Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 5 | // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 11 | #define TEST_ENABLE_TEMPORARY_TRACKING |
| 12 | #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 |
| 13 | // ^^ see bug 1449 |
| 14 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 15 | #include "main.h" |
| 16 | |
| 17 | template<typename MatrixType> void matrixRedux(const MatrixType& m) |
| 18 | { |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 19 | typedef typename MatrixType::Scalar Scalar; |
| 20 | typedef typename MatrixType::RealScalar RealScalar; |
| 21 | |
| 22 | Index rows = m.rows(); |
| 23 | Index cols = m.cols(); |
| 24 | |
| 25 | MatrixType m1 = MatrixType::Random(rows, cols); |
| 26 | |
| 27 | // The entries of m1 are uniformly distributed in [0,1], so m1.prod() is very small. This may lead to test |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 28 | // failures if we underflow into denormals. Thus, we scale so that entries are close to 1. |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 29 | MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + RealScalar(0.2) * m1; |
| 30 | |
| 31 | VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); |
| 32 | VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy |
| 33 | Scalar s(0), p(1), minc(numext::real(m1.coeff(0))), maxc(numext::real(m1.coeff(0))); |
| 34 | for(int j = 0; j < cols; j++) |
| 35 | for(int i = 0; i < rows; i++) |
| 36 | { |
| 37 | s += m1(i,j); |
| 38 | p *= m1_for_prod(i,j); |
| 39 | minc = (std::min)(numext::real(minc), numext::real(m1(i,j))); |
| 40 | maxc = (std::max)(numext::real(maxc), numext::real(m1(i,j))); |
| 41 | } |
| 42 | const Scalar mean = s/Scalar(RealScalar(rows*cols)); |
| 43 | |
| 44 | VERIFY_IS_APPROX(m1.sum(), s); |
| 45 | VERIFY_IS_APPROX(m1.mean(), mean); |
| 46 | VERIFY_IS_APPROX(m1_for_prod.prod(), p); |
| 47 | VERIFY_IS_APPROX(m1.real().minCoeff(), numext::real(minc)); |
| 48 | VERIFY_IS_APPROX(m1.real().maxCoeff(), numext::real(maxc)); |
| 49 | |
| 50 | // test slice vectorization assuming assign is ok |
| 51 | Index r0 = internal::random<Index>(0,rows-1); |
| 52 | Index c0 = internal::random<Index>(0,cols-1); |
| 53 | Index r1 = internal::random<Index>(r0+1,rows)-r0; |
| 54 | Index c1 = internal::random<Index>(c0+1,cols)-c0; |
| 55 | VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum()); |
| 56 | VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean()); |
| 57 | VERIFY_IS_APPROX(m1_for_prod.block(r0,c0,r1,c1).prod(), m1_for_prod.block(r0,c0,r1,c1).eval().prod()); |
| 58 | VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff()); |
| 59 | VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff()); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 60 | |
| 61 | // regression for bug 1090 |
| 62 | const int R1 = MatrixType::RowsAtCompileTime>=2 ? MatrixType::RowsAtCompileTime/2 : 6; |
| 63 | const int C1 = MatrixType::ColsAtCompileTime>=2 ? MatrixType::ColsAtCompileTime/2 : 6; |
| 64 | if(R1<=rows-r0 && C1<=cols-c0) |
| 65 | { |
| 66 | VERIFY_IS_APPROX( (m1.template block<R1,C1>(r0,c0).sum()), m1.block(r0,c0,R1,C1).sum() ); |
| 67 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 68 | |
| 69 | // test empty objects |
| 70 | VERIFY_IS_APPROX(m1.block(r0,c0,0,0).sum(), Scalar(0)); |
| 71 | VERIFY_IS_APPROX(m1.block(r0,c0,0,0).prod(), Scalar(1)); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 72 | |
| 73 | // test nesting complex expression |
| 74 | VERIFY_EVALUATION_COUNT( (m1.matrix()*m1.matrix().transpose()).sum(), (MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime!=1 ? 0 : 1) ); |
| 75 | Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> m2(rows,rows); |
| 76 | m2.setRandom(); |
| 77 | VERIFY_EVALUATION_COUNT( ((m1.matrix()*m1.matrix().transpose())+m2).sum(),(MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime!=1 ? 0 : 1)); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 78 | } |
| 79 | |
| 80 | template<typename VectorType> void vectorRedux(const VectorType& w) |
| 81 | { |
| 82 | using std::abs; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 83 | typedef typename VectorType::Scalar Scalar; |
| 84 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 85 | Index size = w.size(); |
| 86 | |
| 87 | VectorType v = VectorType::Random(size); |
| 88 | VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod |
| 89 | |
| 90 | for(int i = 1; i < size; i++) |
| 91 | { |
| 92 | Scalar s(0), p(1); |
| 93 | RealScalar minc(numext::real(v.coeff(0))), maxc(numext::real(v.coeff(0))); |
| 94 | for(int j = 0; j < i; j++) |
| 95 | { |
| 96 | s += v[j]; |
| 97 | p *= v_for_prod[j]; |
| 98 | minc = (std::min)(minc, numext::real(v[j])); |
| 99 | maxc = (std::max)(maxc, numext::real(v[j])); |
| 100 | } |
| 101 | VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1)); |
| 102 | VERIFY_IS_APPROX(p, v_for_prod.head(i).prod()); |
| 103 | VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff()); |
| 104 | VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff()); |
| 105 | } |
| 106 | |
| 107 | for(int i = 0; i < size-1; i++) |
| 108 | { |
| 109 | Scalar s(0), p(1); |
| 110 | RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); |
| 111 | for(int j = i; j < size; j++) |
| 112 | { |
| 113 | s += v[j]; |
| 114 | p *= v_for_prod[j]; |
| 115 | minc = (std::min)(minc, numext::real(v[j])); |
| 116 | maxc = (std::max)(maxc, numext::real(v[j])); |
| 117 | } |
| 118 | VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size-i).sum()), Scalar(1)); |
| 119 | VERIFY_IS_APPROX(p, v_for_prod.tail(size-i).prod()); |
| 120 | VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff()); |
| 121 | VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff()); |
| 122 | } |
| 123 | |
| 124 | for(int i = 0; i < size/2; i++) |
| 125 | { |
| 126 | Scalar s(0), p(1); |
| 127 | RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); |
| 128 | for(int j = i; j < size-i; j++) |
| 129 | { |
| 130 | s += v[j]; |
| 131 | p *= v_for_prod[j]; |
| 132 | minc = (std::min)(minc, numext::real(v[j])); |
| 133 | maxc = (std::max)(maxc, numext::real(v[j])); |
| 134 | } |
| 135 | VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size-2*i).sum()), Scalar(1)); |
| 136 | VERIFY_IS_APPROX(p, v_for_prod.segment(i, size-2*i).prod()); |
| 137 | VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff()); |
| 138 | VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff()); |
| 139 | } |
| 140 | |
| 141 | // test empty objects |
| 142 | VERIFY_IS_APPROX(v.head(0).sum(), Scalar(0)); |
| 143 | VERIFY_IS_APPROX(v.tail(0).prod(), Scalar(1)); |
| 144 | VERIFY_RAISES_ASSERT(v.head(0).mean()); |
| 145 | VERIFY_RAISES_ASSERT(v.head(0).minCoeff()); |
| 146 | VERIFY_RAISES_ASSERT(v.head(0).maxCoeff()); |
| 147 | } |
| 148 | |
| 149 | void test_redux() |
| 150 | { |
| 151 | // the max size cannot be too large, otherwise reduxion operations obviously generate large errors. |
| 152 | int maxsize = (std::min)(100,EIGEN_TEST_MAX_SIZE); |
| 153 | TEST_SET_BUT_UNUSED_VARIABLE(maxsize); |
| 154 | for(int i = 0; i < g_repeat; i++) { |
| 155 | CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) ); |
| 156 | CALL_SUBTEST_1( matrixRedux(Array<float, 1, 1>()) ); |
| 157 | CALL_SUBTEST_2( matrixRedux(Matrix2f()) ); |
| 158 | CALL_SUBTEST_2( matrixRedux(Array2f()) ); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 159 | CALL_SUBTEST_2( matrixRedux(Array22f()) ); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 160 | CALL_SUBTEST_3( matrixRedux(Matrix4d()) ); |
| 161 | CALL_SUBTEST_3( matrixRedux(Array4d()) ); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 162 | CALL_SUBTEST_3( matrixRedux(Array44d()) ); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 163 | CALL_SUBTEST_4( matrixRedux(MatrixXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); |
| 164 | CALL_SUBTEST_4( matrixRedux(ArrayXXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); |
| 165 | CALL_SUBTEST_5( matrixRedux(MatrixXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); |
| 166 | CALL_SUBTEST_5( matrixRedux(ArrayXXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); |
| 167 | CALL_SUBTEST_6( matrixRedux(MatrixXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); |
| 168 | CALL_SUBTEST_6( matrixRedux(ArrayXXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); |
| 169 | } |
| 170 | for(int i = 0; i < g_repeat; i++) { |
| 171 | CALL_SUBTEST_7( vectorRedux(Vector4f()) ); |
| 172 | CALL_SUBTEST_7( vectorRedux(Array4f()) ); |
| 173 | CALL_SUBTEST_5( vectorRedux(VectorXd(internal::random<int>(1,maxsize))) ); |
| 174 | CALL_SUBTEST_5( vectorRedux(ArrayXd(internal::random<int>(1,maxsize))) ); |
| 175 | CALL_SUBTEST_8( vectorRedux(VectorXf(internal::random<int>(1,maxsize))) ); |
| 176 | CALL_SUBTEST_8( vectorRedux(ArrayXf(internal::random<int>(1,maxsize))) ); |
| 177 | } |
| 178 | } |