blob: d1223b80d13df1c3f675d3f0a85a2f8465531262 [file] [log] [blame]
James Kuszmaul5398fae2020-02-17 16:44:03 -08001#include "y2020/control_loops/drivetrain/localizer.h"
2
3#include "y2020/constants.h"
4
5namespace y2020 {
6namespace control_loops {
7namespace drivetrain {
8
9namespace {
10// Converts a flatbuffer TransformationMatrix to an Eigen matrix. Technically,
11// this should be able to do a single memcpy, but the extra verbosity here seems
12// appropriate.
13Eigen::Matrix<double, 4, 4> FlatbufferToTransformationMatrix(
14 const frc971::vision::sift::TransformationMatrix &flatbuffer) {
15 CHECK_EQ(16u, CHECK_NOTNULL(flatbuffer.data())->size());
16 Eigen::Matrix<double, 4, 4> result;
17 result.setIdentity();
18 for (int row = 0; row < 4; ++row) {
19 for (int col = 0; col < 4; ++col) {
20 result(row, col) = (*flatbuffer.data())[row * 4 + col];
21 }
22 }
23 return result;
24}
James Kuszmaul958b21e2020-02-26 21:51:40 -080025
James Kuszmaulc6723cf2020-03-01 14:45:59 -080026// Indices of the pis to use.
27const std::array<std::string, 3> kPisToUse{"pi1", "pi2", "pi3"};
28
James Kuszmaul5398fae2020-02-17 16:44:03 -080029} // namespace
30
31Localizer::Localizer(
32 aos::EventLoop *event_loop,
33 const frc971::control_loops::drivetrain::DrivetrainConfig<double>
34 &dt_config)
James Kuszmaul958b21e2020-02-26 21:51:40 -080035 : event_loop_(event_loop),
36 dt_config_(dt_config),
37 ekf_(dt_config),
38 clock_offset_fetcher_(
39 event_loop_->MakeFetcher<aos::message_bridge::ServerStatistics>(
40 "/aos")) {
James Kuszmaul5398fae2020-02-17 16:44:03 -080041 // TODO(james): This doesn't really need to be a watcher; we could just use a
42 // fetcher for the superstructure status.
43 // This probably should be a Fetcher instead of a Watcher, but this
44 // seems simpler for the time being (although technically it should be
45 // possible to do everything we need to using just a Fetcher without
46 // even maintaining a separate buffer, but that seems overly cute).
47 event_loop_->MakeWatcher("/superstructure",
48 [this](const superstructure::Status &status) {
49 HandleSuperstructureStatus(status);
50 });
51
James Kuszmaul286b4282020-02-26 20:29:32 -080052 event_loop->OnRun([this, event_loop]() {
53 ekf_.ResetInitialState(event_loop->monotonic_now(), Ekf::State::Zero(),
54 ekf_.P());
55 });
56
James Kuszmaulc6723cf2020-03-01 14:45:59 -080057 for (const auto &pi : kPisToUse) {
58 image_fetchers_.emplace_back(
59 event_loop_->MakeFetcher<frc971::vision::sift::ImageMatchResult>(
60 "/" + pi + "/camera"));
61 }
James Kuszmaul5398fae2020-02-17 16:44:03 -080062
63 target_selector_.set_has_target(false);
64}
65
66void Localizer::HandleSuperstructureStatus(
67 const y2020::control_loops::superstructure::Status &status) {
68 CHECK(status.has_turret());
69 turret_data_.Push({event_loop_->monotonic_now(), status.turret()->position(),
70 status.turret()->velocity()});
71}
72
73Localizer::TurretData Localizer::GetTurretDataForTime(
74 aos::monotonic_clock::time_point time) {
75 if (turret_data_.empty()) {
76 return {};
77 }
78
79 aos::monotonic_clock::duration lowest_time_error =
80 aos::monotonic_clock::duration::max();
81 TurretData best_data_match;
82 for (const auto &sample : turret_data_) {
83 const aos::monotonic_clock::duration time_error =
84 std::chrono::abs(sample.receive_time - time);
85 if (time_error < lowest_time_error) {
86 lowest_time_error = time_error;
87 best_data_match = sample;
88 }
89 }
90 return best_data_match;
91}
92
93void Localizer::Update(const ::Eigen::Matrix<double, 2, 1> &U,
94 aos::monotonic_clock::time_point now,
95 double left_encoder, double right_encoder,
96 double gyro_rate, const Eigen::Vector3d &accel) {
James Kuszmaul58cb1fe2020-03-07 16:18:59 -080097 ekf_.UpdateEncodersAndGyro(left_encoder, right_encoder, gyro_rate, U, accel,
98 now);
James Kuszmaulc6723cf2020-03-01 14:45:59 -080099 for (size_t ii = 0; ii < kPisToUse.size(); ++ii) {
100 auto &image_fetcher = image_fetchers_[ii];
James Kuszmaul5398fae2020-02-17 16:44:03 -0800101 while (image_fetcher.FetchNext()) {
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800102 HandleImageMatch(kPisToUse[ii], *image_fetcher, now);
James Kuszmaul5398fae2020-02-17 16:44:03 -0800103 }
104 }
James Kuszmaul5398fae2020-02-17 16:44:03 -0800105}
106
107void Localizer::HandleImageMatch(
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800108 std::string_view pi, const frc971::vision::sift::ImageMatchResult &result,
109 aos::monotonic_clock::time_point now) {
James Kuszmaul958b21e2020-02-26 21:51:40 -0800110 std::chrono::nanoseconds monotonic_offset(0);
111 clock_offset_fetcher_.Fetch();
112 if (clock_offset_fetcher_.get() != nullptr) {
113 for (const auto connection : *clock_offset_fetcher_->connections()) {
114 if (connection->has_node() && connection->node()->has_name() &&
James Kuszmaulc6723cf2020-03-01 14:45:59 -0800115 connection->node()->name()->string_view() == pi) {
James Kuszmaul958b21e2020-02-26 21:51:40 -0800116 monotonic_offset =
117 std::chrono::nanoseconds(connection->monotonic_offset());
118 break;
119 }
120 }
121 }
James Kuszmaul5398fae2020-02-17 16:44:03 -0800122 aos::monotonic_clock::time_point capture_time(
James Kuszmaul958b21e2020-02-26 21:51:40 -0800123 std::chrono::nanoseconds(result.image_monotonic_timestamp_ns()) -
124 monotonic_offset);
James Kuszmaul2d8fa2a2020-03-01 13:51:50 -0800125 VLOG(1) << "Got monotonic offset of "
126 << aos::time::DurationInSeconds(monotonic_offset)
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800127 << " when at time of " << now << " and capture time estimate of "
128 << capture_time;
129 if (capture_time > now) {
James Kuszmaul2d8fa2a2020-03-01 13:51:50 -0800130 LOG(WARNING) << "Got camera frame from the future.";
131 return;
132 }
James Kuszmaul5398fae2020-02-17 16:44:03 -0800133 CHECK(result.has_camera_calibration());
134 // Per the ImageMatchResult specification, we can actually determine whether
135 // the camera is the turret camera just from the presence of the
136 // turret_extrinsics member.
137 const bool is_turret = result.camera_calibration()->has_turret_extrinsics();
138 const TurretData turret_data = GetTurretDataForTime(capture_time);
139 // Ignore readings when the turret is spinning too fast, on the assumption
140 // that the odds of screwing up the time compensation are higher.
141 // Note that the current number here is chosen pretty arbitrarily--1 rad / sec
142 // seems reasonable, but may be unnecessarily low or high.
143 constexpr double kMaxTurretVelocity = 1.0;
144 if (is_turret && std::abs(turret_data.velocity) > kMaxTurretVelocity) {
145 return;
146 }
147 CHECK(result.camera_calibration()->has_fixed_extrinsics());
148 const Eigen::Matrix<double, 4, 4> fixed_extrinsics =
149 FlatbufferToTransformationMatrix(
150 *result.camera_calibration()->fixed_extrinsics());
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800151
James Kuszmaul5398fae2020-02-17 16:44:03 -0800152 // Calculate the pose of the camera relative to the robot origin.
James Kuszmaulc51dbfe2020-02-23 15:39:00 -0800153 Eigen::Matrix<double, 4, 4> H_robot_camera = fixed_extrinsics;
James Kuszmaul5398fae2020-02-17 16:44:03 -0800154 if (is_turret) {
James Kuszmaulc51dbfe2020-02-23 15:39:00 -0800155 H_robot_camera = H_robot_camera *
James Kuszmaul5398fae2020-02-17 16:44:03 -0800156 frc971::control_loops::TransformationMatrixForYaw(
157 turret_data.position) *
158 FlatbufferToTransformationMatrix(
159 *result.camera_calibration()->turret_extrinsics());
160 }
161
162 if (!result.has_camera_poses()) {
163 return;
164 }
165
166 for (const frc971::vision::sift::CameraPose *vision_result :
167 *result.camera_poses()) {
168 if (!vision_result->has_camera_to_target() ||
169 !vision_result->has_field_to_target()) {
170 continue;
171 }
James Kuszmaulc51dbfe2020-02-23 15:39:00 -0800172 const Eigen::Matrix<double, 4, 4> H_camera_target =
James Kuszmaul5398fae2020-02-17 16:44:03 -0800173 FlatbufferToTransformationMatrix(*vision_result->camera_to_target());
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800174
James Kuszmaulc51dbfe2020-02-23 15:39:00 -0800175 const Eigen::Matrix<double, 4, 4> H_field_target =
James Kuszmaul5398fae2020-02-17 16:44:03 -0800176 FlatbufferToTransformationMatrix(*vision_result->field_to_target());
177 // Back out the robot position that is implied by the current camera
178 // reading.
James Kuszmaulc51dbfe2020-02-23 15:39:00 -0800179 const Pose measured_pose(H_field_target *
180 (H_robot_camera * H_camera_target).inverse());
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800181 Eigen::Matrix<double, 3, 1> Z(measured_pose.rel_pos().x(),
182 measured_pose.rel_pos().y(),
183 measured_pose.rel_theta());
184 // Pose of the target in the robot frame.
185 Pose pose_robot_target(H_robot_camera * H_camera_target);
186 // This code overrides the pose sent directly from the camera code and
187 // effectively distills it down to just a distance + heading estimate, on
188 // the presumption that these signals will tend to be much lower noise and
189 // better-conditioned than other portions of the robot pose.
190 // As such, this code assumes that the current estimate of the robot
191 // heading is correct and then, given the heading from the camera to the
192 // target and the distance from the camera to the target, calculates the
193 // position that the robot would have to be at to make the current camera
194 // heading + distance correct. This X/Y implied robot position is then
195 // used as the measurement in the EKF, rather than the X/Y that is
196 // directly returned from the vision processing. This means that
197 // the cameras will not correct any drift in the robot heading estimate
198 // but will compensate for X/Y position in a way that prioritizes keeping
199 // an accurate distance + heading to the goal.
200 {
201 // TODO(james): This doesn't do time-compensation properly--it uses the
202 // current robot heading to calculate an implied pose, rather than using
203 // the heading from when the picture was taken.
204
205 // Calculate the heading to the robot in the target's coordinate frame.
206 const double implied_heading_from_target = aos::math::NormalizeAngle(
207 pose_robot_target.heading() + M_PI + theta());
208 const double implied_distance = pose_robot_target.xy_norm();
209 const Eigen::Vector4d robot_pose_in_target_frame(
210 implied_distance * std::cos(implied_heading_from_target),
211 implied_distance * std::sin(implied_heading_from_target), 0, 1);
212 const Eigen::Vector4d implied_pose =
213 H_field_target * robot_pose_in_target_frame;
214 Z.x() = implied_pose.x();
215 Z.y() = implied_pose.y();
216 }
James Kuszmaul5398fae2020-02-17 16:44:03 -0800217 // TODO(james): Figure out how to properly handle calculating the
218 // noise. Currently, the values are deliberately tuned so that image updates
219 // will not be trusted overly much. In theory, we should probably also be
220 // populating some cross-correlation terms.
221 // Note that these are the noise standard deviations (they are squared below
222 // to get variances).
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800223 Eigen::Matrix<double, 3, 1> noises(2.0, 2.0, 0.2);
James Kuszmaul5398fae2020-02-17 16:44:03 -0800224 // Augment the noise by the approximate rotational speed of the
225 // camera. This should help account for the fact that, while we are
226 // spinning, slight timing errors in the camera/turret data will tend to
227 // have mutch more drastic effects on the results.
228 noises *= 1.0 + std::abs((right_velocity() - left_velocity()) /
229 (2.0 * dt_config_.robot_radius) +
230 (is_turret ? turret_data.velocity : 0.0));
231 Eigen::Matrix3d R = Eigen::Matrix3d::Zero();
232 R.diagonal() = noises.cwiseAbs2();
233 Eigen::Matrix<double, HybridEkf::kNOutputs, HybridEkf::kNStates> H;
234 H.setZero();
235 H(0, StateIdx::kX) = 1;
236 H(1, StateIdx::kY) = 1;
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800237 // This is currently set to zero because we ignore the heading implied by
238 // the camera.
239 H(2, StateIdx::kTheta) = 0;
240 VLOG(1) << "Pose implied by target: " << Z.transpose()
241 << " and current pose " << x() << ", " << y() << ", " << theta()
242 << " Heading/dist/skew implied by target: "
243 << pose_robot_target.ToHeadingDistanceSkew().transpose();
James Kuszmauladd40ca2020-03-01 14:10:50 -0800244 // If the heading is off by too much, assume that we got a false-positive
245 // and don't use the correction.
246 if (std::abs(aos::math::DiffAngle(theta(), Z(2))) > M_PI_2) {
247 AOS_LOG(WARNING, "Dropped image match due to heading mismatch.\n");
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800248 continue;
James Kuszmauladd40ca2020-03-01 14:10:50 -0800249 }
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800250 // Just in case we ever do encounter any, drop measurements if they have
251 // non-finite numbers.
252 if (!Z.allFinite()) {
253 AOS_LOG(WARNING, "Got measurement with infinites or NaNs.\n");
254 continue;
255 }
256 ekf_.Correct(
257 Z, nullptr, {},
258 [H, Z](const State &X, const Input &) {
259 Eigen::Vector3d Zhat = H * X;
260 // In order to deal with wrapping of the angle, calculate an expected
261 // angle that is in the range (Z(2) - pi, Z(2) + pi].
262 const double angle_error =
263 aos::math::NormalizeAngle(X(StateIdx::kTheta) - Z(2));
264 Zhat(2) = Z(2) + angle_error;
265 // If the measurement implies that we are too far from the current
266 // estimate, then ignore it.
267 // Note that I am not entirely sure how much effect this actually has,
268 // because I primarily introduced it to make sure that any grossly
269 // invalid measurements get thrown out.
270 if ((Zhat - Z).squaredNorm() > std::pow(10.0, 2)) {
271 return Z;
272 }
273 return Zhat;
274 },
275 [H](const State &) { return H; }, R, capture_time);
James Kuszmaul5398fae2020-02-17 16:44:03 -0800276 }
277}
278
279} // namespace drivetrain
280} // namespace control_loops
281} // namespace y2020