blob: 3059bf16baee223b20bf3cc249dbc9eac32f7f38 [file] [log] [blame]
James Kuszmaul5398fae2020-02-17 16:44:03 -08001#include "y2020/control_loops/drivetrain/localizer.h"
2
3#include "y2020/constants.h"
4
5namespace y2020 {
6namespace control_loops {
7namespace drivetrain {
8
9namespace {
10// Converts a flatbuffer TransformationMatrix to an Eigen matrix. Technically,
11// this should be able to do a single memcpy, but the extra verbosity here seems
12// appropriate.
James Kuszmauld478f872020-03-16 20:54:27 -070013Eigen::Matrix<float, 4, 4> FlatbufferToTransformationMatrix(
James Kuszmaul5398fae2020-02-17 16:44:03 -080014 const frc971::vision::sift::TransformationMatrix &flatbuffer) {
15 CHECK_EQ(16u, CHECK_NOTNULL(flatbuffer.data())->size());
James Kuszmauld478f872020-03-16 20:54:27 -070016 Eigen::Matrix<float, 4, 4> result;
James Kuszmaul5398fae2020-02-17 16:44:03 -080017 result.setIdentity();
18 for (int row = 0; row < 4; ++row) {
19 for (int col = 0; col < 4; ++col) {
20 result(row, col) = (*flatbuffer.data())[row * 4 + col];
21 }
22 }
23 return result;
24}
James Kuszmaul958b21e2020-02-26 21:51:40 -080025
James Kuszmaulc6723cf2020-03-01 14:45:59 -080026// Indices of the pis to use.
27const std::array<std::string, 3> kPisToUse{"pi1", "pi2", "pi3"};
28
James Kuszmaul66efe832020-03-16 19:38:33 -070029// Calculates the pose implied by the camera target, just based on
30// distance/heading components.
James Kuszmauld478f872020-03-16 20:54:27 -070031Eigen::Vector3f CalculateImpliedPose(const Localizer::State &X,
32 const Eigen::Matrix4f &H_field_target,
James Kuszmaul66efe832020-03-16 19:38:33 -070033 const Localizer::Pose &pose_robot_target) {
34 // This code overrides the pose sent directly from the camera code and
35 // effectively distills it down to just a distance + heading estimate, on
36 // the presumption that these signals will tend to be much lower noise and
37 // better-conditioned than other portions of the robot pose.
38 // As such, this code assumes that the current estimate of the robot
39 // heading is correct and then, given the heading from the camera to the
40 // target and the distance from the camera to the target, calculates the
41 // position that the robot would have to be at to make the current camera
42 // heading + distance correct. This X/Y implied robot position is then
43 // used as the measurement in the EKF, rather than the X/Y that is
44 // directly returned from the vision processing. This means that
45 // the cameras will not correct any drift in the robot heading estimate
46 // but will compensate for X/Y position in a way that prioritizes keeping
47 // an accurate distance + heading to the goal.
48
49 // Calculate the heading to the robot in the target's coordinate frame.
James Kuszmauld478f872020-03-16 20:54:27 -070050 const float implied_heading_from_target = aos::math::NormalizeAngle(
James Kuszmaul66efe832020-03-16 19:38:33 -070051 pose_robot_target.heading() + M_PI + X(Localizer::StateIdx::kTheta));
James Kuszmauld478f872020-03-16 20:54:27 -070052 const float implied_distance = pose_robot_target.xy_norm();
53 const Eigen::Vector4f robot_pose_in_target_frame(
James Kuszmaul66efe832020-03-16 19:38:33 -070054 implied_distance * std::cos(implied_heading_from_target),
55 implied_distance * std::sin(implied_heading_from_target), 0, 1);
James Kuszmauld478f872020-03-16 20:54:27 -070056 const Eigen::Vector4f implied_pose =
James Kuszmaul66efe832020-03-16 19:38:33 -070057 H_field_target * robot_pose_in_target_frame;
58 return implied_pose.topRows<3>();
59}
60
James Kuszmaul5398fae2020-02-17 16:44:03 -080061} // namespace
62
63Localizer::Localizer(
64 aos::EventLoop *event_loop,
65 const frc971::control_loops::drivetrain::DrivetrainConfig<double>
66 &dt_config)
James Kuszmaul958b21e2020-02-26 21:51:40 -080067 : event_loop_(event_loop),
68 dt_config_(dt_config),
69 ekf_(dt_config),
70 clock_offset_fetcher_(
71 event_loop_->MakeFetcher<aos::message_bridge::ServerStatistics>(
72 "/aos")) {
James Kuszmaul91aa0cf2021-02-13 13:15:06 -080073 // TODO(james): The down estimator has trouble handling situations where the
74 // robot is constantly wiggling but not actually moving much, and can cause
75 // drift when using accelerometer readings.
76 ekf_.set_ignore_accel(true);
James Kuszmaul5398fae2020-02-17 16:44:03 -080077 // TODO(james): This doesn't really need to be a watcher; we could just use a
78 // fetcher for the superstructure status.
79 // This probably should be a Fetcher instead of a Watcher, but this
80 // seems simpler for the time being (although technically it should be
81 // possible to do everything we need to using just a Fetcher without
82 // even maintaining a separate buffer, but that seems overly cute).
83 event_loop_->MakeWatcher("/superstructure",
84 [this](const superstructure::Status &status) {
85 HandleSuperstructureStatus(status);
86 });
87
James Kuszmaul286b4282020-02-26 20:29:32 -080088 event_loop->OnRun([this, event_loop]() {
James Kuszmauld478f872020-03-16 20:54:27 -070089 ekf_.ResetInitialState(event_loop->monotonic_now(),
90 HybridEkf::State::Zero(), ekf_.P());
James Kuszmaul286b4282020-02-26 20:29:32 -080091 });
92
James Kuszmaulc6723cf2020-03-01 14:45:59 -080093 for (const auto &pi : kPisToUse) {
94 image_fetchers_.emplace_back(
95 event_loop_->MakeFetcher<frc971::vision::sift::ImageMatchResult>(
96 "/" + pi + "/camera"));
97 }
James Kuszmaul5398fae2020-02-17 16:44:03 -080098
99 target_selector_.set_has_target(false);
100}
101
James Kuszmaulbcd96fc2020-10-12 20:29:32 -0700102void Localizer::Reset(
103 aos::monotonic_clock::time_point t,
104 const frc971::control_loops::drivetrain::HybridEkf<double>::State &state) {
105 // Go through and clear out all of the fetchers so that we don't get behind.
106 for (auto &fetcher : image_fetchers_) {
107 fetcher.Fetch();
108 }
109 ekf_.ResetInitialState(t, state.cast<float>(), ekf_.P());
110}
111
James Kuszmaul5398fae2020-02-17 16:44:03 -0800112void Localizer::HandleSuperstructureStatus(
113 const y2020::control_loops::superstructure::Status &status) {
114 CHECK(status.has_turret());
115 turret_data_.Push({event_loop_->monotonic_now(), status.turret()->position(),
116 status.turret()->velocity()});
117}
118
119Localizer::TurretData Localizer::GetTurretDataForTime(
120 aos::monotonic_clock::time_point time) {
121 if (turret_data_.empty()) {
122 return {};
123 }
124
125 aos::monotonic_clock::duration lowest_time_error =
126 aos::monotonic_clock::duration::max();
127 TurretData best_data_match;
128 for (const auto &sample : turret_data_) {
129 const aos::monotonic_clock::duration time_error =
130 std::chrono::abs(sample.receive_time - time);
131 if (time_error < lowest_time_error) {
132 lowest_time_error = time_error;
133 best_data_match = sample;
134 }
135 }
136 return best_data_match;
137}
138
James Kuszmaul06257f42020-05-09 15:40:09 -0700139void Localizer::Update(const Eigen::Matrix<double, 2, 1> &U,
James Kuszmaul5398fae2020-02-17 16:44:03 -0800140 aos::monotonic_clock::time_point now,
141 double left_encoder, double right_encoder,
142 double gyro_rate, const Eigen::Vector3d &accel) {
James Kuszmauld478f872020-03-16 20:54:27 -0700143 ekf_.UpdateEncodersAndGyro(left_encoder, right_encoder, gyro_rate,
144 U.cast<float>(), accel.cast<float>(), now);
James Kuszmaulc6723cf2020-03-01 14:45:59 -0800145 for (size_t ii = 0; ii < kPisToUse.size(); ++ii) {
146 auto &image_fetcher = image_fetchers_[ii];
James Kuszmaul5398fae2020-02-17 16:44:03 -0800147 while (image_fetcher.FetchNext()) {
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800148 HandleImageMatch(kPisToUse[ii], *image_fetcher, now);
James Kuszmaul5398fae2020-02-17 16:44:03 -0800149 }
150 }
James Kuszmaul5398fae2020-02-17 16:44:03 -0800151}
152
153void Localizer::HandleImageMatch(
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800154 std::string_view pi, const frc971::vision::sift::ImageMatchResult &result,
155 aos::monotonic_clock::time_point now) {
James Kuszmaul958b21e2020-02-26 21:51:40 -0800156 std::chrono::nanoseconds monotonic_offset(0);
157 clock_offset_fetcher_.Fetch();
158 if (clock_offset_fetcher_.get() != nullptr) {
159 for (const auto connection : *clock_offset_fetcher_->connections()) {
160 if (connection->has_node() && connection->node()->has_name() &&
James Kuszmaulc6723cf2020-03-01 14:45:59 -0800161 connection->node()->name()->string_view() == pi) {
James Kuszmaul958b21e2020-02-26 21:51:40 -0800162 monotonic_offset =
163 std::chrono::nanoseconds(connection->monotonic_offset());
164 break;
165 }
166 }
167 }
James Kuszmaul5398fae2020-02-17 16:44:03 -0800168 aos::monotonic_clock::time_point capture_time(
James Kuszmaul958b21e2020-02-26 21:51:40 -0800169 std::chrono::nanoseconds(result.image_monotonic_timestamp_ns()) -
170 monotonic_offset);
James Kuszmaul2d8fa2a2020-03-01 13:51:50 -0800171 VLOG(1) << "Got monotonic offset of "
172 << aos::time::DurationInSeconds(monotonic_offset)
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800173 << " when at time of " << now << " and capture time estimate of "
174 << capture_time;
175 if (capture_time > now) {
James Kuszmaul2d8fa2a2020-03-01 13:51:50 -0800176 LOG(WARNING) << "Got camera frame from the future.";
177 return;
178 }
James Kuszmaulbcd96fc2020-10-12 20:29:32 -0700179 if (!result.has_camera_calibration()) {
180 LOG(WARNING) << "Got camera frame without calibration data.";
181 return;
182 }
James Kuszmaul5398fae2020-02-17 16:44:03 -0800183 // Per the ImageMatchResult specification, we can actually determine whether
184 // the camera is the turret camera just from the presence of the
185 // turret_extrinsics member.
186 const bool is_turret = result.camera_calibration()->has_turret_extrinsics();
187 const TurretData turret_data = GetTurretDataForTime(capture_time);
188 // Ignore readings when the turret is spinning too fast, on the assumption
189 // that the odds of screwing up the time compensation are higher.
190 // Note that the current number here is chosen pretty arbitrarily--1 rad / sec
191 // seems reasonable, but may be unnecessarily low or high.
James Kuszmauld478f872020-03-16 20:54:27 -0700192 constexpr float kMaxTurretVelocity = 1.0;
James Kuszmaul5398fae2020-02-17 16:44:03 -0800193 if (is_turret && std::abs(turret_data.velocity) > kMaxTurretVelocity) {
194 return;
195 }
196 CHECK(result.camera_calibration()->has_fixed_extrinsics());
James Kuszmauld478f872020-03-16 20:54:27 -0700197 const Eigen::Matrix<float, 4, 4> fixed_extrinsics =
James Kuszmaul5398fae2020-02-17 16:44:03 -0800198 FlatbufferToTransformationMatrix(
199 *result.camera_calibration()->fixed_extrinsics());
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800200
James Kuszmaul5398fae2020-02-17 16:44:03 -0800201 // Calculate the pose of the camera relative to the robot origin.
James Kuszmauld478f872020-03-16 20:54:27 -0700202 Eigen::Matrix<float, 4, 4> H_robot_camera = fixed_extrinsics;
James Kuszmaul5398fae2020-02-17 16:44:03 -0800203 if (is_turret) {
James Kuszmaulc51dbfe2020-02-23 15:39:00 -0800204 H_robot_camera = H_robot_camera *
James Kuszmauld478f872020-03-16 20:54:27 -0700205 frc971::control_loops::TransformationMatrixForYaw<float>(
James Kuszmaul5398fae2020-02-17 16:44:03 -0800206 turret_data.position) *
207 FlatbufferToTransformationMatrix(
208 *result.camera_calibration()->turret_extrinsics());
209 }
210
211 if (!result.has_camera_poses()) {
212 return;
213 }
214
215 for (const frc971::vision::sift::CameraPose *vision_result :
216 *result.camera_poses()) {
217 if (!vision_result->has_camera_to_target() ||
218 !vision_result->has_field_to_target()) {
219 continue;
220 }
James Kuszmauld478f872020-03-16 20:54:27 -0700221 const Eigen::Matrix<float, 4, 4> H_camera_target =
James Kuszmaul5398fae2020-02-17 16:44:03 -0800222 FlatbufferToTransformationMatrix(*vision_result->camera_to_target());
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800223
James Kuszmauld478f872020-03-16 20:54:27 -0700224 const Eigen::Matrix<float, 4, 4> H_field_target =
James Kuszmaul5398fae2020-02-17 16:44:03 -0800225 FlatbufferToTransformationMatrix(*vision_result->field_to_target());
226 // Back out the robot position that is implied by the current camera
227 // reading.
James Kuszmaulc51dbfe2020-02-23 15:39:00 -0800228 const Pose measured_pose(H_field_target *
229 (H_robot_camera * H_camera_target).inverse());
James Kuszmaul66efe832020-03-16 19:38:33 -0700230 // This "Z" is the robot pose directly implied by the camera results.
231 // Currently, we do not actually use this result directly. However, it is
232 // kept around in case we want to quickly re-enable it.
James Kuszmauld478f872020-03-16 20:54:27 -0700233 const Eigen::Matrix<float, 3, 1> Z(measured_pose.rel_pos().x(),
234 measured_pose.rel_pos().y(),
235 measured_pose.rel_theta());
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800236 // Pose of the target in the robot frame.
237 Pose pose_robot_target(H_robot_camera * H_camera_target);
James Kuszmaul5398fae2020-02-17 16:44:03 -0800238 // TODO(james): Figure out how to properly handle calculating the
239 // noise. Currently, the values are deliberately tuned so that image updates
240 // will not be trusted overly much. In theory, we should probably also be
241 // populating some cross-correlation terms.
242 // Note that these are the noise standard deviations (they are squared below
243 // to get variances).
James Kuszmauld478f872020-03-16 20:54:27 -0700244 Eigen::Matrix<float, 3, 1> noises(2.0, 2.0, 0.2);
James Kuszmaul5398fae2020-02-17 16:44:03 -0800245 // Augment the noise by the approximate rotational speed of the
246 // camera. This should help account for the fact that, while we are
247 // spinning, slight timing errors in the camera/turret data will tend to
248 // have mutch more drastic effects on the results.
249 noises *= 1.0 + std::abs((right_velocity() - left_velocity()) /
250 (2.0 * dt_config_.robot_radius) +
251 (is_turret ? turret_data.velocity : 0.0));
James Kuszmauld478f872020-03-16 20:54:27 -0700252 Eigen::Matrix3f R = Eigen::Matrix3f::Zero();
James Kuszmaul5398fae2020-02-17 16:44:03 -0800253 R.diagonal() = noises.cwiseAbs2();
James Kuszmauld478f872020-03-16 20:54:27 -0700254 Eigen::Matrix<float, HybridEkf::kNOutputs, HybridEkf::kNStates> H;
James Kuszmaul5398fae2020-02-17 16:44:03 -0800255 H.setZero();
256 H(0, StateIdx::kX) = 1;
257 H(1, StateIdx::kY) = 1;
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800258 // This is currently set to zero because we ignore the heading implied by
259 // the camera.
260 H(2, StateIdx::kTheta) = 0;
261 VLOG(1) << "Pose implied by target: " << Z.transpose()
262 << " and current pose " << x() << ", " << y() << ", " << theta()
263 << " Heading/dist/skew implied by target: "
264 << pose_robot_target.ToHeadingDistanceSkew().transpose();
James Kuszmauladd40ca2020-03-01 14:10:50 -0800265 // If the heading is off by too much, assume that we got a false-positive
266 // and don't use the correction.
James Kuszmauld478f872020-03-16 20:54:27 -0700267 if (std::abs(aos::math::DiffAngle<float>(theta(), Z(2))) > M_PI_2) {
James Kuszmauladd40ca2020-03-01 14:10:50 -0800268 AOS_LOG(WARNING, "Dropped image match due to heading mismatch.\n");
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800269 continue;
James Kuszmauladd40ca2020-03-01 14:10:50 -0800270 }
James Kuszmaul06257f42020-05-09 15:40:09 -0700271 // In order to do the EKF correction, we determine the expected state based
272 // on the state at the time the image was captured; however, we insert the
273 // correction update itself at the current time. This is technically not
274 // quite correct, but saves substantial CPU usage by making it so that we
275 // don't have to constantly rewind the entire EKF history.
276 const std::optional<State> state_at_capture =
277 ekf_.LastStateBeforeTime(capture_time);
278 if (!state_at_capture.has_value()) {
279 AOS_LOG(WARNING, "Dropped image match due to age of image.\n");
280 continue;
281 }
282 const Input U = ekf_.MostRecentInput();
James Kuszmaul66efe832020-03-16 19:38:33 -0700283 // For the correction step, instead of passing in the measurement directly,
284 // we pass in (0, 0, 0) as the measurement and then for the expected
285 // measurement (Zhat) we calculate the error between the implied and actual
286 // poses. This doesn't affect any of the math, it just makes the code a bit
287 // more convenient to write given the Correct() interface we already have.
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800288 ekf_.Correct(
James Kuszmaul06257f42020-05-09 15:40:09 -0700289 Eigen::Vector3f::Zero(), &U, {},
290 [H, H_field_target, pose_robot_target, state_at_capture](
291 const State &, const Input &) -> Eigen::Vector3f {
292 const Eigen::Vector3f Z = CalculateImpliedPose(
293 state_at_capture.value(), H_field_target, pose_robot_target);
James Kuszmaul66efe832020-03-16 19:38:33 -0700294 // Just in case we ever do encounter any, drop measurements if they
295 // have non-finite numbers.
296 if (!Z.allFinite()) {
297 AOS_LOG(WARNING, "Got measurement with infinites or NaNs.\n");
James Kuszmauld478f872020-03-16 20:54:27 -0700298 return Eigen::Vector3f::Zero();
James Kuszmaul66efe832020-03-16 19:38:33 -0700299 }
James Kuszmaul06257f42020-05-09 15:40:09 -0700300 Eigen::Vector3f Zhat = H * state_at_capture.value() - Z;
James Kuszmaul66efe832020-03-16 19:38:33 -0700301 // Rewrap angle difference to put it back in range. Note that this
302 // component of the error is currently ignored (see definition of H
303 // above).
304 Zhat(2) = aos::math::NormalizeAngle(Zhat(2));
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800305 // If the measurement implies that we are too far from the current
306 // estimate, then ignore it.
307 // Note that I am not entirely sure how much effect this actually has,
308 // because I primarily introduced it to make sure that any grossly
309 // invalid measurements get thrown out.
James Kuszmaul66efe832020-03-16 19:38:33 -0700310 if (Zhat.squaredNorm() > std::pow(10.0, 2)) {
James Kuszmauld478f872020-03-16 20:54:27 -0700311 return Eigen::Vector3f::Zero();
James Kuszmaul58cb1fe2020-03-07 16:18:59 -0800312 }
313 return Zhat;
314 },
James Kuszmaul06257f42020-05-09 15:40:09 -0700315 [H](const State &) { return H; }, R, now);
James Kuszmaul5398fae2020-02-17 16:44:03 -0800316 }
317}
318
319} // namespace drivetrain
320} // namespace control_loops
321} // namespace y2020