Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "main.h" |
| 11 | |
| 12 | template<typename MatrixType> void matrixRedux(const MatrixType& m) |
| 13 | { |
| 14 | typedef typename MatrixType::Index Index; |
| 15 | typedef typename MatrixType::Scalar Scalar; |
| 16 | typedef typename MatrixType::RealScalar RealScalar; |
| 17 | |
| 18 | Index rows = m.rows(); |
| 19 | Index cols = m.cols(); |
| 20 | |
| 21 | MatrixType m1 = MatrixType::Random(rows, cols); |
| 22 | |
| 23 | // The entries of m1 are uniformly distributed in [0,1], so m1.prod() is very small. This may lead to test |
| 24 | // failures if we underflow into denormals. Thus, we scale so that entires are close to 1. |
| 25 | MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + RealScalar(0.2) * m1; |
| 26 | |
| 27 | VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); |
| 28 | VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy |
| 29 | Scalar s(0), p(1), minc(numext::real(m1.coeff(0))), maxc(numext::real(m1.coeff(0))); |
| 30 | for(int j = 0; j < cols; j++) |
| 31 | for(int i = 0; i < rows; i++) |
| 32 | { |
| 33 | s += m1(i,j); |
| 34 | p *= m1_for_prod(i,j); |
| 35 | minc = (std::min)(numext::real(minc), numext::real(m1(i,j))); |
| 36 | maxc = (std::max)(numext::real(maxc), numext::real(m1(i,j))); |
| 37 | } |
| 38 | const Scalar mean = s/Scalar(RealScalar(rows*cols)); |
| 39 | |
| 40 | VERIFY_IS_APPROX(m1.sum(), s); |
| 41 | VERIFY_IS_APPROX(m1.mean(), mean); |
| 42 | VERIFY_IS_APPROX(m1_for_prod.prod(), p); |
| 43 | VERIFY_IS_APPROX(m1.real().minCoeff(), numext::real(minc)); |
| 44 | VERIFY_IS_APPROX(m1.real().maxCoeff(), numext::real(maxc)); |
| 45 | |
| 46 | // test slice vectorization assuming assign is ok |
| 47 | Index r0 = internal::random<Index>(0,rows-1); |
| 48 | Index c0 = internal::random<Index>(0,cols-1); |
| 49 | Index r1 = internal::random<Index>(r0+1,rows)-r0; |
| 50 | Index c1 = internal::random<Index>(c0+1,cols)-c0; |
| 51 | VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum()); |
| 52 | VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean()); |
| 53 | VERIFY_IS_APPROX(m1_for_prod.block(r0,c0,r1,c1).prod(), m1_for_prod.block(r0,c0,r1,c1).eval().prod()); |
| 54 | VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff()); |
| 55 | VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff()); |
| 56 | |
| 57 | // test empty objects |
| 58 | VERIFY_IS_APPROX(m1.block(r0,c0,0,0).sum(), Scalar(0)); |
| 59 | VERIFY_IS_APPROX(m1.block(r0,c0,0,0).prod(), Scalar(1)); |
| 60 | } |
| 61 | |
| 62 | template<typename VectorType> void vectorRedux(const VectorType& w) |
| 63 | { |
| 64 | using std::abs; |
| 65 | typedef typename VectorType::Index Index; |
| 66 | typedef typename VectorType::Scalar Scalar; |
| 67 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 68 | Index size = w.size(); |
| 69 | |
| 70 | VectorType v = VectorType::Random(size); |
| 71 | VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod |
| 72 | |
| 73 | for(int i = 1; i < size; i++) |
| 74 | { |
| 75 | Scalar s(0), p(1); |
| 76 | RealScalar minc(numext::real(v.coeff(0))), maxc(numext::real(v.coeff(0))); |
| 77 | for(int j = 0; j < i; j++) |
| 78 | { |
| 79 | s += v[j]; |
| 80 | p *= v_for_prod[j]; |
| 81 | minc = (std::min)(minc, numext::real(v[j])); |
| 82 | maxc = (std::max)(maxc, numext::real(v[j])); |
| 83 | } |
| 84 | VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1)); |
| 85 | VERIFY_IS_APPROX(p, v_for_prod.head(i).prod()); |
| 86 | VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff()); |
| 87 | VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff()); |
| 88 | } |
| 89 | |
| 90 | for(int i = 0; i < size-1; i++) |
| 91 | { |
| 92 | Scalar s(0), p(1); |
| 93 | RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); |
| 94 | for(int j = i; j < size; j++) |
| 95 | { |
| 96 | s += v[j]; |
| 97 | p *= v_for_prod[j]; |
| 98 | minc = (std::min)(minc, numext::real(v[j])); |
| 99 | maxc = (std::max)(maxc, numext::real(v[j])); |
| 100 | } |
| 101 | VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size-i).sum()), Scalar(1)); |
| 102 | VERIFY_IS_APPROX(p, v_for_prod.tail(size-i).prod()); |
| 103 | VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff()); |
| 104 | VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff()); |
| 105 | } |
| 106 | |
| 107 | for(int i = 0; i < size/2; i++) |
| 108 | { |
| 109 | Scalar s(0), p(1); |
| 110 | RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); |
| 111 | for(int j = i; j < size-i; j++) |
| 112 | { |
| 113 | s += v[j]; |
| 114 | p *= v_for_prod[j]; |
| 115 | minc = (std::min)(minc, numext::real(v[j])); |
| 116 | maxc = (std::max)(maxc, numext::real(v[j])); |
| 117 | } |
| 118 | VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size-2*i).sum()), Scalar(1)); |
| 119 | VERIFY_IS_APPROX(p, v_for_prod.segment(i, size-2*i).prod()); |
| 120 | VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff()); |
| 121 | VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff()); |
| 122 | } |
| 123 | |
| 124 | // test empty objects |
| 125 | VERIFY_IS_APPROX(v.head(0).sum(), Scalar(0)); |
| 126 | VERIFY_IS_APPROX(v.tail(0).prod(), Scalar(1)); |
| 127 | VERIFY_RAISES_ASSERT(v.head(0).mean()); |
| 128 | VERIFY_RAISES_ASSERT(v.head(0).minCoeff()); |
| 129 | VERIFY_RAISES_ASSERT(v.head(0).maxCoeff()); |
| 130 | } |
| 131 | |
| 132 | void test_redux() |
| 133 | { |
| 134 | // the max size cannot be too large, otherwise reduxion operations obviously generate large errors. |
| 135 | int maxsize = (std::min)(100,EIGEN_TEST_MAX_SIZE); |
| 136 | TEST_SET_BUT_UNUSED_VARIABLE(maxsize); |
| 137 | for(int i = 0; i < g_repeat; i++) { |
| 138 | CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) ); |
| 139 | CALL_SUBTEST_1( matrixRedux(Array<float, 1, 1>()) ); |
| 140 | CALL_SUBTEST_2( matrixRedux(Matrix2f()) ); |
| 141 | CALL_SUBTEST_2( matrixRedux(Array2f()) ); |
| 142 | CALL_SUBTEST_3( matrixRedux(Matrix4d()) ); |
| 143 | CALL_SUBTEST_3( matrixRedux(Array4d()) ); |
| 144 | CALL_SUBTEST_4( matrixRedux(MatrixXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); |
| 145 | CALL_SUBTEST_4( matrixRedux(ArrayXXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); |
| 146 | CALL_SUBTEST_5( matrixRedux(MatrixXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); |
| 147 | CALL_SUBTEST_5( matrixRedux(ArrayXXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); |
| 148 | CALL_SUBTEST_6( matrixRedux(MatrixXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); |
| 149 | CALL_SUBTEST_6( matrixRedux(ArrayXXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); |
| 150 | } |
| 151 | for(int i = 0; i < g_repeat; i++) { |
| 152 | CALL_SUBTEST_7( vectorRedux(Vector4f()) ); |
| 153 | CALL_SUBTEST_7( vectorRedux(Array4f()) ); |
| 154 | CALL_SUBTEST_5( vectorRedux(VectorXd(internal::random<int>(1,maxsize))) ); |
| 155 | CALL_SUBTEST_5( vectorRedux(ArrayXd(internal::random<int>(1,maxsize))) ); |
| 156 | CALL_SUBTEST_8( vectorRedux(VectorXf(internal::random<int>(1,maxsize))) ); |
| 157 | CALL_SUBTEST_8( vectorRedux(ArrayXf(internal::random<int>(1,maxsize))) ); |
| 158 | } |
| 159 | } |