blob: 15bcf3d0c4cd05a3f469e53ebcc6c660cd43e366 [file] [log] [blame]
Milind Upadhyay7c205222022-11-16 18:20:58 -08001#include "frc971/vision/target_mapper.h"
2
Milind Upadhyayc5beba12022-12-17 17:41:20 -08003#include "absl/strings/str_format.h"
Philipp Schrader790cb542023-07-05 21:06:52 -07004
Milind Upadhyay7c205222022-11-16 18:20:58 -08005#include "frc971/control_loops/control_loop.h"
Milind Upadhyayc5beba12022-12-17 17:41:20 -08006#include "frc971/vision/ceres/pose_graph_3d_error_term.h"
Milind Upadhyay7c205222022-11-16 18:20:58 -08007#include "frc971/vision/geometry.h"
8
9DEFINE_uint64(max_num_iterations, 100,
10 "Maximum number of iterations for the ceres solver");
milind-ud62f80a2023-03-04 16:37:09 -080011DEFINE_double(distortion_noise_scalar, 1.0,
12 "Scale the target pose distortion factor by this when computing "
13 "the noise.");
milind-u8f4e43e2023-04-09 17:11:19 -070014DEFINE_int32(
milind-u6ff399f2023-03-24 18:33:38 -070015 frozen_target_id, 1,
16 "Freeze the pose of this target so the map can have one fixed point.");
milind-u8f4e43e2023-04-09 17:11:19 -070017DEFINE_int32(min_target_id, 1, "Minimum target id to solve for");
18DEFINE_int32(max_target_id, 8, "Maximum target id to solve for");
19DEFINE_bool(visualize_solver, false, "If true, visualize the solving process.");
milind-u401de982023-04-14 17:32:03 -070020// This does seem like a strict threshold for a constaint to be considered an
21// outlier, but most inliers were very close together and this is what worked
22// best for map solving.
23DEFINE_double(outlier_std_devs, 1.0,
24 "Number of standard deviations above average error needed for a "
25 "constraint to be considered an outlier and get removed.");
Jim Ostrowski463ee592024-03-07 00:08:24 -080026DEFINE_bool(do_map_fitting, false,
27 "Whether to do a final fit of the solved map to the original map");
Milind Upadhyay7c205222022-11-16 18:20:58 -080028
29namespace frc971::vision {
Milind Upadhyayc5beba12022-12-17 17:41:20 -080030Eigen::Affine3d PoseUtils::Pose3dToAffine3d(
31 const ceres::examples::Pose3d &pose3d) {
Milind Upadhyay7c205222022-11-16 18:20:58 -080032 Eigen::Affine3d H_world_pose =
Milind Upadhyayc5beba12022-12-17 17:41:20 -080033 Eigen::Translation3d(pose3d.p(0), pose3d.p(1), pose3d.p(2)) * pose3d.q;
Milind Upadhyay7c205222022-11-16 18:20:58 -080034 return H_world_pose;
35}
36
Milind Upadhyayc5beba12022-12-17 17:41:20 -080037ceres::examples::Pose3d PoseUtils::Affine3dToPose3d(const Eigen::Affine3d &H) {
38 return ceres::examples::Pose3d{.p = H.translation(),
39 .q = Eigen::Quaterniond(H.rotation())};
Milind Upadhyay7c205222022-11-16 18:20:58 -080040}
41
Milind Upadhyayc5beba12022-12-17 17:41:20 -080042ceres::examples::Pose3d PoseUtils::ComputeRelativePose(
43 const ceres::examples::Pose3d &pose_1,
44 const ceres::examples::Pose3d &pose_2) {
45 Eigen::Affine3d H_world_1 = Pose3dToAffine3d(pose_1);
46 Eigen::Affine3d H_world_2 = Pose3dToAffine3d(pose_2);
Milind Upadhyay7c205222022-11-16 18:20:58 -080047
48 // Get the location of 2 in the 1 frame
49 Eigen::Affine3d H_1_2 = H_world_1.inverse() * H_world_2;
Milind Upadhyayc5beba12022-12-17 17:41:20 -080050 return Affine3dToPose3d(H_1_2);
Milind Upadhyay7c205222022-11-16 18:20:58 -080051}
52
Milind Upadhyayc5beba12022-12-17 17:41:20 -080053ceres::examples::Pose3d PoseUtils::ComputeOffsetPose(
54 const ceres::examples::Pose3d &pose_1,
55 const ceres::examples::Pose3d &pose_2_relative) {
56 auto H_world_1 = Pose3dToAffine3d(pose_1);
57 auto H_1_2 = Pose3dToAffine3d(pose_2_relative);
Milind Upadhyay7c205222022-11-16 18:20:58 -080058 auto H_world_2 = H_world_1 * H_1_2;
59
Milind Upadhyayc5beba12022-12-17 17:41:20 -080060 return Affine3dToPose3d(H_world_2);
Milind Upadhyay7c205222022-11-16 18:20:58 -080061}
62
Milind Upadhyayc5beba12022-12-17 17:41:20 -080063Eigen::Quaterniond PoseUtils::EulerAnglesToQuaternion(
64 const Eigen::Vector3d &rpy) {
65 Eigen::AngleAxisd roll_angle(rpy.x(), Eigen::Vector3d::UnitX());
66 Eigen::AngleAxisd pitch_angle(rpy.y(), Eigen::Vector3d::UnitY());
67 Eigen::AngleAxisd yaw_angle(rpy.z(), Eigen::Vector3d::UnitZ());
68
69 return yaw_angle * pitch_angle * roll_angle;
Milind Upadhyay7c205222022-11-16 18:20:58 -080070}
71
Milind Upadhyayc5beba12022-12-17 17:41:20 -080072Eigen::Vector3d PoseUtils::QuaternionToEulerAngles(
73 const Eigen::Quaterniond &q) {
74 return RotationMatrixToEulerAngles(q.toRotationMatrix());
Milind Upadhyay7c205222022-11-16 18:20:58 -080075}
76
Milind Upadhyayc5beba12022-12-17 17:41:20 -080077Eigen::Vector3d PoseUtils::RotationMatrixToEulerAngles(
78 const Eigen::Matrix3d &R) {
79 double roll = aos::math::NormalizeAngle(std::atan2(R(2, 1), R(2, 2)));
80 double pitch = aos::math::NormalizeAngle(-std::asin(R(2, 0)));
81 double yaw = aos::math::NormalizeAngle(std::atan2(R(1, 0), R(0, 0)));
82
83 return Eigen::Vector3d(roll, pitch, yaw);
84}
85
milind-u3f5f83c2023-01-29 15:23:51 -080086flatbuffers::Offset<TargetPoseFbs> PoseUtils::TargetPoseToFbs(
87 const TargetMapper::TargetPose &target_pose,
88 flatbuffers::FlatBufferBuilder *fbb) {
89 const auto position_offset =
90 CreatePosition(*fbb, target_pose.pose.p(0), target_pose.pose.p(1),
91 target_pose.pose.p(2));
92 const auto orientation_offset =
93 CreateQuaternion(*fbb, target_pose.pose.q.w(), target_pose.pose.q.x(),
94 target_pose.pose.q.y(), target_pose.pose.q.z());
95 return CreateTargetPoseFbs(*fbb, target_pose.id, position_offset,
96 orientation_offset);
97}
98
99TargetMapper::TargetPose PoseUtils::TargetPoseFromFbs(
100 const TargetPoseFbs &target_pose_fbs) {
101 return {.id = static_cast<TargetMapper::TargetId>(target_pose_fbs.id()),
102 .pose = ceres::examples::Pose3d{
103 Eigen::Vector3d(target_pose_fbs.position()->x(),
104 target_pose_fbs.position()->y(),
105 target_pose_fbs.position()->z()),
106 Eigen::Quaterniond(target_pose_fbs.orientation()->w(),
107 target_pose_fbs.orientation()->x(),
108 target_pose_fbs.orientation()->y(),
James Kuszmaulfeb89082024-02-21 14:00:15 -0800109 target_pose_fbs.orientation()->z())
110 .normalized()}};
milind-u3f5f83c2023-01-29 15:23:51 -0800111}
112
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800113ceres::examples::VectorOfConstraints DataAdapter::MatchTargetDetections(
Milind Upadhyayec493912022-12-18 21:33:15 -0800114 const std::vector<DataAdapter::TimestampedDetection>
115 &timestamped_target_detections,
116 aos::distributed_clock::duration max_dt) {
117 CHECK_GE(timestamped_target_detections.size(), 2ul)
118 << "Must have at least 2 detections";
119
120 // Match consecutive detections
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800121 ceres::examples::VectorOfConstraints target_constraints;
milind-ud62f80a2023-03-04 16:37:09 -0800122 for (auto detection = timestamped_target_detections.begin() + 1;
123 detection < timestamped_target_detections.end(); detection++) {
124 auto last_detection = detection - 1;
Milind Upadhyayec493912022-12-18 21:33:15 -0800125
126 // Skip two consecutive detections of the same target, because the solver
127 // doesn't allow this
milind-ud62f80a2023-03-04 16:37:09 -0800128 if (detection->id == last_detection->id) {
Milind Upadhyayec493912022-12-18 21:33:15 -0800129 continue;
130 }
131
132 // Don't take into account constraints too far apart in time, because the
133 // recording device could have moved too much
milind-ud62f80a2023-03-04 16:37:09 -0800134 if ((detection->time - last_detection->time) > max_dt) {
Milind Upadhyayec493912022-12-18 21:33:15 -0800135 continue;
136 }
137
milind-ud62f80a2023-03-04 16:37:09 -0800138 auto confidence = ComputeConfidence(*last_detection, *detection);
Milind Upadhyayec493912022-12-18 21:33:15 -0800139 target_constraints.emplace_back(
milind-ud62f80a2023-03-04 16:37:09 -0800140 ComputeTargetConstraint(*last_detection, *detection, confidence));
Milind Upadhyayec493912022-12-18 21:33:15 -0800141 }
142
143 return target_constraints;
144}
145
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800146TargetMapper::ConfidenceMatrix DataAdapter::ComputeConfidence(
milind-ud62f80a2023-03-04 16:37:09 -0800147 const TimestampedDetection &detection_start,
148 const TimestampedDetection &detection_end) {
Milind Upadhyay7c205222022-11-16 18:20:58 -0800149 constexpr size_t kX = 0;
150 constexpr size_t kY = 1;
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800151 constexpr size_t kZ = 2;
152 constexpr size_t kOrientation1 = 3;
153 constexpr size_t kOrientation2 = 4;
154 constexpr size_t kOrientation3 = 5;
Milind Upadhyay7c205222022-11-16 18:20:58 -0800155
156 // Uncertainty matrix between start and end
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800157 TargetMapper::ConfidenceMatrix P = TargetMapper::ConfidenceMatrix::Zero();
Milind Upadhyay7c205222022-11-16 18:20:58 -0800158
159 {
160 // Noise for odometry-based robot position measurements
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800161 TargetMapper::ConfidenceMatrix Q_odometry =
162 TargetMapper::ConfidenceMatrix::Zero();
Milind Upadhyay7c205222022-11-16 18:20:58 -0800163 Q_odometry(kX, kX) = std::pow(0.045, 2);
164 Q_odometry(kY, kY) = std::pow(0.045, 2);
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800165 Q_odometry(kZ, kZ) = std::pow(0.045, 2);
166 Q_odometry(kOrientation1, kOrientation1) = std::pow(0.01, 2);
167 Q_odometry(kOrientation2, kOrientation2) = std::pow(0.01, 2);
168 Q_odometry(kOrientation3, kOrientation3) = std::pow(0.01, 2);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800169
170 // Add uncertainty for robot position measurements from start to end
milind-ud62f80a2023-03-04 16:37:09 -0800171 int iterations = (detection_end.time - detection_start.time) /
172 frc971::controls::kLoopFrequency;
Milind Upadhyay7c205222022-11-16 18:20:58 -0800173 P += static_cast<double>(iterations) * Q_odometry;
174 }
175
176 {
Milind Upadhyayebf93ee2023-01-05 14:12:58 -0800177 // Noise for vision-based target localizations. Multiplying this matrix by
milind-u6ff399f2023-03-24 18:33:38 -0700178 // the distance from camera to target squared results in the uncertainty
179 // in that measurement
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800180 TargetMapper::ConfidenceMatrix Q_vision =
181 TargetMapper::ConfidenceMatrix::Zero();
Milind Upadhyayebf93ee2023-01-05 14:12:58 -0800182 Q_vision(kX, kX) = std::pow(0.045, 2);
183 Q_vision(kY, kY) = std::pow(0.045, 2);
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800184 Q_vision(kZ, kZ) = std::pow(0.045, 2);
185 Q_vision(kOrientation1, kOrientation1) = std::pow(0.02, 2);
186 Q_vision(kOrientation2, kOrientation2) = std::pow(0.02, 2);
187 Q_vision(kOrientation3, kOrientation3) = std::pow(0.02, 2);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800188
189 // Add uncertainty for the 2 vision measurements (1 at start and 1 at end)
milind-ufbc5c812023-04-06 21:24:29 -0700190 P += Q_vision * std::pow(detection_start.distance_from_camera *
191 (1.0 + FLAGS_distortion_noise_scalar *
192 detection_start.distortion_factor),
193 2);
194 P += Q_vision * std::pow(detection_end.distance_from_camera *
195 (1.0 + FLAGS_distortion_noise_scalar *
196 detection_end.distortion_factor),
197 2);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800198 }
199
200 return P.inverse();
201}
202
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800203ceres::examples::Constraint3d DataAdapter::ComputeTargetConstraint(
Milind Upadhyay7c205222022-11-16 18:20:58 -0800204 const TimestampedDetection &target_detection_start,
Milind Upadhyay7c205222022-11-16 18:20:58 -0800205 const TimestampedDetection &target_detection_end,
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800206 const TargetMapper::ConfidenceMatrix &confidence) {
Milind Upadhyay7c205222022-11-16 18:20:58 -0800207 // Compute the relative pose (constraint) between the two targets
208 Eigen::Affine3d H_targetstart_targetend =
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800209 target_detection_start.H_robot_target.inverse() *
Milind Upadhyay7c205222022-11-16 18:20:58 -0800210 target_detection_end.H_robot_target;
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800211 ceres::examples::Pose3d target_constraint =
212 PoseUtils::Affine3dToPose3d(H_targetstart_targetend);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800213
milind-uf3ab8ba2023-02-04 17:56:16 -0800214 const auto constraint_3d =
215 ceres::examples::Constraint3d{target_detection_start.id,
216 target_detection_end.id,
217 {target_constraint.p, target_constraint.q},
218 confidence};
219
220 VLOG(2) << "Computed constraint: " << constraint_3d;
221 return constraint_3d;
Milind Upadhyayec493912022-12-18 21:33:15 -0800222}
223
Milind Upadhyay7c205222022-11-16 18:20:58 -0800224TargetMapper::TargetMapper(
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800225 std::string_view target_poses_path,
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800226 const ceres::examples::VectorOfConstraints &target_constraints)
milind-u8f4e43e2023-04-09 17:11:19 -0700227 : target_constraints_(target_constraints),
228 T_frozen_actual_(Eigen::Vector3d::Zero()),
229 R_frozen_actual_(Eigen::Quaterniond::Identity()),
Jim Ostrowski68e56172023-09-17 23:44:15 -0700230 vis_robot_(cv::Size(kImageWidth_, kImageHeight_)) {
Jim Ostrowski4527dd72024-03-07 00:20:15 -0800231 // Compute focal length so that image shows field with viewpoint at 10m above
232 // it (default for viewer)
233 const double focal_length = kImageWidth_ * 10.0 / kFieldWidth_;
234 vis_robot_.SetDefaultViewpoint(kImageWidth_, focal_length);
235
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800236 aos::FlatbufferDetachedBuffer<TargetMap> target_map =
237 aos::JsonFileToFlatbuffer<TargetMap>(target_poses_path);
238 for (const auto *target_pose_fbs : *target_map.message().target_poses()) {
milind-u8f4e43e2023-04-09 17:11:19 -0700239 ideal_target_poses_[target_pose_fbs->id()] =
milind-u3f5f83c2023-01-29 15:23:51 -0800240 PoseUtils::TargetPoseFromFbs(*target_pose_fbs).pose;
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800241 }
milind-u8f4e43e2023-04-09 17:11:19 -0700242 target_poses_ = ideal_target_poses_;
milind-u526d5672023-04-17 20:09:10 -0700243 CountConstraints();
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800244}
245
246TargetMapper::TargetMapper(
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800247 const ceres::examples::MapOfPoses &target_poses,
248 const ceres::examples::VectorOfConstraints &target_constraints)
milind-u8f4e43e2023-04-09 17:11:19 -0700249 : ideal_target_poses_(target_poses),
250 target_poses_(ideal_target_poses_),
251 target_constraints_(target_constraints),
252 T_frozen_actual_(Eigen::Vector3d::Zero()),
253 R_frozen_actual_(Eigen::Quaterniond::Identity()),
Jim Ostrowski68e56172023-09-17 23:44:15 -0700254 vis_robot_(cv::Size(kImageWidth_, kImageHeight_)) {
milind-u526d5672023-04-17 20:09:10 -0700255 CountConstraints();
256}
257
258namespace {
259std::pair<TargetMapper::TargetId, TargetMapper::TargetId> MakeIdPair(
260 const ceres::examples::Constraint3d &constraint) {
261 auto min_id = std::min(constraint.id_begin, constraint.id_end);
262 auto max_id = std::max(constraint.id_begin, constraint.id_end);
263 return std::make_pair(min_id, max_id);
264}
265} // namespace
266
267void TargetMapper::CountConstraints() {
268 for (const auto &constraint : target_constraints_) {
269 auto id_pair = MakeIdPair(constraint);
270 if (constraint_counts_.count(id_pair) == 0) {
271 constraint_counts_[id_pair] = 0;
272 }
273 constraint_counts_[id_pair]++;
274 }
275}
Milind Upadhyay7c205222022-11-16 18:20:58 -0800276
277std::optional<TargetMapper::TargetPose> TargetMapper::GetTargetPoseById(
278 std::vector<TargetMapper::TargetPose> target_poses, TargetId target_id) {
279 for (auto target_pose : target_poses) {
280 if (target_pose.id == target_id) {
281 return target_pose;
282 }
283 }
284
285 return std::nullopt;
286}
287
Jim Ostrowski49be8232023-03-23 01:00:14 -0700288std::optional<TargetMapper::TargetPose> TargetMapper::GetTargetPoseById(
milind-u2ab4db12023-03-25 21:59:23 -0700289 TargetId target_id) const {
Jim Ostrowski49be8232023-03-23 01:00:14 -0700290 if (target_poses_.count(target_id) > 0) {
milind-u2ab4db12023-03-25 21:59:23 -0700291 return TargetMapper::TargetPose{target_id, target_poses_.at(target_id)};
Jim Ostrowski49be8232023-03-23 01:00:14 -0700292 }
293
294 return std::nullopt;
295}
296
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800297// Taken from ceres/examples/slam/pose_graph_3d/pose_graph_3d.cc
298// Constructs the nonlinear least squares optimization problem from the pose
299// graph constraints.
milind-u8f4e43e2023-04-09 17:11:19 -0700300void TargetMapper::BuildTargetPoseOptimizationProblem(
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800301 const ceres::examples::VectorOfConstraints &constraints,
302 ceres::examples::MapOfPoses *poses, ceres::Problem *problem) {
303 CHECK(poses != nullptr);
304 CHECK(problem != nullptr);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800305 if (constraints.empty()) {
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800306 LOG(INFO) << "No constraints, no problem to optimize.";
Milind Upadhyay7c205222022-11-16 18:20:58 -0800307 return;
308 }
309
milind-u13ff1a52023-01-22 17:10:49 -0800310 ceres::LossFunction *loss_function = new ceres::HuberLoss(2.0);
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800311 ceres::LocalParameterization *quaternion_local_parameterization =
312 new ceres::EigenQuaternionParameterization;
Milind Upadhyay7c205222022-11-16 18:20:58 -0800313
Jim Ostrowski2f2685f2023-03-25 11:57:54 -0700314 int min_constraint_id = std::numeric_limits<int>::max();
315 int max_constraint_id = std::numeric_limits<int>::min();
316
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800317 for (ceres::examples::VectorOfConstraints::const_iterator constraints_iter =
318 constraints.begin();
Milind Upadhyay7c205222022-11-16 18:20:58 -0800319 constraints_iter != constraints.end(); ++constraints_iter) {
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800320 const ceres::examples::Constraint3d &constraint = *constraints_iter;
Milind Upadhyay7c205222022-11-16 18:20:58 -0800321
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800322 ceres::examples::MapOfPoses::iterator pose_begin_iter =
Milind Upadhyay7c205222022-11-16 18:20:58 -0800323 poses->find(constraint.id_begin);
324 CHECK(pose_begin_iter != poses->end())
325 << "Pose with ID: " << constraint.id_begin << " not found.";
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800326 ceres::examples::MapOfPoses::iterator pose_end_iter =
Milind Upadhyay7c205222022-11-16 18:20:58 -0800327 poses->find(constraint.id_end);
328 CHECK(pose_end_iter != poses->end())
329 << "Pose with ID: " << constraint.id_end << " not found.";
330
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800331 const Eigen::Matrix<double, 6, 6> sqrt_information =
Milind Upadhyay7c205222022-11-16 18:20:58 -0800332 constraint.information.llt().matrixL();
milind-u526d5672023-04-17 20:09:10 -0700333
334 auto id_pair = MakeIdPair(constraint);
335 CHECK_GT(constraint_counts_.count(id_pair), 0ul)
336 << "Should have counted constraints for " << id_pair.first << "->"
337 << id_pair.second;
338
Jim Ostrowski2f2685f2023-03-25 11:57:54 -0700339 VLOG(1) << "Adding constraint pair: " << id_pair.first << " and "
340 << id_pair.second;
341 // Store min & max id's; assumes first id < second id
342 if (id_pair.first < min_constraint_id) {
343 min_constraint_id = id_pair.first;
344 }
345 if (id_pair.second > max_constraint_id) {
346 max_constraint_id = id_pair.second;
347 }
Jim Ostrowski4527dd72024-03-07 00:20:15 -0800348 // Normalize constraint cost by occurrences
milind-u526d5672023-04-17 20:09:10 -0700349 size_t constraint_count = constraint_counts_[id_pair];
350 // Scale all costs so the total cost comes out to more reasonable numbers
351 constexpr double kGlobalWeight = 1000.0;
352 double constraint_weight =
353 kGlobalWeight / static_cast<double>(constraint_count);
354
Milind Upadhyay7c205222022-11-16 18:20:58 -0800355 // Ceres will take ownership of the pointer.
356 ceres::CostFunction *cost_function =
milind-u526d5672023-04-17 20:09:10 -0700357 ceres::examples::PoseGraph3dErrorTerm::Create(
358 constraint.t_be, sqrt_information, constraint_weight);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800359
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800360 problem->AddResidualBlock(cost_function, loss_function,
361 pose_begin_iter->second.p.data(),
362 pose_begin_iter->second.q.coeffs().data(),
363 pose_end_iter->second.p.data(),
364 pose_end_iter->second.q.coeffs().data());
365
366 problem->SetParameterization(pose_begin_iter->second.q.coeffs().data(),
367 quaternion_local_parameterization);
368 problem->SetParameterization(pose_end_iter->second.q.coeffs().data(),
369 quaternion_local_parameterization);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800370 }
371
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800372 // The pose graph optimization problem has six DOFs that are not fully
milind-u3f5f83c2023-01-29 15:23:51 -0800373 // constrained. This is typically referred to as gauge freedom. You can
374 // apply a rigid body transformation to all the nodes and the optimization
375 // problem will still have the exact same cost. The Levenberg-Marquardt
376 // algorithm has internal damping which mitigates this issue, but it is
377 // better to properly constrain the gauge freedom. This can be done by
378 // setting one of the poses as constant so the optimizer cannot change it.
milind-u6ff399f2023-03-24 18:33:38 -0700379 CHECK_NE(poses->count(FLAGS_frozen_target_id), 0ul)
380 << "Got no poses for frozen target id " << FLAGS_frozen_target_id;
Jim Ostrowski2f2685f2023-03-25 11:57:54 -0700381 CHECK_GE(FLAGS_frozen_target_id, min_constraint_id)
382 << "target to freeze index " << FLAGS_frozen_target_id
383 << " must be in range of constraints, > " << min_constraint_id;
384 CHECK_LE(FLAGS_frozen_target_id, max_constraint_id)
385 << "target to freeze index " << FLAGS_frozen_target_id
386 << " must be in range of constraints, < " << max_constraint_id;
milind-u6ff399f2023-03-24 18:33:38 -0700387 ceres::examples::MapOfPoses::iterator pose_start_iter =
388 poses->find(FLAGS_frozen_target_id);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800389 CHECK(pose_start_iter != poses->end()) << "There are no poses.";
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800390 problem->SetParameterBlockConstant(pose_start_iter->second.p.data());
391 problem->SetParameterBlockConstant(pose_start_iter->second.q.coeffs().data());
Milind Upadhyay7c205222022-11-16 18:20:58 -0800392}
393
milind-u401de982023-04-14 17:32:03 -0700394std::unique_ptr<ceres::CostFunction>
395TargetMapper::BuildMapFittingOptimizationProblem(ceres::Problem *problem) {
Philipp Schradera6712522023-07-05 20:25:11 -0700396 // Set up robot visualization.
milind-u8f4e43e2023-04-09 17:11:19 -0700397 vis_robot_.ClearImage();
milind-u8f4e43e2023-04-09 17:11:19 -0700398
399 const size_t num_targets = FLAGS_max_target_id - FLAGS_min_target_id;
400 // Translation and rotation error for each target
401 const size_t num_residuals = num_targets * 6;
402 // Set up the only cost function (also known as residual). This uses
403 // auto-differentiation to obtain the derivative (jacobian).
milind-u401de982023-04-14 17:32:03 -0700404 std::unique_ptr<ceres::CostFunction> cost_function = std::make_unique<
405 ceres::AutoDiffCostFunction<TargetMapper, ceres::DYNAMIC, 3, 4>>(
406 this, num_residuals, ceres::DO_NOT_TAKE_OWNERSHIP);
milind-u8f4e43e2023-04-09 17:11:19 -0700407
408 ceres::LossFunction *loss_function = new ceres::HuberLoss(2.0);
409 ceres::LocalParameterization *quaternion_local_parameterization =
410 new ceres::EigenQuaternionParameterization;
411
milind-u401de982023-04-14 17:32:03 -0700412 problem->AddResidualBlock(cost_function.get(), loss_function,
milind-u8f4e43e2023-04-09 17:11:19 -0700413 T_frozen_actual_.vector().data(),
414 R_frozen_actual_.coeffs().data());
415 problem->SetParameterization(R_frozen_actual_.coeffs().data(),
416 quaternion_local_parameterization);
milind-u401de982023-04-14 17:32:03 -0700417 return cost_function;
milind-u8f4e43e2023-04-09 17:11:19 -0700418}
419
Jim Ostrowski4527dd72024-03-07 00:20:15 -0800420void TargetMapper::DisplayConstraintGraph() {
421 vis_robot_.ClearImage();
422 for (auto constraint : constraint_counts_) {
423 Eigen::Vector3d start_line =
424 PoseUtils::Pose3dToAffine3d(
425 ideal_target_poses_.at(constraint.first.first))
426 .translation();
427 Eigen::Vector3d end_line =
428 PoseUtils::Pose3dToAffine3d(
429 ideal_target_poses_.at(constraint.first.second))
430 .translation();
431 // Weight the green intensity by # of constraints
432 // TODO: This could be improved
433 int color_scale =
434 50 + std::min(155, static_cast<int>(constraint.second * 155.0 / 200.0));
435 vis_robot_.DrawLine(start_line, end_line, cv::Scalar(0, color_scale, 0));
436 }
437
438 for (const auto &[id, solved_pose] : target_poses_) {
439 Eigen::Affine3d H_world_ideal =
440 PoseUtils::Pose3dToAffine3d(ideal_target_poses_.at(id));
441 vis_robot_.DrawFrameAxes(H_world_ideal, std::to_string(id),
442 cv::Scalar(255, 255, 255));
443 }
444 cv::imshow("Constraint graph", vis_robot_.image_);
445 cv::waitKey(0);
446}
447
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800448// Taken from ceres/examples/slam/pose_graph_3d/pose_graph_3d.cc
Milind Upadhyay7c205222022-11-16 18:20:58 -0800449bool TargetMapper::SolveOptimizationProblem(ceres::Problem *problem) {
450 CHECK_NOTNULL(problem);
451
452 ceres::Solver::Options options;
453 options.max_num_iterations = FLAGS_max_num_iterations;
454 options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;
milind-u401de982023-04-14 17:32:03 -0700455 options.minimizer_progress_to_stdout = false;
Milind Upadhyay7c205222022-11-16 18:20:58 -0800456
457 ceres::Solver::Summary summary;
458 ceres::Solve(options, problem, &summary);
459
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800460 LOG(INFO) << summary.FullReport() << '\n';
Milind Upadhyay7c205222022-11-16 18:20:58 -0800461
462 return summary.IsSolutionUsable();
463}
464
Milind Upadhyay05652cb2022-12-07 20:51:51 -0800465void TargetMapper::Solve(std::string_view field_name,
466 std::optional<std::string_view> output_dir) {
milind-u401de982023-04-14 17:32:03 -0700467 ceres::Problem target_pose_problem_1;
milind-u8f4e43e2023-04-09 17:11:19 -0700468 BuildTargetPoseOptimizationProblem(target_constraints_, &target_poses_,
milind-u401de982023-04-14 17:32:03 -0700469 &target_pose_problem_1);
470 CHECK(SolveOptimizationProblem(&target_pose_problem_1))
471 << "The target pose solve 1 was not successful, exiting.";
Milind Upadhyay7c205222022-11-16 18:20:58 -0800472
milind-u401de982023-04-14 17:32:03 -0700473 RemoveOutlierConstraints();
474
Jim Ostrowski4527dd72024-03-07 00:20:15 -0800475 if (FLAGS_visualize_solver) {
476 LOG(INFO) << "Displaying constraint graph after removing outliers";
477 DisplayConstraintGraph();
478 }
479
milind-u401de982023-04-14 17:32:03 -0700480 // Solve again once we've thrown out bad constraints
481 ceres::Problem target_pose_problem_2;
482 BuildTargetPoseOptimizationProblem(target_constraints_, &target_poses_,
483 &target_pose_problem_2);
484 CHECK(SolveOptimizationProblem(&target_pose_problem_2))
485 << "The target pose solve 2 was not successful, exiting.";
486
Jim Ostrowski463ee592024-03-07 00:08:24 -0800487 if (FLAGS_do_map_fitting) {
488 LOG(INFO) << "Solving the overall map's best alignment to the previous map";
489 ceres::Problem map_fitting_problem(
490 {.loss_function_ownership = ceres::DO_NOT_TAKE_OWNERSHIP});
491 std::unique_ptr<ceres::CostFunction> map_fitting_cost_function =
492 BuildMapFittingOptimizationProblem(&map_fitting_problem);
493 CHECK(SolveOptimizationProblem(&map_fitting_problem))
494 << "The map fitting solve was not successful, exiting.";
495 map_fitting_cost_function.release();
milind-u8f4e43e2023-04-09 17:11:19 -0700496
Jim Ostrowski463ee592024-03-07 00:08:24 -0800497 Eigen::Affine3d H_frozen_actual = T_frozen_actual_ * R_frozen_actual_;
498 LOG(INFO) << "H_frozen_actual: "
499 << PoseUtils::Affine3dToPose3d(H_frozen_actual);
milind-u8f4e43e2023-04-09 17:11:19 -0700500
Jim Ostrowski463ee592024-03-07 00:08:24 -0800501 auto H_world_frozen =
502 PoseUtils::Pose3dToAffine3d(target_poses_[FLAGS_frozen_target_id]);
503 auto H_world_frozenactual = H_world_frozen * H_frozen_actual;
milind-u8f4e43e2023-04-09 17:11:19 -0700504
Jim Ostrowski463ee592024-03-07 00:08:24 -0800505 // Offset the solved poses to become the actual ones
506 for (auto &[id, pose] : target_poses_) {
507 // Don't offset targets we didn't solve for
508 if (id < FLAGS_min_target_id || id > FLAGS_max_target_id) {
509 continue;
510 }
511
512 // Take the delta between the frozen target and the solved target, and put
513 // that on top of the actual pose of the frozen target
514 auto H_world_solved = PoseUtils::Pose3dToAffine3d(pose);
515 auto H_frozen_solved = H_world_frozen.inverse() * H_world_solved;
516 auto H_world_actual = H_world_frozenactual * H_frozen_solved;
517 pose = PoseUtils::Affine3dToPose3d(H_world_actual);
milind-u8f4e43e2023-04-09 17:11:19 -0700518 }
milind-u8f4e43e2023-04-09 17:11:19 -0700519 }
Milind Upadhyay7c205222022-11-16 18:20:58 -0800520
Milind Upadhyay05652cb2022-12-07 20:51:51 -0800521 auto map_json = MapToJson(field_name);
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800522 VLOG(1) << "Solved target poses: " << map_json;
Milind Upadhyay05652cb2022-12-07 20:51:51 -0800523
524 if (output_dir.has_value()) {
525 std::string output_path =
526 absl::StrCat(output_dir.value(), "/", field_name, ".json");
527 LOG(INFO) << "Writing map to file: " << output_path;
528 aos::util::WriteStringToFileOrDie(output_path, map_json);
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800529 }
milind-u401de982023-04-14 17:32:03 -0700530
531 for (TargetId id_start = FLAGS_min_target_id; id_start < FLAGS_max_target_id;
532 id_start++) {
533 for (TargetId id_end = id_start + 1; id_end <= FLAGS_max_target_id;
534 id_end++) {
535 auto H_start_end =
536 PoseUtils::Pose3dToAffine3d(target_poses_.at(id_start)).inverse() *
537 PoseUtils::Pose3dToAffine3d(target_poses_.at(id_end));
538 auto constraint = PoseUtils::Affine3dToPose3d(H_start_end);
Jim Ostrowski2f2685f2023-03-25 11:57:54 -0700539 VLOG(1) << id_start << "->" << id_end << ": " << constraint.p.norm()
540 << " meters";
milind-u401de982023-04-14 17:32:03 -0700541 }
542 }
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800543}
544
Milind Upadhyay05652cb2022-12-07 20:51:51 -0800545std::string TargetMapper::MapToJson(std::string_view field_name) const {
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800546 flatbuffers::FlatBufferBuilder fbb;
547
548 // Convert poses to flatbuffers
549 std::vector<flatbuffers::Offset<TargetPoseFbs>> target_poses_fbs;
550 for (const auto &[id, pose] : target_poses_) {
milind-u3f5f83c2023-01-29 15:23:51 -0800551 target_poses_fbs.emplace_back(
552 PoseUtils::TargetPoseToFbs(TargetPose{.id = id, .pose = pose}, &fbb));
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800553 }
554
Milind Upadhyay05652cb2022-12-07 20:51:51 -0800555 const auto field_name_offset = fbb.CreateString(field_name);
556 flatbuffers::Offset<TargetMap> target_map_offset = CreateTargetMap(
557 fbb, fbb.CreateVector(target_poses_fbs), field_name_offset);
Milind Upadhyaycd677a32022-12-04 13:06:43 -0800558
559 return aos::FlatbufferToJson(
560 flatbuffers::GetMutableTemporaryPointer(fbb, target_map_offset),
561 {.multi_line = true});
Milind Upadhyay7c205222022-11-16 18:20:58 -0800562}
563
milind-u8f4e43e2023-04-09 17:11:19 -0700564namespace {
milind-u8f4e43e2023-04-09 17:11:19 -0700565// Hacks to extract a double from a scalar, which is either a ceres jet or a
566// double. Only used for debugging and displaying.
567template <typename S>
568double ScalarToDouble(S s) {
569 const double *ptr = reinterpret_cast<double *>(&s);
570 return *ptr;
571}
572
573template <typename S>
574Eigen::Affine3d ScalarAffineToDouble(Eigen::Transform<S, 3, Eigen::Affine> H) {
575 Eigen::Affine3d H_double;
576 for (size_t i = 0; i < H.rows(); i++) {
577 for (size_t j = 0; j < H.cols(); j++) {
578 H_double(i, j) = ScalarToDouble(H(i, j));
579 }
580 }
581 return H_double;
582}
583
584} // namespace
585
586template <typename S>
587bool TargetMapper::operator()(const S *const translation,
588 const S *const rotation, S *residual) const {
589 using Affine3s = Eigen::Transform<S, 3, Eigen::Affine>;
590 Eigen::Quaternion<S> R_frozen_actual(rotation[3], rotation[1], rotation[2],
591 rotation[0]);
592 Eigen::Translation<S, 3> T_frozen_actual(translation[0], translation[1],
593 translation[2]);
594 // Actual target pose in the frame of the fixed pose.
595 Affine3s H_frozen_actual = T_frozen_actual * R_frozen_actual;
596 VLOG(2) << "H_frozen_actual: "
597 << PoseUtils::Affine3dToPose3d(ScalarAffineToDouble(H_frozen_actual));
598
599 Affine3s H_world_frozen =
600 PoseUtils::Pose3dToAffine3d(target_poses_.at(FLAGS_frozen_target_id))
601 .cast<S>();
602 Affine3s H_world_frozenactual = H_world_frozen * H_frozen_actual;
603
604 size_t residual_index = 0;
605 if (FLAGS_visualize_solver) {
606 vis_robot_.ClearImage();
607 }
608
609 for (const auto &[id, solved_pose] : target_poses_) {
610 if (id < FLAGS_min_target_id || id > FLAGS_max_target_id) {
611 continue;
612 }
613
614 Affine3s H_world_ideal =
615 PoseUtils::Pose3dToAffine3d(ideal_target_poses_.at(id)).cast<S>();
616 Affine3s H_world_solved =
617 PoseUtils::Pose3dToAffine3d(solved_pose).cast<S>();
618 // Take the delta between the frozen target and the solved target, and put
619 // that on top of the actual pose of the frozen target
620 auto H_frozen_solved = H_world_frozen.inverse() * H_world_solved;
621 auto H_world_actual = H_world_frozenactual * H_frozen_solved;
622 VLOG(2) << id << ": " << H_world_actual.translation();
623 Affine3s H_ideal_actual = H_world_ideal.inverse() * H_world_actual;
624 auto T_ideal_actual = H_ideal_actual.translation();
625 VLOG(2) << "T_ideal_actual: " << T_ideal_actual;
626 VLOG(2);
627 auto R_ideal_actual = Eigen::AngleAxis<S>(H_ideal_actual.rotation());
628
milind-u401de982023-04-14 17:32:03 -0700629 // Weight translation errors higher than rotation.
630 // 1 m in position error = 0.01 radian (or ~0.573 degrees)
631 constexpr double kTranslationScalar = 1000.0;
632 constexpr double kRotationScalar = 100.0;
milind-u8f4e43e2023-04-09 17:11:19 -0700633
634 // Penalize based on how much our actual poses matches the ideal
635 // ones. We've already solved for the relative poses, now figure out
636 // where all of them fit in the world.
637 residual[residual_index++] = kTranslationScalar * T_ideal_actual(0);
638 residual[residual_index++] = kTranslationScalar * T_ideal_actual(1);
639 residual[residual_index++] = kTranslationScalar * T_ideal_actual(2);
640 residual[residual_index++] =
641 kRotationScalar * R_ideal_actual.angle() * R_ideal_actual.axis().x();
642 residual[residual_index++] =
643 kRotationScalar * R_ideal_actual.angle() * R_ideal_actual.axis().y();
644 residual[residual_index++] =
645 kRotationScalar * R_ideal_actual.angle() * R_ideal_actual.axis().z();
646
647 if (FLAGS_visualize_solver) {
Jim Ostrowski68e56172023-09-17 23:44:15 -0700648 LOG(INFO) << std::to_string(id) + std::string("-est") << " at "
649 << ScalarAffineToDouble(H_world_actual).matrix();
milind-u8f4e43e2023-04-09 17:11:19 -0700650 vis_robot_.DrawFrameAxes(ScalarAffineToDouble(H_world_actual),
Jim Ostrowski68e56172023-09-17 23:44:15 -0700651 std::to_string(id) + std::string("-est"),
652 cv::Scalar(0, 255, 0));
milind-u8f4e43e2023-04-09 17:11:19 -0700653 vis_robot_.DrawFrameAxes(ScalarAffineToDouble(H_world_ideal),
654 std::to_string(id), cv::Scalar(255, 255, 255));
655 }
656 }
657 if (FLAGS_visualize_solver) {
658 cv::imshow("Target maps", vis_robot_.image_);
659 cv::waitKey(0);
660 }
661
662 // Ceres can't handle residual values of exactly zero
663 for (size_t i = 0; i < residual_index; i++) {
664 if (residual[i] == S(0)) {
665 residual[i] = S(1e-9);
666 }
667 }
668
669 return true;
670}
671
milind-u401de982023-04-14 17:32:03 -0700672TargetMapper::PoseError TargetMapper::ComputeError(
673 const ceres::examples::Constraint3d &constraint) const {
674 // Compute the difference between the map-based transform of the end target
675 // in the start target frame, to the one from this constraint
676 auto H_start_end_map =
677 PoseUtils::Pose3dToAffine3d(target_poses_.at(constraint.id_begin))
678 .inverse() *
679 PoseUtils::Pose3dToAffine3d(target_poses_.at(constraint.id_end));
680 auto H_start_end_constraint = PoseUtils::Pose3dToAffine3d(constraint.t_be);
681 ceres::examples::Pose3d delta_pose = PoseUtils::Affine3dToPose3d(
682 H_start_end_map.inverse() * H_start_end_constraint);
683 double distance = delta_pose.p.norm();
684 Eigen::AngleAxisd err_angle(delta_pose.q);
685 double angle = std::abs(err_angle.angle());
686 return {.angle = angle, .distance = distance};
687}
688
689TargetMapper::Stats TargetMapper::ComputeStats() const {
690 Stats stats{.avg_err = {.angle = 0.0, .distance = 0.0},
691 .std_dev = {.angle = 0.0, .distance = 0.0},
692 .max_err = {.angle = 0.0, .distance = 0.0}};
693
694 for (const auto &constraint : target_constraints_) {
695 PoseError err = ComputeError(constraint);
696
697 // Update our statistics
698 stats.avg_err.distance += err.distance;
699 if (err.distance > stats.max_err.distance) {
700 stats.max_err.distance = err.distance;
701 }
702
703 stats.avg_err.angle += err.angle;
704 if (err.angle > stats.max_err.angle) {
705 stats.max_err.angle = err.angle;
706 }
707 }
708
709 stats.avg_err.distance /= static_cast<double>(target_constraints_.size());
710 stats.avg_err.angle /= static_cast<double>(target_constraints_.size());
711
712 for (const auto &constraint : target_constraints_) {
713 PoseError err = ComputeError(constraint);
714
715 // Update our statistics
716 stats.std_dev.distance +=
717 std::pow(err.distance - stats.avg_err.distance, 2);
718
719 stats.std_dev.angle += std::pow(err.angle - stats.avg_err.angle, 2);
720 }
721
722 stats.std_dev.distance = std::sqrt(
723 stats.std_dev.distance / static_cast<double>(target_constraints_.size()));
724 stats.std_dev.angle = std::sqrt(
725 stats.std_dev.angle / static_cast<double>(target_constraints_.size()));
726
727 return stats;
728}
729
730void TargetMapper::RemoveOutlierConstraints() {
731 stats_with_outliers_ = ComputeStats();
732 size_t original_size = target_constraints_.size();
733 target_constraints_.erase(
734 std::remove_if(
735 target_constraints_.begin(), target_constraints_.end(),
736 [&](const auto &constraint) {
737 PoseError err = ComputeError(constraint);
738 // Remove constraints with errors significantly above
739 // the average
740 if (err.distance > stats_with_outliers_.avg_err.distance +
741 FLAGS_outlier_std_devs *
742 stats_with_outliers_.std_dev.distance) {
743 return true;
744 }
745 if (err.angle > stats_with_outliers_.avg_err.angle +
746 FLAGS_outlier_std_devs *
747 stats_with_outliers_.std_dev.angle) {
748 return true;
749 }
750 return false;
751 }),
752 target_constraints_.end());
753
754 LOG(INFO) << "Removed " << (original_size - target_constraints_.size())
755 << " outlier constraints out of " << original_size << " total";
756}
757
758void TargetMapper::DumpStats(std::string_view path) const {
759 LOG(INFO) << "Dumping mapping stats to " << path;
760 Stats stats = ComputeStats();
761 std::ofstream fout(path.data());
762 fout << "Stats after outlier rejection: " << std::endl;
763 fout << "Average error - angle: " << stats.avg_err.angle
764 << ", distance: " << stats.avg_err.distance << std::endl
765 << std::endl;
766 fout << "Standard deviation - angle: " << stats.std_dev.angle
767 << ", distance: " << stats.std_dev.distance << std::endl
768 << std::endl;
769 fout << "Max error - angle: " << stats.max_err.angle
770 << ", distance: " << stats.max_err.distance << std::endl;
771
772 fout << std::endl << "Stats before outlier rejection:" << std::endl;
773 fout << "Average error - angle: " << stats_with_outliers_.avg_err.angle
774 << ", distance: " << stats_with_outliers_.avg_err.distance << std::endl
775 << std::endl;
776 fout << "Standard deviation - angle: " << stats_with_outliers_.std_dev.angle
777 << ", distance: " << stats_with_outliers_.std_dev.distance << std::endl
778 << std::endl;
779 fout << "Max error - angle: " << stats_with_outliers_.max_err.angle
780 << ", distance: " << stats_with_outliers_.max_err.distance << std::endl;
781
782 fout.flush();
783 fout.close();
784}
785
786void TargetMapper::DumpConstraints(std::string_view path) const {
787 LOG(INFO) << "Dumping target constraints to " << path;
788 std::ofstream fout(path.data());
789 for (const auto &constraint : target_constraints_) {
790 fout << constraint << std::endl;
791 }
792 fout.flush();
793 fout.close();
794}
795
milind-ufbc5c812023-04-06 21:24:29 -0700796} // namespace frc971::vision
797
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800798std::ostream &operator<<(std::ostream &os, ceres::examples::Pose3d pose) {
milind-ufbc5c812023-04-06 21:24:29 -0700799 auto rpy = frc971::vision::PoseUtils::QuaternionToEulerAngles(pose.q);
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800800 os << absl::StrFormat(
801 "{x: %.3f, y: %.3f, z: %.3f, roll: %.3f, pitch: "
802 "%.3f, yaw: %.3f}",
803 pose.p(0), pose.p(1), pose.p(2), rpy(0), rpy(1), rpy(2));
804 return os;
805}
806
807std::ostream &operator<<(std::ostream &os,
808 ceres::examples::Constraint3d constraint) {
809 os << absl::StrFormat("{id_begin: %d, id_end: %d, pose: ",
810 constraint.id_begin, constraint.id_end)
811 << constraint.t_be << "}";
812 return os;
813}