blob: 906bb4bdb694c66a5a775f55f4a75fbf0da94627 [file] [log] [blame]
James Kuszmaul5398fae2020-02-17 16:44:03 -08001#include "y2020/control_loops/drivetrain/localizer.h"
2
3#include "y2020/constants.h"
4
5namespace y2020 {
6namespace control_loops {
7namespace drivetrain {
8
9namespace {
10// Converts a flatbuffer TransformationMatrix to an Eigen matrix. Technically,
11// this should be able to do a single memcpy, but the extra verbosity here seems
12// appropriate.
James Kuszmauld478f872020-03-16 20:54:27 -070013Eigen::Matrix<float, 4, 4> FlatbufferToTransformationMatrix(
James Kuszmaul5398fae2020-02-17 16:44:03 -080014 const frc971::vision::sift::TransformationMatrix &flatbuffer) {
15 CHECK_EQ(16u, CHECK_NOTNULL(flatbuffer.data())->size());
James Kuszmauld478f872020-03-16 20:54:27 -070016 Eigen::Matrix<float, 4, 4> result;
James Kuszmaul5398fae2020-02-17 16:44:03 -080017 result.setIdentity();
18 for (int row = 0; row < 4; ++row) {
19 for (int col = 0; col < 4; ++col) {
20 result(row, col) = (*flatbuffer.data())[row * 4 + col];
21 }
22 }
23 return result;
24}
James Kuszmaul958b21e2020-02-26 21:51:40 -080025
James Kuszmaulc6723cf2020-03-01 14:45:59 -080026// Indices of the pis to use.
James Kuszmaul9c128122021-03-22 22:24:36 -070027const std::array<std::string, 5> kPisToUse{"pi1", "pi2", "pi3", "pi4", "pi5"};
James Kuszmaulc6723cf2020-03-01 14:45:59 -080028
James Kuszmaul66efe832020-03-16 19:38:33 -070029// Calculates the pose implied by the camera target, just based on
30// distance/heading components.
James Kuszmaul5a46c8d2021-09-03 19:33:48 -070031Eigen::Vector3f CalculateImpliedPose(const Eigen::Matrix4f &H_field_target,
James Kuszmaul66efe832020-03-16 19:38:33 -070032 const Localizer::Pose &pose_robot_target) {
33 // This code overrides the pose sent directly from the camera code and
34 // effectively distills it down to just a distance + heading estimate, on
35 // the presumption that these signals will tend to be much lower noise and
36 // better-conditioned than other portions of the robot pose.
37 // As such, this code assumes that the current estimate of the robot
38 // heading is correct and then, given the heading from the camera to the
39 // target and the distance from the camera to the target, calculates the
40 // position that the robot would have to be at to make the current camera
41 // heading + distance correct. This X/Y implied robot position is then
42 // used as the measurement in the EKF, rather than the X/Y that is
43 // directly returned from the vision processing. This means that
44 // the cameras will not correct any drift in the robot heading estimate
45 // but will compensate for X/Y position in a way that prioritizes keeping
46 // an accurate distance + heading to the goal.
47
48 // Calculate the heading to the robot in the target's coordinate frame.
James Kuszmaul5a46c8d2021-09-03 19:33:48 -070049 // Reminder on what the numbers mean:
50 // rel_theta: The orientation of the target in the robot frame.
51 // heading: heading from the robot to the target in the robot frame. I.e.,
52 // atan2(y, x) for x/y of the target in the robot frame.
James Kuszmauld478f872020-03-16 20:54:27 -070053 const float implied_heading_from_target = aos::math::NormalizeAngle(
James Kuszmaul5a46c8d2021-09-03 19:33:48 -070054 M_PI - pose_robot_target.rel_theta() + pose_robot_target.heading());
James Kuszmauld478f872020-03-16 20:54:27 -070055 const float implied_distance = pose_robot_target.xy_norm();
56 const Eigen::Vector4f robot_pose_in_target_frame(
James Kuszmaul66efe832020-03-16 19:38:33 -070057 implied_distance * std::cos(implied_heading_from_target),
58 implied_distance * std::sin(implied_heading_from_target), 0, 1);
James Kuszmauld478f872020-03-16 20:54:27 -070059 const Eigen::Vector4f implied_pose =
James Kuszmaul66efe832020-03-16 19:38:33 -070060 H_field_target * robot_pose_in_target_frame;
61 return implied_pose.topRows<3>();
62}
63
James Kuszmaul5398fae2020-02-17 16:44:03 -080064} // namespace
65
66Localizer::Localizer(
67 aos::EventLoop *event_loop,
68 const frc971::control_loops::drivetrain::DrivetrainConfig<double>
69 &dt_config)
James Kuszmaul958b21e2020-02-26 21:51:40 -080070 : event_loop_(event_loop),
71 dt_config_(dt_config),
72 ekf_(dt_config),
73 clock_offset_fetcher_(
74 event_loop_->MakeFetcher<aos::message_bridge::ServerStatistics>(
75 "/aos")) {
James Kuszmaul91aa0cf2021-02-13 13:15:06 -080076 // TODO(james): The down estimator has trouble handling situations where the
77 // robot is constantly wiggling but not actually moving much, and can cause
78 // drift when using accelerometer readings.
79 ekf_.set_ignore_accel(true);
James Kuszmaul5398fae2020-02-17 16:44:03 -080080 // TODO(james): This doesn't really need to be a watcher; we could just use a
81 // fetcher for the superstructure status.
82 // This probably should be a Fetcher instead of a Watcher, but this
83 // seems simpler for the time being (although technically it should be
84 // possible to do everything we need to using just a Fetcher without
85 // even maintaining a separate buffer, but that seems overly cute).
86 event_loop_->MakeWatcher("/superstructure",
87 [this](const superstructure::Status &status) {
88 HandleSuperstructureStatus(status);
89 });
90
James Kuszmaul286b4282020-02-26 20:29:32 -080091 event_loop->OnRun([this, event_loop]() {
James Kuszmauld478f872020-03-16 20:54:27 -070092 ekf_.ResetInitialState(event_loop->monotonic_now(),
93 HybridEkf::State::Zero(), ekf_.P());
James Kuszmaul286b4282020-02-26 20:29:32 -080094 });
95
James Kuszmaulc6723cf2020-03-01 14:45:59 -080096 for (const auto &pi : kPisToUse) {
97 image_fetchers_.emplace_back(
98 event_loop_->MakeFetcher<frc971::vision::sift::ImageMatchResult>(
99 "/" + pi + "/camera"));
100 }
James Kuszmaul5398fae2020-02-17 16:44:03 -0800101
102 target_selector_.set_has_target(false);
103}
104
James Kuszmaulbcd96fc2020-10-12 20:29:32 -0700105void Localizer::Reset(
106 aos::monotonic_clock::time_point t,
107 const frc971::control_loops::drivetrain::HybridEkf<double>::State &state) {
108 // Go through and clear out all of the fetchers so that we don't get behind.
109 for (auto &fetcher : image_fetchers_) {
110 fetcher.Fetch();
111 }
112 ekf_.ResetInitialState(t, state.cast<float>(), ekf_.P());
113}
114
James Kuszmaul5398fae2020-02-17 16:44:03 -0800115void Localizer::HandleSuperstructureStatus(
116 const y2020::control_loops::superstructure::Status &status) {
117 CHECK(status.has_turret());
118 turret_data_.Push({event_loop_->monotonic_now(), status.turret()->position(),
119 status.turret()->velocity()});
120}
121
122Localizer::TurretData Localizer::GetTurretDataForTime(
123 aos::monotonic_clock::time_point time) {
124 if (turret_data_.empty()) {
125 return {};
126 }
127
128 aos::monotonic_clock::duration lowest_time_error =
129 aos::monotonic_clock::duration::max();
130 TurretData best_data_match;
131 for (const auto &sample : turret_data_) {
132 const aos::monotonic_clock::duration time_error =
133 std::chrono::abs(sample.receive_time - time);
134 if (time_error < lowest_time_error) {
135 lowest_time_error = time_error;
136 best_data_match = sample;
137 }
138 }
139 return best_data_match;
140}
141
James Kuszmaul06257f42020-05-09 15:40:09 -0700142void Localizer::Update(const Eigen::Matrix<double, 2, 1> &U,
James Kuszmaul5398fae2020-02-17 16:44:03 -0800143 aos::monotonic_clock::time_point now,
144 double left_encoder, double right_encoder,
145 double gyro_rate, const Eigen::Vector3d &accel) {
James Kuszmauld478f872020-03-16 20:54:27 -0700146 ekf_.UpdateEncodersAndGyro(left_encoder, right_encoder, gyro_rate,
147 U.cast<float>(), accel.cast<float>(), now);
James Kuszmaulc6723cf2020-03-01 14:45:59 -0800148 for (size_t ii = 0; ii < kPisToUse.size(); ++ii) {
149 auto &image_fetcher = image_fetchers_[ii];
James Kuszmaul5398fae2020-02-17 16:44:03 -0800150 while (image_fetcher.FetchNext()) {
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800151 HandleImageMatch(kPisToUse[ii], *image_fetcher, now);
James Kuszmaul5398fae2020-02-17 16:44:03 -0800152 }
153 }
James Kuszmaul5398fae2020-02-17 16:44:03 -0800154}
155
156void Localizer::HandleImageMatch(
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800157 std::string_view pi, const frc971::vision::sift::ImageMatchResult &result,
158 aos::monotonic_clock::time_point now) {
James Kuszmaul958b21e2020-02-26 21:51:40 -0800159 std::chrono::nanoseconds monotonic_offset(0);
160 clock_offset_fetcher_.Fetch();
161 if (clock_offset_fetcher_.get() != nullptr) {
162 for (const auto connection : *clock_offset_fetcher_->connections()) {
163 if (connection->has_node() && connection->node()->has_name() &&
James Kuszmaulc6723cf2020-03-01 14:45:59 -0800164 connection->node()->name()->string_view() == pi) {
James Kuszmaul958b21e2020-02-26 21:51:40 -0800165 monotonic_offset =
166 std::chrono::nanoseconds(connection->monotonic_offset());
167 break;
168 }
169 }
170 }
James Kuszmaul5398fae2020-02-17 16:44:03 -0800171 aos::monotonic_clock::time_point capture_time(
James Kuszmaul958b21e2020-02-26 21:51:40 -0800172 std::chrono::nanoseconds(result.image_monotonic_timestamp_ns()) -
173 monotonic_offset);
James Kuszmaul2d8fa2a2020-03-01 13:51:50 -0800174 VLOG(1) << "Got monotonic offset of "
175 << aos::time::DurationInSeconds(monotonic_offset)
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800176 << " when at time of " << now << " and capture time estimate of "
177 << capture_time;
178 if (capture_time > now) {
James Kuszmaul2d8fa2a2020-03-01 13:51:50 -0800179 LOG(WARNING) << "Got camera frame from the future.";
180 return;
181 }
James Kuszmaulbcd96fc2020-10-12 20:29:32 -0700182 if (!result.has_camera_calibration()) {
183 LOG(WARNING) << "Got camera frame without calibration data.";
184 return;
185 }
James Kuszmaul5398fae2020-02-17 16:44:03 -0800186 // Per the ImageMatchResult specification, we can actually determine whether
187 // the camera is the turret camera just from the presence of the
188 // turret_extrinsics member.
189 const bool is_turret = result.camera_calibration()->has_turret_extrinsics();
190 const TurretData turret_data = GetTurretDataForTime(capture_time);
191 // Ignore readings when the turret is spinning too fast, on the assumption
192 // that the odds of screwing up the time compensation are higher.
193 // Note that the current number here is chosen pretty arbitrarily--1 rad / sec
194 // seems reasonable, but may be unnecessarily low or high.
James Kuszmauld478f872020-03-16 20:54:27 -0700195 constexpr float kMaxTurretVelocity = 1.0;
James Kuszmaul5398fae2020-02-17 16:44:03 -0800196 if (is_turret && std::abs(turret_data.velocity) > kMaxTurretVelocity) {
197 return;
198 }
199 CHECK(result.camera_calibration()->has_fixed_extrinsics());
James Kuszmauld478f872020-03-16 20:54:27 -0700200 const Eigen::Matrix<float, 4, 4> fixed_extrinsics =
James Kuszmaul5398fae2020-02-17 16:44:03 -0800201 FlatbufferToTransformationMatrix(
202 *result.camera_calibration()->fixed_extrinsics());
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800203
James Kuszmaul5398fae2020-02-17 16:44:03 -0800204 // Calculate the pose of the camera relative to the robot origin.
James Kuszmauld478f872020-03-16 20:54:27 -0700205 Eigen::Matrix<float, 4, 4> H_robot_camera = fixed_extrinsics;
James Kuszmaul5398fae2020-02-17 16:44:03 -0800206 if (is_turret) {
James Kuszmaulc51dbfe2020-02-23 15:39:00 -0800207 H_robot_camera = H_robot_camera *
James Kuszmauld478f872020-03-16 20:54:27 -0700208 frc971::control_loops::TransformationMatrixForYaw<float>(
James Kuszmaul5398fae2020-02-17 16:44:03 -0800209 turret_data.position) *
210 FlatbufferToTransformationMatrix(
211 *result.camera_calibration()->turret_extrinsics());
212 }
213
214 if (!result.has_camera_poses()) {
215 return;
216 }
217
218 for (const frc971::vision::sift::CameraPose *vision_result :
219 *result.camera_poses()) {
220 if (!vision_result->has_camera_to_target() ||
221 !vision_result->has_field_to_target()) {
222 continue;
223 }
James Kuszmauld478f872020-03-16 20:54:27 -0700224 const Eigen::Matrix<float, 4, 4> H_camera_target =
James Kuszmaul5398fae2020-02-17 16:44:03 -0800225 FlatbufferToTransformationMatrix(*vision_result->camera_to_target());
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800226
James Kuszmauld478f872020-03-16 20:54:27 -0700227 const Eigen::Matrix<float, 4, 4> H_field_target =
James Kuszmaul5398fae2020-02-17 16:44:03 -0800228 FlatbufferToTransformationMatrix(*vision_result->field_to_target());
229 // Back out the robot position that is implied by the current camera
James Kuszmaul715e7932021-04-05 20:45:57 -0700230 // reading. Note that the Pose object ignores any roll/pitch components, so
231 // if the camera's extrinsics for pitch/roll are off, this should just
232 // ignore it.
James Kuszmaulaca88782021-04-24 16:48:45 -0700233 const Pose measured_camera_pose(H_field_target * H_camera_target.inverse());
234 // Calculate the camera-to-robot transformation matrix ignoring the
235 // pitch/roll of the camera.
236 // TODO(james): This could probably be made a bit more efficient, but I
237 // don't think this is anywhere near our bottleneck currently.
238 const Eigen::Matrix<float, 4, 4> H_camera_robot_stripped =
239 Pose(H_robot_camera).AsTransformationMatrix().inverse();
240 const Pose measured_pose(measured_camera_pose.AsTransformationMatrix() *
241 H_camera_robot_stripped);
James Kuszmaul66efe832020-03-16 19:38:33 -0700242 // This "Z" is the robot pose directly implied by the camera results.
243 // Currently, we do not actually use this result directly. However, it is
244 // kept around in case we want to quickly re-enable it.
James Kuszmauld478f872020-03-16 20:54:27 -0700245 const Eigen::Matrix<float, 3, 1> Z(measured_pose.rel_pos().x(),
246 measured_pose.rel_pos().y(),
247 measured_pose.rel_theta());
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800248 // Pose of the target in the robot frame.
James Kuszmaul715e7932021-04-05 20:45:57 -0700249 // Note that we use measured_pose's transformation matrix rather than just
250 // doing H_robot_camera * H_camera_target because measured_pose ignores
251 // pitch/roll.
252 Pose pose_robot_target(measured_pose.AsTransformationMatrix().inverse() *
253 H_field_target);
James Kuszmaul5398fae2020-02-17 16:44:03 -0800254 // TODO(james): Figure out how to properly handle calculating the
255 // noise. Currently, the values are deliberately tuned so that image updates
256 // will not be trusted overly much. In theory, we should probably also be
257 // populating some cross-correlation terms.
258 // Note that these are the noise standard deviations (they are squared below
259 // to get variances).
James Kuszmauld478f872020-03-16 20:54:27 -0700260 Eigen::Matrix<float, 3, 1> noises(2.0, 2.0, 0.2);
James Kuszmaul5398fae2020-02-17 16:44:03 -0800261 // Augment the noise by the approximate rotational speed of the
262 // camera. This should help account for the fact that, while we are
263 // spinning, slight timing errors in the camera/turret data will tend to
264 // have mutch more drastic effects on the results.
265 noises *= 1.0 + std::abs((right_velocity() - left_velocity()) /
266 (2.0 * dt_config_.robot_radius) +
267 (is_turret ? turret_data.velocity : 0.0));
James Kuszmauld478f872020-03-16 20:54:27 -0700268 Eigen::Matrix3f R = Eigen::Matrix3f::Zero();
James Kuszmaul5398fae2020-02-17 16:44:03 -0800269 R.diagonal() = noises.cwiseAbs2();
James Kuszmauld478f872020-03-16 20:54:27 -0700270 Eigen::Matrix<float, HybridEkf::kNOutputs, HybridEkf::kNStates> H;
James Kuszmaul5398fae2020-02-17 16:44:03 -0800271 H.setZero();
272 H(0, StateIdx::kX) = 1;
273 H(1, StateIdx::kY) = 1;
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800274 // This is currently set to zero because we ignore the heading implied by
275 // the camera.
276 H(2, StateIdx::kTheta) = 0;
277 VLOG(1) << "Pose implied by target: " << Z.transpose()
278 << " and current pose " << x() << ", " << y() << ", " << theta()
279 << " Heading/dist/skew implied by target: "
280 << pose_robot_target.ToHeadingDistanceSkew().transpose();
James Kuszmauladd40ca2020-03-01 14:10:50 -0800281 // If the heading is off by too much, assume that we got a false-positive
282 // and don't use the correction.
James Kuszmauld478f872020-03-16 20:54:27 -0700283 if (std::abs(aos::math::DiffAngle<float>(theta(), Z(2))) > M_PI_2) {
James Kuszmauladd40ca2020-03-01 14:10:50 -0800284 AOS_LOG(WARNING, "Dropped image match due to heading mismatch.\n");
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800285 continue;
James Kuszmauladd40ca2020-03-01 14:10:50 -0800286 }
James Kuszmaul06257f42020-05-09 15:40:09 -0700287 // In order to do the EKF correction, we determine the expected state based
288 // on the state at the time the image was captured; however, we insert the
289 // correction update itself at the current time. This is technically not
290 // quite correct, but saves substantial CPU usage by making it so that we
291 // don't have to constantly rewind the entire EKF history.
292 const std::optional<State> state_at_capture =
293 ekf_.LastStateBeforeTime(capture_time);
294 if (!state_at_capture.has_value()) {
295 AOS_LOG(WARNING, "Dropped image match due to age of image.\n");
296 continue;
297 }
298 const Input U = ekf_.MostRecentInput();
James Kuszmaul66efe832020-03-16 19:38:33 -0700299 // For the correction step, instead of passing in the measurement directly,
300 // we pass in (0, 0, 0) as the measurement and then for the expected
301 // measurement (Zhat) we calculate the error between the implied and actual
302 // poses. This doesn't affect any of the math, it just makes the code a bit
303 // more convenient to write given the Correct() interface we already have.
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800304 ekf_.Correct(
James Kuszmaul06257f42020-05-09 15:40:09 -0700305 Eigen::Vector3f::Zero(), &U, {},
306 [H, H_field_target, pose_robot_target, state_at_capture](
307 const State &, const Input &) -> Eigen::Vector3f {
James Kuszmaul5a46c8d2021-09-03 19:33:48 -0700308 const Eigen::Vector3f Z =
309 CalculateImpliedPose(H_field_target, pose_robot_target);
James Kuszmaul66efe832020-03-16 19:38:33 -0700310 // Just in case we ever do encounter any, drop measurements if they
311 // have non-finite numbers.
312 if (!Z.allFinite()) {
313 AOS_LOG(WARNING, "Got measurement with infinites or NaNs.\n");
James Kuszmauld478f872020-03-16 20:54:27 -0700314 return Eigen::Vector3f::Zero();
James Kuszmaul66efe832020-03-16 19:38:33 -0700315 }
James Kuszmaul06257f42020-05-09 15:40:09 -0700316 Eigen::Vector3f Zhat = H * state_at_capture.value() - Z;
James Kuszmaul66efe832020-03-16 19:38:33 -0700317 // Rewrap angle difference to put it back in range. Note that this
318 // component of the error is currently ignored (see definition of H
319 // above).
320 Zhat(2) = aos::math::NormalizeAngle(Zhat(2));
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800321 // If the measurement implies that we are too far from the current
322 // estimate, then ignore it.
323 // Note that I am not entirely sure how much effect this actually has,
324 // because I primarily introduced it to make sure that any grossly
325 // invalid measurements get thrown out.
James Kuszmaul66efe832020-03-16 19:38:33 -0700326 if (Zhat.squaredNorm() > std::pow(10.0, 2)) {
James Kuszmauld478f872020-03-16 20:54:27 -0700327 return Eigen::Vector3f::Zero();
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800328 }
329 return Zhat;
330 },
James Kuszmaul06257f42020-05-09 15:40:09 -0700331 [H](const State &) { return H; }, R, now);
James Kuszmaul5398fae2020-02-17 16:44:03 -0800332 }
333}
334
335} // namespace drivetrain
336} // namespace control_loops
337} // namespace y2020