| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_MATRIX_POWER |
| #define EIGEN_MATRIX_POWER |
| |
| namespace Eigen { |
| |
| template<typename MatrixType> class MatrixPower; |
| |
| template<typename MatrixType> |
| class MatrixPowerRetval : public ReturnByValue< MatrixPowerRetval<MatrixType> > |
| { |
| public: |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename MatrixType::Index Index; |
| |
| MatrixPowerRetval(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p) |
| { } |
| |
| template<typename ResultType> |
| inline void evalTo(ResultType& res) const |
| { m_pow.compute(res, m_p); } |
| |
| Index rows() const { return m_pow.rows(); } |
| Index cols() const { return m_pow.cols(); } |
| |
| private: |
| MatrixPower<MatrixType>& m_pow; |
| const RealScalar m_p; |
| MatrixPowerRetval& operator=(const MatrixPowerRetval&); |
| }; |
| |
| template<typename MatrixType> |
| class MatrixPowerAtomic |
| { |
| private: |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime |
| }; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef std::complex<RealScalar> ComplexScalar; |
| typedef typename MatrixType::Index Index; |
| typedef Array<Scalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> ArrayType; |
| |
| const MatrixType& m_A; |
| RealScalar m_p; |
| |
| void computePade(int degree, const MatrixType& IminusT, MatrixType& res) const; |
| void compute2x2(MatrixType& res, RealScalar p) const; |
| void computeBig(MatrixType& res) const; |
| static int getPadeDegree(float normIminusT); |
| static int getPadeDegree(double normIminusT); |
| static int getPadeDegree(long double normIminusT); |
| static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p); |
| static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p); |
| |
| public: |
| MatrixPowerAtomic(const MatrixType& T, RealScalar p); |
| void compute(MatrixType& res) const; |
| }; |
| |
| template<typename MatrixType> |
| MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) : |
| m_A(T), m_p(p) |
| { eigen_assert(T.rows() == T.cols()); } |
| |
| template<typename MatrixType> |
| void MatrixPowerAtomic<MatrixType>::compute(MatrixType& res) const |
| { |
| res.resizeLike(m_A); |
| switch (m_A.rows()) { |
| case 0: |
| break; |
| case 1: |
| res(0,0) = std::pow(m_A(0,0), m_p); |
| break; |
| case 2: |
| compute2x2(res, m_p); |
| break; |
| default: |
| computeBig(res); |
| } |
| } |
| |
| template<typename MatrixType> |
| void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, MatrixType& res) const |
| { |
| int i = degree<<1; |
| res = (m_p-degree) / ((i-1)<<1) * IminusT; |
| for (--i; i; --i) { |
| res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>() |
| .solve((i==1 ? -m_p : i&1 ? (-m_p-(i>>1))/(i<<1) : (m_p-(i>>1))/((i-1)<<1)) * IminusT).eval(); |
| } |
| res += MatrixType::Identity(IminusT.rows(), IminusT.cols()); |
| } |
| |
| // This function assumes that res has the correct size (see bug 614) |
| template<typename MatrixType> |
| void MatrixPowerAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const |
| { |
| using std::abs; |
| using std::pow; |
| |
| res.coeffRef(0,0) = pow(m_A.coeff(0,0), p); |
| |
| for (Index i=1; i < m_A.cols(); ++i) { |
| res.coeffRef(i,i) = pow(m_A.coeff(i,i), p); |
| if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i)) |
| res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1); |
| else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1))) |
| res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1)); |
| else |
| res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p); |
| res.coeffRef(i-1,i) *= m_A.coeff(i-1,i); |
| } |
| } |
| |
| template<typename MatrixType> |
| void MatrixPowerAtomic<MatrixType>::computeBig(MatrixType& res) const |
| { |
| const int digits = std::numeric_limits<RealScalar>::digits; |
| const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f: // sigle precision |
| digits <= 53? 2.789358995219730e-1: // double precision |
| digits <= 64? 2.4471944416607995472e-1L: // extended precision |
| digits <= 106? 1.1016843812851143391275867258512e-1L: // double-double |
| 9.134603732914548552537150753385375e-2L; // quadruple precision |
| MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>(); |
| RealScalar normIminusT; |
| int degree, degree2, numberOfSquareRoots = 0; |
| bool hasExtraSquareRoot = false; |
| |
| /* FIXME |
| * For singular T, norm(I - T) >= 1 but maxNormForPade < 1, leads to infinite |
| * loop. We should move 0 eigenvalues to bottom right corner. We need not |
| * worry about tiny values (e.g. 1e-300) because they will reach 1 if |
| * repetitively sqrt'ed. |
| * |
| * If the 0 eigenvalues are semisimple, they can form a 0 matrix at the |
| * bottom right corner. |
| * |
| * [ T A ]^p [ T^p (T^-1 T^p A) ] |
| * [ ] = [ ] |
| * [ 0 0 ] [ 0 0 ] |
| */ |
| for (Index i=0; i < m_A.cols(); ++i) |
| eigen_assert(m_A(i,i) != RealScalar(0)); |
| |
| while (true) { |
| IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T; |
| normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff(); |
| if (normIminusT < maxNormForPade) { |
| degree = getPadeDegree(normIminusT); |
| degree2 = getPadeDegree(normIminusT/2); |
| if (degree - degree2 <= 1 || hasExtraSquareRoot) |
| break; |
| hasExtraSquareRoot = true; |
| } |
| MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT); |
| T = sqrtT.template triangularView<Upper>(); |
| ++numberOfSquareRoots; |
| } |
| computePade(degree, IminusT, res); |
| |
| for (; numberOfSquareRoots; --numberOfSquareRoots) { |
| compute2x2(res, std::ldexp(m_p, -numberOfSquareRoots)); |
| res = res.template triangularView<Upper>() * res; |
| } |
| compute2x2(res, m_p); |
| } |
| |
| template<typename MatrixType> |
| inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT) |
| { |
| const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f }; |
| int degree = 3; |
| for (; degree <= 4; ++degree) |
| if (normIminusT <= maxNormForPade[degree - 3]) |
| break; |
| return degree; |
| } |
| |
| template<typename MatrixType> |
| inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT) |
| { |
| const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1, |
| 1.999045567181744e-1, 2.789358995219730e-1 }; |
| int degree = 3; |
| for (; degree <= 7; ++degree) |
| if (normIminusT <= maxNormForPade[degree - 3]) |
| break; |
| return degree; |
| } |
| |
| template<typename MatrixType> |
| inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT) |
| { |
| #if LDBL_MANT_DIG == 53 |
| const int maxPadeDegree = 7; |
| const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L, |
| 1.999045567181744e-1L, 2.789358995219730e-1L }; |
| #elif LDBL_MANT_DIG <= 64 |
| const int maxPadeDegree = 8; |
| const double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L, |
| 6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L }; |
| #elif LDBL_MANT_DIG <= 106 |
| const int maxPadeDegree = 10; |
| const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ , |
| 1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L, |
| 2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L, |
| 1.1016843812851143391275867258512e-1L }; |
| #else |
| const int maxPadeDegree = 10; |
| const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ , |
| 6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L, |
| 9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L, |
| 3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L, |
| 9.134603732914548552537150753385375e-2L }; |
| #endif |
| int degree = 3; |
| for (; degree <= maxPadeDegree; ++degree) |
| if (normIminusT <= maxNormForPade[degree - 3]) |
| break; |
| return degree; |
| } |
| |
| template<typename MatrixType> |
| inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar |
| MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p) |
| { |
| ComplexScalar logCurr = std::log(curr); |
| ComplexScalar logPrev = std::log(prev); |
| int unwindingNumber = std::ceil((numext::imag(logCurr - logPrev) - M_PI) / (2*M_PI)); |
| ComplexScalar w = numext::atanh2(curr - prev, curr + prev) + ComplexScalar(0, M_PI*unwindingNumber); |
| return RealScalar(2) * std::exp(RealScalar(0.5) * p * (logCurr + logPrev)) * std::sinh(p * w) / (curr - prev); |
| } |
| |
| template<typename MatrixType> |
| inline typename MatrixPowerAtomic<MatrixType>::RealScalar |
| MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p) |
| { |
| RealScalar w = numext::atanh2(curr - prev, curr + prev); |
| return 2 * std::exp(p * (std::log(curr) + std::log(prev)) / 2) * std::sinh(p * w) / (curr - prev); |
| } |
| |
| /** |
| * \ingroup MatrixFunctions_Module |
| * |
| * \brief Class for computing matrix powers. |
| * |
| * \tparam MatrixType type of the base, expected to be an instantiation |
| * of the Matrix class template. |
| * |
| * This class is capable of computing real/complex matrices raised to |
| * an arbitrary real power. Meanwhile, it saves the result of Schur |
| * decomposition if an non-integral power has even been calculated. |
| * Therefore, if you want to compute multiple (>= 2) matrix powers |
| * for the same matrix, using the class directly is more efficient than |
| * calling MatrixBase::pow(). |
| * |
| * Example: |
| * \include MatrixPower_optimal.cpp |
| * Output: \verbinclude MatrixPower_optimal.out |
| */ |
| template<typename MatrixType> |
| class MatrixPower |
| { |
| private: |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| }; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename MatrixType::Index Index; |
| |
| public: |
| /** |
| * \brief Constructor. |
| * |
| * \param[in] A the base of the matrix power. |
| * |
| * The class stores a reference to A, so it should not be changed |
| * (or destroyed) before evaluation. |
| */ |
| explicit MatrixPower(const MatrixType& A) : m_A(A), m_conditionNumber(0) |
| { eigen_assert(A.rows() == A.cols()); } |
| |
| /** |
| * \brief Returns the matrix power. |
| * |
| * \param[in] p exponent, a real scalar. |
| * \return The expression \f$ A^p \f$, where A is specified in the |
| * constructor. |
| */ |
| const MatrixPowerRetval<MatrixType> operator()(RealScalar p) |
| { return MatrixPowerRetval<MatrixType>(*this, p); } |
| |
| /** |
| * \brief Compute the matrix power. |
| * |
| * \param[in] p exponent, a real scalar. |
| * \param[out] res \f$ A^p \f$ where A is specified in the |
| * constructor. |
| */ |
| template<typename ResultType> |
| void compute(ResultType& res, RealScalar p); |
| |
| Index rows() const { return m_A.rows(); } |
| Index cols() const { return m_A.cols(); } |
| |
| private: |
| typedef std::complex<RealScalar> ComplexScalar; |
| typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, MatrixType::Options, |
| MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrix; |
| |
| typename MatrixType::Nested m_A; |
| MatrixType m_tmp; |
| ComplexMatrix m_T, m_U, m_fT; |
| RealScalar m_conditionNumber; |
| |
| RealScalar modfAndInit(RealScalar, RealScalar*); |
| |
| template<typename ResultType> |
| void computeIntPower(ResultType&, RealScalar); |
| |
| template<typename ResultType> |
| void computeFracPower(ResultType&, RealScalar); |
| |
| template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> |
| static void revertSchur( |
| Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, |
| const ComplexMatrix& T, |
| const ComplexMatrix& U); |
| |
| template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> |
| static void revertSchur( |
| Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, |
| const ComplexMatrix& T, |
| const ComplexMatrix& U); |
| }; |
| |
| template<typename MatrixType> |
| template<typename ResultType> |
| void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p) |
| { |
| switch (cols()) { |
| case 0: |
| break; |
| case 1: |
| res(0,0) = std::pow(m_A.coeff(0,0), p); |
| break; |
| default: |
| RealScalar intpart, x = modfAndInit(p, &intpart); |
| computeIntPower(res, intpart); |
| computeFracPower(res, x); |
| } |
| } |
| |
| template<typename MatrixType> |
| typename MatrixPower<MatrixType>::RealScalar |
| MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart) |
| { |
| typedef Array<RealScalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> RealArray; |
| |
| *intpart = std::floor(x); |
| RealScalar res = x - *intpart; |
| |
| if (!m_conditionNumber && res) { |
| const ComplexSchur<MatrixType> schurOfA(m_A); |
| m_T = schurOfA.matrixT(); |
| m_U = schurOfA.matrixU(); |
| |
| const RealArray absTdiag = m_T.diagonal().array().abs(); |
| m_conditionNumber = absTdiag.maxCoeff() / absTdiag.minCoeff(); |
| } |
| |
| if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber, res)) { |
| --res; |
| ++*intpart; |
| } |
| return res; |
| } |
| |
| template<typename MatrixType> |
| template<typename ResultType> |
| void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p) |
| { |
| RealScalar pp = std::abs(p); |
| |
| if (p<0) m_tmp = m_A.inverse(); |
| else m_tmp = m_A; |
| |
| res = MatrixType::Identity(rows(), cols()); |
| while (pp >= 1) { |
| if (std::fmod(pp, 2) >= 1) |
| res = m_tmp * res; |
| m_tmp *= m_tmp; |
| pp /= 2; |
| } |
| } |
| |
| template<typename MatrixType> |
| template<typename ResultType> |
| void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p) |
| { |
| if (p) { |
| eigen_assert(m_conditionNumber); |
| MatrixPowerAtomic<ComplexMatrix>(m_T, p).compute(m_fT); |
| revertSchur(m_tmp, m_fT, m_U); |
| res = m_tmp * res; |
| } |
| } |
| |
| template<typename MatrixType> |
| template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> |
| inline void MatrixPower<MatrixType>::revertSchur( |
| Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, |
| const ComplexMatrix& T, |
| const ComplexMatrix& U) |
| { res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); } |
| |
| template<typename MatrixType> |
| template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> |
| inline void MatrixPower<MatrixType>::revertSchur( |
| Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, |
| const ComplexMatrix& T, |
| const ComplexMatrix& U) |
| { res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); } |
| |
| /** |
| * \ingroup MatrixFunctions_Module |
| * |
| * \brief Proxy for the matrix power of some matrix (expression). |
| * |
| * \tparam Derived type of the base, a matrix (expression). |
| * |
| * This class holds the arguments to the matrix power until it is |
| * assigned or evaluated for some other reason (so the argument |
| * should not be changed in the meantime). It is the return type of |
| * MatrixBase::pow() and related functions and most of the |
| * time this is the only way it is used. |
| */ |
| template<typename Derived> |
| class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> > |
| { |
| public: |
| typedef typename Derived::PlainObject PlainObject; |
| typedef typename Derived::RealScalar RealScalar; |
| typedef typename Derived::Index Index; |
| |
| /** |
| * \brief Constructor. |
| * |
| * \param[in] A %Matrix (expression), the base of the matrix power. |
| * \param[in] p scalar, the exponent of the matrix power. |
| */ |
| MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p) |
| { } |
| |
| /** |
| * \brief Compute the matrix power. |
| * |
| * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the |
| * constructor. |
| */ |
| template<typename ResultType> |
| inline void evalTo(ResultType& res) const |
| { MatrixPower<PlainObject>(m_A.eval()).compute(res, m_p); } |
| |
| Index rows() const { return m_A.rows(); } |
| Index cols() const { return m_A.cols(); } |
| |
| private: |
| const Derived& m_A; |
| const RealScalar m_p; |
| MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&); |
| }; |
| |
| namespace internal { |
| |
| template<typename MatrixPowerType> |
| struct traits< MatrixPowerRetval<MatrixPowerType> > |
| { typedef typename MatrixPowerType::PlainObject ReturnType; }; |
| |
| template<typename Derived> |
| struct traits< MatrixPowerReturnValue<Derived> > |
| { typedef typename Derived::PlainObject ReturnType; }; |
| |
| } |
| |
| template<typename Derived> |
| const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const |
| { return MatrixPowerReturnValue<Derived>(derived(), p); } |
| |
| } // namespace Eigen |
| |
| #endif // EIGEN_MATRIX_POWER |