blob: 213f080aa48ad535f468cd1892ecab1655f78adb [file] [log] [blame]
Brian Silverman72890c22015-09-19 14:37:37 -04001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
Austin Schuh189376f2018-12-20 22:11:15 +11005// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
Brian Silverman72890c22015-09-19 14:37:37 -04006//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
Austin Schuh189376f2018-12-20 22:11:15 +110011#define TEST_ENABLE_TEMPORARY_TRACKING
12#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
13// ^^ see bug 1449
14
Brian Silverman72890c22015-09-19 14:37:37 -040015#include "main.h"
16
17template<typename MatrixType> void matrixRedux(const MatrixType& m)
18{
Brian Silverman72890c22015-09-19 14:37:37 -040019 typedef typename MatrixType::Scalar Scalar;
20 typedef typename MatrixType::RealScalar RealScalar;
21
22 Index rows = m.rows();
23 Index cols = m.cols();
24
25 MatrixType m1 = MatrixType::Random(rows, cols);
26
27 // The entries of m1 are uniformly distributed in [0,1], so m1.prod() is very small. This may lead to test
Austin Schuh189376f2018-12-20 22:11:15 +110028 // failures if we underflow into denormals. Thus, we scale so that entries are close to 1.
Brian Silverman72890c22015-09-19 14:37:37 -040029 MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + RealScalar(0.2) * m1;
30
31 VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1));
32 VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy
33 Scalar s(0), p(1), minc(numext::real(m1.coeff(0))), maxc(numext::real(m1.coeff(0)));
34 for(int j = 0; j < cols; j++)
35 for(int i = 0; i < rows; i++)
36 {
37 s += m1(i,j);
38 p *= m1_for_prod(i,j);
39 minc = (std::min)(numext::real(minc), numext::real(m1(i,j)));
40 maxc = (std::max)(numext::real(maxc), numext::real(m1(i,j)));
41 }
42 const Scalar mean = s/Scalar(RealScalar(rows*cols));
43
44 VERIFY_IS_APPROX(m1.sum(), s);
45 VERIFY_IS_APPROX(m1.mean(), mean);
46 VERIFY_IS_APPROX(m1_for_prod.prod(), p);
47 VERIFY_IS_APPROX(m1.real().minCoeff(), numext::real(minc));
48 VERIFY_IS_APPROX(m1.real().maxCoeff(), numext::real(maxc));
49
50 // test slice vectorization assuming assign is ok
51 Index r0 = internal::random<Index>(0,rows-1);
52 Index c0 = internal::random<Index>(0,cols-1);
53 Index r1 = internal::random<Index>(r0+1,rows)-r0;
54 Index c1 = internal::random<Index>(c0+1,cols)-c0;
55 VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum());
56 VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean());
57 VERIFY_IS_APPROX(m1_for_prod.block(r0,c0,r1,c1).prod(), m1_for_prod.block(r0,c0,r1,c1).eval().prod());
58 VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff());
59 VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff());
Austin Schuh189376f2018-12-20 22:11:15 +110060
61 // regression for bug 1090
62 const int R1 = MatrixType::RowsAtCompileTime>=2 ? MatrixType::RowsAtCompileTime/2 : 6;
63 const int C1 = MatrixType::ColsAtCompileTime>=2 ? MatrixType::ColsAtCompileTime/2 : 6;
64 if(R1<=rows-r0 && C1<=cols-c0)
65 {
66 VERIFY_IS_APPROX( (m1.template block<R1,C1>(r0,c0).sum()), m1.block(r0,c0,R1,C1).sum() );
67 }
Brian Silverman72890c22015-09-19 14:37:37 -040068
69 // test empty objects
70 VERIFY_IS_APPROX(m1.block(r0,c0,0,0).sum(), Scalar(0));
71 VERIFY_IS_APPROX(m1.block(r0,c0,0,0).prod(), Scalar(1));
Austin Schuh189376f2018-12-20 22:11:15 +110072
73 // test nesting complex expression
74 VERIFY_EVALUATION_COUNT( (m1.matrix()*m1.matrix().transpose()).sum(), (MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime!=1 ? 0 : 1) );
75 Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> m2(rows,rows);
76 m2.setRandom();
77 VERIFY_EVALUATION_COUNT( ((m1.matrix()*m1.matrix().transpose())+m2).sum(),(MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime!=1 ? 0 : 1));
Brian Silverman72890c22015-09-19 14:37:37 -040078}
79
80template<typename VectorType> void vectorRedux(const VectorType& w)
81{
82 using std::abs;
Brian Silverman72890c22015-09-19 14:37:37 -040083 typedef typename VectorType::Scalar Scalar;
84 typedef typename NumTraits<Scalar>::Real RealScalar;
85 Index size = w.size();
86
87 VectorType v = VectorType::Random(size);
88 VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod
89
90 for(int i = 1; i < size; i++)
91 {
92 Scalar s(0), p(1);
93 RealScalar minc(numext::real(v.coeff(0))), maxc(numext::real(v.coeff(0)));
94 for(int j = 0; j < i; j++)
95 {
96 s += v[j];
97 p *= v_for_prod[j];
98 minc = (std::min)(minc, numext::real(v[j]));
99 maxc = (std::max)(maxc, numext::real(v[j]));
100 }
101 VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1));
102 VERIFY_IS_APPROX(p, v_for_prod.head(i).prod());
103 VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff());
104 VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff());
105 }
106
107 for(int i = 0; i < size-1; i++)
108 {
109 Scalar s(0), p(1);
110 RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i)));
111 for(int j = i; j < size; j++)
112 {
113 s += v[j];
114 p *= v_for_prod[j];
115 minc = (std::min)(minc, numext::real(v[j]));
116 maxc = (std::max)(maxc, numext::real(v[j]));
117 }
118 VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size-i).sum()), Scalar(1));
119 VERIFY_IS_APPROX(p, v_for_prod.tail(size-i).prod());
120 VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff());
121 VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff());
122 }
123
124 for(int i = 0; i < size/2; i++)
125 {
126 Scalar s(0), p(1);
127 RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i)));
128 for(int j = i; j < size-i; j++)
129 {
130 s += v[j];
131 p *= v_for_prod[j];
132 minc = (std::min)(minc, numext::real(v[j]));
133 maxc = (std::max)(maxc, numext::real(v[j]));
134 }
135 VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size-2*i).sum()), Scalar(1));
136 VERIFY_IS_APPROX(p, v_for_prod.segment(i, size-2*i).prod());
137 VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff());
138 VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff());
139 }
140
141 // test empty objects
142 VERIFY_IS_APPROX(v.head(0).sum(), Scalar(0));
143 VERIFY_IS_APPROX(v.tail(0).prod(), Scalar(1));
144 VERIFY_RAISES_ASSERT(v.head(0).mean());
145 VERIFY_RAISES_ASSERT(v.head(0).minCoeff());
146 VERIFY_RAISES_ASSERT(v.head(0).maxCoeff());
147}
148
149void test_redux()
150{
151 // the max size cannot be too large, otherwise reduxion operations obviously generate large errors.
152 int maxsize = (std::min)(100,EIGEN_TEST_MAX_SIZE);
153 TEST_SET_BUT_UNUSED_VARIABLE(maxsize);
154 for(int i = 0; i < g_repeat; i++) {
155 CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) );
156 CALL_SUBTEST_1( matrixRedux(Array<float, 1, 1>()) );
157 CALL_SUBTEST_2( matrixRedux(Matrix2f()) );
158 CALL_SUBTEST_2( matrixRedux(Array2f()) );
Austin Schuh189376f2018-12-20 22:11:15 +1100159 CALL_SUBTEST_2( matrixRedux(Array22f()) );
Brian Silverman72890c22015-09-19 14:37:37 -0400160 CALL_SUBTEST_3( matrixRedux(Matrix4d()) );
161 CALL_SUBTEST_3( matrixRedux(Array4d()) );
Austin Schuh189376f2018-12-20 22:11:15 +1100162 CALL_SUBTEST_3( matrixRedux(Array44d()) );
Brian Silverman72890c22015-09-19 14:37:37 -0400163 CALL_SUBTEST_4( matrixRedux(MatrixXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
164 CALL_SUBTEST_4( matrixRedux(ArrayXXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
165 CALL_SUBTEST_5( matrixRedux(MatrixXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
166 CALL_SUBTEST_5( matrixRedux(ArrayXXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
167 CALL_SUBTEST_6( matrixRedux(MatrixXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
168 CALL_SUBTEST_6( matrixRedux(ArrayXXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
169 }
170 for(int i = 0; i < g_repeat; i++) {
171 CALL_SUBTEST_7( vectorRedux(Vector4f()) );
172 CALL_SUBTEST_7( vectorRedux(Array4f()) );
173 CALL_SUBTEST_5( vectorRedux(VectorXd(internal::random<int>(1,maxsize))) );
174 CALL_SUBTEST_5( vectorRedux(ArrayXd(internal::random<int>(1,maxsize))) );
175 CALL_SUBTEST_8( vectorRedux(VectorXf(internal::random<int>(1,maxsize))) );
176 CALL_SUBTEST_8( vectorRedux(ArrayXf(internal::random<int>(1,maxsize))) );
177 }
178}