIminusT <= maxNormForPade[degree - 3]) |
| 187 | break; |
| 188 | return degree; |
| 189 | } |
| 190 | |
| 191 | template<typename MatrixType> |
| 192 | inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT) |
| 193 | { |
| 194 | const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1, |
| 195 | 1.999045567181744e-1, 2.789358995219730e-1 }; |
| 196 | int degree = 3; |
| 197 | for (; degree <= 7; ++degree) |
| 198 | if (normIminusT <= maxNormForPade[degree - 3]) |
| 199 | break; |
| 200 | return degree; |
| 201 | } |
| 202 | |
| 203 | template<typename MatrixType> |
| 204 | inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT) |
| 205 | { |
| 206 | #if LDBL_MANT_DIG == 53 |
| 207 | const int maxPadeDegree = 7; |
| 208 | const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L, |
| 209 | 1.999045567181744e-1L, 2.789358995219730e-1L }; |
| 210 | #elif LDBL_MANT_DIG <= 64 |
| 211 | const int maxPadeDegree = 8; |
| 212 | const double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L, |
| 213 | 6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L }; |
| 214 | #elif LDBL_MANT_DIG <= 106 |
| 215 | const int maxPadeDegree = 10; |
| 216 | const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ , |
| 217 | 1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L, |
| 218 | 2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L, |
| 219 | 1.1016843812851143391275867258512e-1L }; |
| 220 | #else |
| 221 | const int maxPadeDegree = 10; |
| 222 | const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ , |
| 223 | 6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L, |
| 224 | 9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L, |
| 225 | 3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L, |
| 226 | 9.134603732914548552537150753385375e-2L }; |
| 227 | #endif |
| 228 | int degree = 3; |
| 229 | for (; degree <= maxPadeDegree; ++degree) |
| 230 | if (normIminusT <= maxNormForPade[degree - 3]) |
| 231 | break; |
| 232 | return degree; |
| 233 | } |
| 234 | |
| 235 | template<typename MatrixType> |
| 236 | inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar |
| 237 | MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p) |
| 238 | { |
| 239 | ComplexScalar logCurr = std::log(curr); |
| 240 | ComplexScalar logPrev = std::log(prev); |
| 241 | int unwindingNumber = std::ceil((numext::imag(logCurr - logPrev) - M_PI) / (2*M_PI)); |
| 242 | ComplexScalar w = numext::atanh2(curr - prev, curr + prev) + ComplexScalar(0, M_PI*unwindingNumber); |
| 243 | return RealScalar(2) * std::exp(RealScalar(0.5) * p * (logCurr + logPrev)) * std::sinh(p * w) / (curr - prev); |
| 244 | } |
| 245 | |
| 246 | template<typename MatrixType> |
| 247 | inline typename MatrixPowerAtomic<MatrixType>::RealScalar |
| 248 | MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p) |
| 249 | { |
| 250 | RealScalar w = numext::atanh2(curr - prev, curr + prev); |
| 251 | return 2 * std::exp(p * (std::log(curr) + std::log(prev)) / 2) * std::sinh(p * w) / (curr - prev); |
| 252 | } |
| 253 | |
| 254 | /** |
| 255 | * \ingroup MatrixFunctions_Module |
| 256 | * |
| 257 | * \brief Class for computing matrix powers. |
| 258 | * |
| 259 | * \tparam MatrixType type of the base, expected to be an instantiation |
| 260 | * of the Matrix class template. |
| 261 | * |
| 262 | * This class is capable of computing real/complex matrices raised to |
| 263 | * an arbitrary real power. Meanwhile, it saves the result of Schur |
| 264 | * decomposition if an non-integral power has even been calculated. |
| 265 | * Therefore, if you want to compute multiple (>= 2) matrix powers |
| 266 | * for the same matrix, using the class directly is more efficient than |
| 267 | * calling MatrixBase::pow(). |
| 268 | * |
| 269 | * Example: |
| 270 | * \include MatrixPower_optimal.cpp |
| 271 | * Output: \verbinclude MatrixPower_optimal.out |
| 272 | */ |
| 273 | template<typename MatrixType> |
| 274 | class MatrixPower |
| 275 | { |
| 276 | private: |
| 277 | enum { |
| 278 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 279 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| 280 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| 281 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| 282 | }; |
| 283 | typedef typename MatrixType::Scalar Scalar; |
| 284 | typedef typename MatrixType::RealScalar RealScalar; |
| 285 | typedef typename MatrixType::Index Index; |
| 286 | |
| 287 | public: |
| 288 | /** |
| 289 | * \brief Constructor. |
| 290 | * |
| 291 | * \param[in] A the base of the matrix power. |
| 292 | * |
| 293 | * The class stores a reference to A, so it should not be changed |
| 294 | * (or destroyed) before evaluation. |
| 295 | */ |
| 296 | explicit MatrixPower(const MatrixType& A) : m_A(A), m_conditionNumber(0) |
| 297 | { eigen_assert(A.rows() == A.cols()); } |
| 298 | |
| 299 | /** |
| 300 | * \brief Returns the matrix power. |
| 301 | * |
| 302 | * \param[in] p exponent, a real scalar. |
| 303 | * \return The expression \f$ A^p \f$, where A is specified in the |
| 304 | * constructor. |
| 305 | */ |
| 306 | const MatrixPowerRetval<MatrixType> operator()(RealScalar p) |
| 307 | { return MatrixPowerRetval<MatrixType>(*this, p); } |
| 308 | |
| 309 | /** |
| 310 | * \brief Compute the matrix power. |
| 311 | * |
| 312 | * \param[in] p exponent, a real scalar. |
| 313 | * \param[out] res \f$ A^p \f$ where A is specified in the |
| 314 | * constructor. |
| 315 | */ |
| 316 | template<typename ResultType> |
| 317 | void compute(ResultType& res, RealScalar p); |
| 318 | |
| 319 | Index rows() const { return m_A.rows(); } |
| 320 | Index cols() const { return m_A.cols(); } |
| 321 | |
| 322 | private: |
| 323 | typedef std::complex<RealScalar> ComplexScalar; |
| 324 | typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, MatrixType::Options, |
| 325 | MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrix; |
| 326 | |
| 327 | typename MatrixType::Nested m_A; |
| 328 | MatrixType m_tmp; |
| 329 | ComplexMatrix m_T, m_U, m_fT; |
| 330 | RealScalar m_conditionNumber; |
| 331 | |
| 332 | RealScalar modfAndInit(RealScalar, RealScalar*); |
| 333 | |
| 334 | template<typename ResultType> |
| 335 | void computeIntPower(ResultType&, RealScalar); |
| 336 | |
| 337 | template<typename ResultType> |
| 338 | void computeFracPower(ResultType&, RealScalar); |
| 339 | |
| 340 | template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> |
| 341 | static void revertSchur( |
| 342 | Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, |
| 343 | const ComplexMatrix& T, |
| 344 | const ComplexMatrix& U); |
| 345 | |
| 346 | template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> |
| 347 | static void revertSchur( |
| 348 | Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, |
| 349 | const ComplexMatrix& T, |
| 350 | const ComplexMatrix& U); |
| 351 | }; |
| 352 | |
| 353 | template<typename MatrixType> |
| 354 | template<typename ResultType> |
| 355 | void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p) |
| 356 | { |
| 357 | switch (cols()) { |
| 358 | case 0: |
| 359 | break; |
| 360 | case 1: |
| 361 | res(0,0) = std::pow(m_A.coeff(0,0), p); |
| 362 | break; |
| 363 | default: |
| 364 | RealScalar intpart, x = modfAndInit(p, &intpart); |
| 365 | computeIntPower(res, intpart); |
| 366 | computeFracPower(res, x); |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | template<typename MatrixType> |
| 371 | typename MatrixPower<MatrixType>::RealScalar |
| 372 | MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart) |
| 373 | { |
| 374 | typedef Array<RealScalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> RealArray; |
| 375 | |
| 376 | *intpart = std::floor(x); |
| 377 | RealScalar res = x - *intpart; |
| 378 | |
| 379 | if (!m_conditionNumber && res) { |
| 380 | const ComplexSchur<MatrixType> schurOfA(m_A); |
| 381 | m_T = schurOfA.matrixT(); |
| 382 | m_U = schurOfA.matrixU(); |
| 383 | |
| 384 | const RealArray absTdiag = m_T.diagonal().array().abs(); |
| 385 | m_conditionNumber = absTdiag.maxCoeff() / absTdiag.minCoeff(); |
| 386 | } |
| 387 | |
| 388 | if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber, res)) { |
| 389 | --res; |
| 390 | ++*intpart; |
| 391 | } |
| 392 | return res; |
| 393 | } |
| 394 | |
| 395 | template<typename MatrixType> |
| 396 | template<typename ResultType> |
| 397 | void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p) |
| 398 | { |
| 399 | RealScalar pp = std::abs(p); |
| 400 | |
| 401 | if (p<0) m_tmp = m_A.inverse(); |
| 402 | else m_tmp = m_A; |
| 403 | |
| 404 | res = MatrixType::Identity(rows(), cols()); |
| 405 | while (pp >= 1) { |
| 406 | if (std::fmod(pp, 2) >= 1) |
| 407 | res = m_tmp * res; |
| 408 | m_tmp *= m_tmp; |
| 409 | pp /= 2; |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | template<typename MatrixType> |
| 414 | template<typename ResultType> |
| 415 | void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p) |
| 416 | { |
| 417 | if (p) { |
| 418 | eigen_assert(m_conditionNumber); |
| 419 | MatrixPowerAtomic<ComplexMatrix>(m_T, p).compute(m_fT); |
| 420 | revertSchur(m_tmp, m_fT, m_U); |
| 421 | res = m_tmp * res; |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | template<typename MatrixType> |
| 426 | template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> |
| 427 | inline void MatrixPower<MatrixType>::revertSchur( |
| 428 | Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, |
| 429 | const ComplexMatrix& T, |
| 430 | const ComplexMatrix& U) |
| 431 | { res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); } |
| 432 | |
| 433 | template<typename MatrixType> |
| 434 | template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> |
| 435 | inline void MatrixPower<MatrixType>::revertSchur( |
| 436 | Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, |
| 437 | const ComplexMatrix& T, |
| 438 | const ComplexMatrix& U) |
| 439 | { res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); } |
| 440 | |
| 441 | /** |
| 442 | * \ingroup MatrixFunctions_Module |
| 443 | * |
| 444 | * \brief Proxy for the matrix power of some matrix (expression). |
| 445 | * |
| 446 | * \tparam Derived type of the base, a matrix (expression). |
| 447 | * |
| 448 | * This class holds the arguments to the matrix power until it is |
| 449 | * assigned or evaluated for some other reason (so the argument |
| 450 | * should not be changed in the meantime). It is the return type of |
| 451 | * MatrixBase::pow() and related functions and most of the |
| 452 | * time this is the only way it is used. |
| 453 | */ |
| 454 | template<typename Derived> |
| 455 | class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> > |
| 456 | { |
| 457 | public: |
| 458 | typedef typename Derived::PlainObject PlainObject; |
| 459 | typedef typename Derived::RealScalar RealScalar; |
| 460 | typedef typename Derived::Index Index; |
| 461 | |
| 462 | /** |
| 463 | * \brief Constructor. |
| 464 | * |
| 465 | * \param[in] A %Matrix (expression), the base of the matrix power. |
| 466 | * \param[in] p scalar, the exponent of the matrix power. |
| 467 | */ |
| 468 | MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p) |
| 469 | { } |
| 470 | |
| 471 | /** |
| 472 | * \brief Compute the matrix power. |
| 473 | * |
| 474 | * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the |
| 475 | * constructor. |
| 476 | */ |
| 477 | template<typename ResultType> |
| 478 | inline void evalTo(ResultType& res) const |
| 479 | { MatrixPower<PlainObject>(m_A.eval()).compute(res, m_p); } |
| 480 | |
| 481 | Index rows() const { return m_A.rows(); } |
| 482 | Index cols() const { return m_A.cols(); } |
| 483 | |
| 484 | private: |
| 485 | const Derived& m_A; |
| 486 | const RealScalar m_p; |
| 487 | MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&); |
| 488 | }; |
| 489 | |
| 490 | namespace internal { |
| 491 | |
| 492 | template<typename MatrixPowerType> |
| 493 | struct traits< MatrixPowerRetval<MatrixPowerType> > |
| 494 | { typedef typename MatrixPowerType::PlainObject ReturnType; }; |
| 495 | |
| 496 | template<typename Derived> |
| 497 | struct traits< MatrixPowerReturnValue<Derived> > |
| 498 | { typedef typename Derived::PlainObject ReturnType; }; |
| 499 | |
| 500 | } |
| 501 | |
| 502 | template<typename Derived> |
| 503 | const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const |
| 504 | { return MatrixPowerReturnValue<Derived>(derived(), p); } |
| 505 | |
| 506 | } // namespace Eigen |
| 507 | |
| 508 | #endif // EIGEN_MATRIX_POWER |