Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h b/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
new file mode 100644
index 0000000..78a307e
--- /dev/null
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
@@ -0,0 +1,508 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATRIX_POWER
+#define EIGEN_MATRIX_POWER
+
+namespace Eigen {
+
+template<typename MatrixType> class MatrixPower;
+
+template<typename MatrixType>
+class MatrixPowerRetval : public ReturnByValue< MatrixPowerRetval<MatrixType> >
+{
+  public:
+    typedef typename MatrixType::RealScalar RealScalar;
+    typedef typename MatrixType::Index Index;
+
+    MatrixPowerRetval(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
+    { }
+
+    template<typename ResultType>
+    inline void evalTo(ResultType& res) const
+    { m_pow.compute(res, m_p); }
+
+    Index rows() const { return m_pow.rows(); }
+    Index cols() const { return m_pow.cols(); }
+
+  private:
+    MatrixPower<MatrixType>& m_pow;
+    const RealScalar m_p;
+    MatrixPowerRetval& operator=(const MatrixPowerRetval&);
+};
+
+template<typename MatrixType>
+class MatrixPowerAtomic
+{
+  private:
+    enum {
+      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
+    };
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename MatrixType::RealScalar RealScalar;
+    typedef std::complex<RealScalar> ComplexScalar;
+    typedef typename MatrixType::Index Index;
+    typedef Array<Scalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> ArrayType;
+
+    const MatrixType& m_A;
+    RealScalar m_p;
+
+    void computePade(int degree, const MatrixType& IminusT, MatrixType& res) const;
+    void compute2x2(MatrixType& res, RealScalar p) const;
+    void computeBig(MatrixType& res) const;
+    static int getPadeDegree(float normIminusT);
+    static int getPadeDegree(double normIminusT);
+    static int getPadeDegree(long double normIminusT);
+    static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p);
+    static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);
+
+  public:
+    MatrixPowerAtomic(const MatrixType& T, RealScalar p);
+    void compute(MatrixType& res) const;
+};
+
+template<typename MatrixType>
+MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) :
+  m_A(T), m_p(p)
+{ eigen_assert(T.rows() == T.cols()); }
+
+template<typename MatrixType>
+void MatrixPowerAtomic<MatrixType>::compute(MatrixType& res) const
+{
+  res.resizeLike(m_A);
+  switch (m_A.rows()) {
+    case 0:
+      break;
+    case 1:
+      res(0,0) = std::pow(m_A(0,0), m_p);
+      break;
+    case 2:
+      compute2x2(res, m_p);
+      break;
+    default:
+      computeBig(res);
+  }
+}
+
+template<typename MatrixType>
+void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, MatrixType& res) const
+{
+  int i = degree<<1;
+  res = (m_p-degree) / ((i-1)<<1) * IminusT;
+  for (--i; i; --i) {
+    res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
+	.solve((i==1 ? -m_p : i&1 ? (-m_p-(i>>1))/(i<<1) : (m_p-(i>>1))/((i-1)<<1)) * IminusT).eval();
+  }
+  res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
+}
+
+// This function assumes that res has the correct size (see bug 614)
+template<typename MatrixType>
+void MatrixPowerAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const
+{
+  using std::abs;
+  using std::pow;
+  
+  res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
+
+  for (Index i=1; i < m_A.cols(); ++i) {
+    res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
+    if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i))
+      res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1);
+    else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1)))
+      res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
+    else
+      res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p);
+    res.coeffRef(i-1,i) *= m_A.coeff(i-1,i);
+  }
+}
+
+template<typename MatrixType>
+void MatrixPowerAtomic<MatrixType>::computeBig(MatrixType& res) const
+{
+  const int digits = std::numeric_limits<RealScalar>::digits;
+  const RealScalar maxNormForPade = digits <=  24? 4.3386528e-1f:                           // sigle precision
+				    digits <=  53? 2.789358995219730e-1:                    // double precision
+				    digits <=  64? 2.4471944416607995472e-1L:               // extended precision
+				    digits <= 106? 1.1016843812851143391275867258512e-1L:   // double-double
+						   9.134603732914548552537150753385375e-2L; // quadruple precision
+  MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
+  RealScalar normIminusT;
+  int degree, degree2, numberOfSquareRoots = 0;
+  bool hasExtraSquareRoot = false;
+
+  /* FIXME
+   * For singular T, norm(I - T) >= 1 but maxNormForPade < 1, leads to infinite
+   * loop.  We should move 0 eigenvalues to bottom right corner.  We need not
+   * worry about tiny values (e.g. 1e-300) because they will reach 1 if
+   * repetitively sqrt'ed.
+   *
+   * If the 0 eigenvalues are semisimple, they can form a 0 matrix at the
+   * bottom right corner.
+   *
+   * [ T  A ]^p   [ T^p  (T^-1 T^p A) ]
+   * [      ]   = [                   ]
+   * [ 0  0 ]     [  0         0      ]
+   */
+  for (Index i=0; i < m_A.cols(); ++i)
+    eigen_assert(m_A(i,i) != RealScalar(0));
+
+  while (true) {
+    IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
+    normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
+    if (normIminusT < maxNormForPade) {
+      degree = getPadeDegree(normIminusT);
+      degree2 = getPadeDegree(normIminusT/2);
+      if (degree - degree2 <= 1 || hasExtraSquareRoot)
+	break;
+      hasExtraSquareRoot = true;
+    }
+    MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
+    T = sqrtT.template triangularView<Upper>();
+    ++numberOfSquareRoots;
+  }
+  computePade(degree, IminusT, res);
+
+  for (; numberOfSquareRoots; --numberOfSquareRoots) {
+    compute2x2(res, std::ldexp(m_p, -numberOfSquareRoots));
+    res = res.template triangularView<Upper>() * res;
+  }
+  compute2x2(res, m_p);
+}
+  
+template<typename MatrixType>
+inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT)
+{
+  const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f };
+  int degree = 3;
+  for (; degree <= 4; ++degree)
+    if (normIminusT <= maxNormForPade[degree - 3])
+      break;
+  return degree;
+}
+
+template<typename MatrixType>
+inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT)
+{
+  const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1,
+      1.999045567181744e-1, 2.789358995219730e-1 };
+  int degree = 3;
+  for (; degree <= 7; ++degree)
+    if (normIminusT <= maxNormForPade[degree - 3])
+      break;
+  return degree;
+}
+
+template<typename MatrixType>
+inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT)
+{
+#if   LDBL_MANT_DIG == 53
+  const int maxPadeDegree = 7;
+  const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L,
+      1.999045567181744e-1L, 2.789358995219730e-1L };
+#elif LDBL_MANT_DIG <= 64
+  const int maxPadeDegree = 8;
+  const double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
+      6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
+#elif LDBL_MANT_DIG <= 106
+  const int maxPadeDegree = 10;
+  const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ ,
+      1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
+      2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
+      1.1016843812851143391275867258512e-1L };
+#else
+  const int maxPadeDegree = 10;
+  const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ ,
+      6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
+      9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
+      3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
+      9.134603732914548552537150753385375e-2L };
+#endif
+  int degree = 3;
+  for (; degree <= maxPadeDegree; ++degree)
+    if (normIminusT <= maxNormForPade[degree - 3])
+      break;
+  return degree;
+}
+
+template<typename MatrixType>
+inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
+MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p)
+{
+  ComplexScalar logCurr = std::log(curr);
+  ComplexScalar logPrev = std::log(prev);
+  int unwindingNumber = std::ceil((numext::imag(logCurr - logPrev) - M_PI) / (2*M_PI));
+  ComplexScalar w = numext::atanh2(curr - prev, curr + prev) + ComplexScalar(0, M_PI*unwindingNumber);
+  return RealScalar(2) * std::exp(RealScalar(0.5) * p * (logCurr + logPrev)) * std::sinh(p * w) / (curr - prev);
+}
+
+template<typename MatrixType>
+inline typename MatrixPowerAtomic<MatrixType>::RealScalar
+MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p)
+{
+  RealScalar w = numext::atanh2(curr - prev, curr + prev);
+  return 2 * std::exp(p * (std::log(curr) + std::log(prev)) / 2) * std::sinh(p * w) / (curr - prev);
+}
+
+/**
+ * \ingroup MatrixFunctions_Module
+ *
+ * \brief Class for computing matrix powers.
+ *
+ * \tparam MatrixType  type of the base, expected to be an instantiation
+ * of the Matrix class template.
+ *
+ * This class is capable of computing real/complex matrices raised to
+ * an arbitrary real power. Meanwhile, it saves the result of Schur
+ * decomposition if an non-integral power has even been calculated.
+ * Therefore, if you want to compute multiple (>= 2) matrix powers
+ * for the same matrix, using the class directly is more efficient than
+ * calling MatrixBase::pow().
+ *
+ * Example:
+ * \include MatrixPower_optimal.cpp
+ * Output: \verbinclude MatrixPower_optimal.out
+ */
+template<typename MatrixType>
+class MatrixPower
+{
+  private:
+    enum {
+      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+    };
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename MatrixType::RealScalar RealScalar;
+    typedef typename MatrixType::Index Index;
+
+  public:
+    /**
+     * \brief Constructor.
+     *
+     * \param[in] A  the base of the matrix power.
+     *
+     * The class stores a reference to A, so it should not be changed
+     * (or destroyed) before evaluation.
+     */
+    explicit MatrixPower(const MatrixType& A) : m_A(A), m_conditionNumber(0)
+    { eigen_assert(A.rows() == A.cols()); }
+
+    /**
+     * \brief Returns the matrix power.
+     *
+     * \param[in] p  exponent, a real scalar.
+     * \return The expression \f$ A^p \f$, where A is specified in the
+     * constructor.
+     */
+    const MatrixPowerRetval<MatrixType> operator()(RealScalar p)
+    { return MatrixPowerRetval<MatrixType>(*this, p); }
+
+    /**
+     * \brief Compute the matrix power.
+     *
+     * \param[in]  p    exponent, a real scalar.
+     * \param[out] res  \f$ A^p \f$ where A is specified in the
+     * constructor.
+     */
+    template<typename ResultType>
+    void compute(ResultType& res, RealScalar p);
+    
+    Index rows() const { return m_A.rows(); }
+    Index cols() const { return m_A.cols(); }
+
+  private:
+    typedef std::complex<RealScalar> ComplexScalar;
+    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, MatrixType::Options,
+              MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrix;
+
+    typename MatrixType::Nested m_A;
+    MatrixType m_tmp;
+    ComplexMatrix m_T, m_U, m_fT;
+    RealScalar m_conditionNumber;
+
+    RealScalar modfAndInit(RealScalar, RealScalar*);
+
+    template<typename ResultType>
+    void computeIntPower(ResultType&, RealScalar);
+
+    template<typename ResultType>
+    void computeFracPower(ResultType&, RealScalar);
+
+    template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
+    static void revertSchur(
+        Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
+        const ComplexMatrix& T,
+        const ComplexMatrix& U);
+
+    template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
+    static void revertSchur(
+        Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
+        const ComplexMatrix& T,
+        const ComplexMatrix& U);
+};
+
+template<typename MatrixType>
+template<typename ResultType>
+void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p)
+{
+  switch (cols()) {
+    case 0:
+      break;
+    case 1:
+      res(0,0) = std::pow(m_A.coeff(0,0), p);
+      break;
+    default:
+      RealScalar intpart, x = modfAndInit(p, &intpart);
+      computeIntPower(res, intpart);
+      computeFracPower(res, x);
+  }
+}
+
+template<typename MatrixType>
+typename MatrixPower<MatrixType>::RealScalar
+MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
+{
+  typedef Array<RealScalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> RealArray;
+
+  *intpart = std::floor(x);
+  RealScalar res = x - *intpart;
+
+  if (!m_conditionNumber && res) {
+    const ComplexSchur<MatrixType> schurOfA(m_A);
+    m_T = schurOfA.matrixT();
+    m_U = schurOfA.matrixU();
+    
+    const RealArray absTdiag = m_T.diagonal().array().abs();
+    m_conditionNumber = absTdiag.maxCoeff() / absTdiag.minCoeff();
+  }
+
+  if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber, res)) {
+    --res;
+    ++*intpart;
+  }
+  return res;
+}
+
+template<typename MatrixType>
+template<typename ResultType>
+void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
+{
+  RealScalar pp = std::abs(p);
+
+  if (p<0)  m_tmp = m_A.inverse();
+  else      m_tmp = m_A;
+
+  res = MatrixType::Identity(rows(), cols());
+  while (pp >= 1) {
+    if (std::fmod(pp, 2) >= 1)
+      res = m_tmp * res;
+    m_tmp *= m_tmp;
+    pp /= 2;
+  }
+}
+
+template<typename MatrixType>
+template<typename ResultType>
+void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
+{
+  if (p) {
+    eigen_assert(m_conditionNumber);
+    MatrixPowerAtomic<ComplexMatrix>(m_T, p).compute(m_fT);
+    revertSchur(m_tmp, m_fT, m_U);
+    res = m_tmp * res;
+  }
+}
+
+template<typename MatrixType>
+template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
+inline void MatrixPower<MatrixType>::revertSchur(
+    Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
+    const ComplexMatrix& T,
+    const ComplexMatrix& U)
+{ res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
+
+template<typename MatrixType>
+template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
+inline void MatrixPower<MatrixType>::revertSchur(
+    Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
+    const ComplexMatrix& T,
+    const ComplexMatrix& U)
+{ res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
+
+/**
+ * \ingroup MatrixFunctions_Module
+ *
+ * \brief Proxy for the matrix power of some matrix (expression).
+ *
+ * \tparam Derived  type of the base, a matrix (expression).
+ *
+ * This class holds the arguments to the matrix power until it is
+ * assigned or evaluated for some other reason (so the argument
+ * should not be changed in the meantime). It is the return type of
+ * MatrixBase::pow() and related functions and most of the
+ * time this is the only way it is used.
+ */
+template<typename Derived>
+class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> >
+{
+  public:
+    typedef typename Derived::PlainObject PlainObject;
+    typedef typename Derived::RealScalar RealScalar;
+    typedef typename Derived::Index Index;
+
+    /**
+     * \brief Constructor.
+     *
+     * \param[in] A  %Matrix (expression), the base of the matrix power.
+     * \param[in] p  scalar, the exponent of the matrix power.
+     */
+    MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p)
+    { }
+
+    /**
+     * \brief Compute the matrix power.
+     *
+     * \param[out] result  \f$ A^p \f$ where \p A and \p p are as in the
+     * constructor.
+     */
+    template<typename ResultType>
+    inline void evalTo(ResultType& res) const
+    { MatrixPower<PlainObject>(m_A.eval()).compute(res, m_p); }
+
+    Index rows() const { return m_A.rows(); }
+    Index cols() const { return m_A.cols(); }
+
+  private:
+    const Derived& m_A;
+    const RealScalar m_p;
+    MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);
+};
+
+namespace internal {
+
+template<typename MatrixPowerType>
+struct traits< MatrixPowerRetval<MatrixPowerType> >
+{ typedef typename MatrixPowerType::PlainObject ReturnType; };
+
+template<typename Derived>
+struct traits< MatrixPowerReturnValue<Derived> >
+{ typedef typename Derived::PlainObject ReturnType; };
+
+}
+
+template<typename Derived>
+const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const
+{ return MatrixPowerReturnValue<Derived>(derived(), p); }
+
+} // namespace Eigen
+
+#endif // EIGEN_MATRIX_POWER