blob: 06a182ea1216524fcc1c56376d439d8032af6e07 [file] [log] [blame]
Campbell Crowley33e0e3d2017-12-27 17:55:40 -08001#!/usr/bin/python
2
3import numpy
4from frc971.control_loops.python import polytope
5import frc971.control_loops.python.drivetrain
6from frc971.control_loops.python import control_loop
7from frc971.control_loops.python import controls
8from frc971.control_loops.python.cim import CIM
9from matplotlib import pylab
10
11import glog
12
Tyler Chatow6738c362019-02-16 14:12:30 -080013
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080014def CoerceGoal(region, K, w, R):
Tyler Chatow6738c362019-02-16 14:12:30 -080015 """Intersects a line with a region, and finds the closest point to R.
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080016
Tyler Chatow6738c362019-02-16 14:12:30 -080017 Finds a point that is closest to R inside the region, and on the line
18 defined by K X = w. If it is not possible to find a point on the line,
19 finds a point that is inside the region and closest to the line. This
20 function assumes that
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080021
Tyler Chatow6738c362019-02-16 14:12:30 -080022 Args:
23 region: HPolytope, the valid goal region.
24 K: numpy.matrix (2 x 1), the matrix for the equation [K1, K2] [x1; x2] = w
25 w: float, the offset in the equation above.
26 R: numpy.matrix (2 x 1), the point to be closest to.
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080027
Tyler Chatow6738c362019-02-16 14:12:30 -080028 Returns:
29 numpy.matrix (2 x 1), the point.
30 """
31 return DoCoerceGoal(region, K, w, R)[0]
32
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080033
34def DoCoerceGoal(region, K, w, R):
Tyler Chatow6738c362019-02-16 14:12:30 -080035 if region.IsInside(R):
36 return (R, True)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080037
Tyler Chatow6738c362019-02-16 14:12:30 -080038 perpendicular_vector = K.T / numpy.linalg.norm(K)
39 parallel_vector = numpy.matrix([[perpendicular_vector[1, 0]],
40 [-perpendicular_vector[0, 0]]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080041
Tyler Chatow6738c362019-02-16 14:12:30 -080042 # We want to impose the constraint K * X = w on the polytope H * X <= k.
43 # We do this by breaking X up into parallel and perpendicular components to
44 # the half plane. This gives us the following equation.
45 #
46 # parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) = X
47 #
48 # Then, substitute this into the polytope.
49 #
50 # H * (parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) <= k
51 #
52 # Substitute K * X = w
53 #
54 # H * parallel * (parallel.T \dot X) + H * perpendicular * w <= k
55 #
56 # Move all the knowns to the right side.
57 #
58 # H * parallel * ([parallel1 parallel2] * X) <= k - H * perpendicular * w
59 #
60 # Let t = parallel.T \dot X, the component parallel to the surface.
61 #
62 # H * parallel * t <= k - H * perpendicular * w
63 #
64 # This is a polytope which we can solve, and use to figure out the range of X
65 # that we care about!
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080066
Tyler Chatow6738c362019-02-16 14:12:30 -080067 t_poly = polytope.HPolytope(region.H * parallel_vector,
68 region.k - region.H * perpendicular_vector * w)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080069
Tyler Chatow6738c362019-02-16 14:12:30 -080070 vertices = t_poly.Vertices()
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080071
Tyler Chatow6738c362019-02-16 14:12:30 -080072 if vertices.shape[0]:
73 # The region exists!
74 # Find the closest vertex
75 min_distance = numpy.infty
76 closest_point = None
77 for vertex in vertices:
78 point = parallel_vector * vertex + perpendicular_vector * w
79 length = numpy.linalg.norm(R - point)
80 if length < min_distance:
81 min_distance = length
82 closest_point = point
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080083
Tyler Chatow6738c362019-02-16 14:12:30 -080084 return (closest_point, True)
85 else:
86 # Find the vertex of the space that is closest to the line.
87 region_vertices = region.Vertices()
88 min_distance = numpy.infty
89 closest_point = None
90 for vertex in region_vertices:
91 point = vertex.T
92 length = numpy.abs((perpendicular_vector.T * point)[0, 0])
93 if length < min_distance:
94 min_distance = length
95 closest_point = point
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080096
Tyler Chatow6738c362019-02-16 14:12:30 -080097 return (closest_point, False)
98
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080099
100class VelocityDrivetrainModel(control_loop.ControlLoop):
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800101
Tyler Chatow6738c362019-02-16 14:12:30 -0800102 def __init__(self,
103 drivetrain_params,
104 left_low=True,
105 right_low=True,
106 name="VelocityDrivetrainModel"):
107 super(VelocityDrivetrainModel, self).__init__(name)
108 self._drivetrain = frc971.control_loops.python.drivetrain.Drivetrain(
109 left_low=left_low,
110 right_low=right_low,
111 drivetrain_params=drivetrain_params)
112 self.dt = drivetrain_params.dt
113 self.A_continuous = numpy.matrix(
114 [[
115 self._drivetrain.A_continuous[1, 1],
116 self._drivetrain.A_continuous[1, 3]
117 ],
118 [
119 self._drivetrain.A_continuous[3, 1],
120 self._drivetrain.A_continuous[3, 3]
121 ]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800122
Tyler Chatow6738c362019-02-16 14:12:30 -0800123 self.B_continuous = numpy.matrix(
124 [[
125 self._drivetrain.B_continuous[1, 0],
126 self._drivetrain.B_continuous[1, 1]
127 ],
128 [
129 self._drivetrain.B_continuous[3, 0],
130 self._drivetrain.B_continuous[3, 1]
131 ]])
132 self.C = numpy.matrix(numpy.eye(2))
133 self.D = numpy.matrix(numpy.zeros((2, 2)))
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800134
Tyler Chatow6738c362019-02-16 14:12:30 -0800135 self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
136 self.B_continuous, self.dt)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800137
Tyler Chatow6738c362019-02-16 14:12:30 -0800138 # FF * X = U (steady state)
139 self.FF = self.B.I * (numpy.eye(2) - self.A)
Austin Schuh74425152018-12-21 11:37:14 +1100140
Tyler Chatow6738c362019-02-16 14:12:30 -0800141 self.PlaceControllerPoles(drivetrain_params.controller_poles)
142 # Build a kalman filter for the velocity. We don't care what the gains
143 # are, but the hybrid kalman filter that we want to write to disk to get
144 # access to A_continuous and B_continuous needs this for completeness.
145 self.Q_continuous = numpy.matrix([[(0.5**2.0), 0.0], [0.0, (0.5**2.0)]])
146 self.R_continuous = numpy.matrix([[(0.1**2.0), 0.0], [0.0, (0.1**2.0)]])
147 self.PlaceObserverPoles(drivetrain_params.observer_poles)
148 _, _, self.Q, self.R = controls.kalmd(
149 A_continuous=self.A_continuous,
150 B_continuous=self.B_continuous,
151 Q_continuous=self.Q_continuous,
152 R_continuous=self.R_continuous,
153 dt=self.dt)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800154
Tyler Chatow6738c362019-02-16 14:12:30 -0800155 self.KalmanGain, self.P_steady_state = controls.kalman(
156 A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800157
Tyler Chatow6738c362019-02-16 14:12:30 -0800158 self.G_high = self._drivetrain.G_high
159 self.G_low = self._drivetrain.G_low
160 self.resistance = self._drivetrain.resistance
161 self.r = self._drivetrain.r
162 self.Kv = self._drivetrain.Kv
163 self.Kt = self._drivetrain.Kt
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800164
Tyler Chatow6738c362019-02-16 14:12:30 -0800165 self.U_max = self._drivetrain.U_max
166 self.U_min = self._drivetrain.U_min
167
168 @property
169 def robot_radius_l(self):
170 return self._drivetrain.robot_radius_l
171
172 @property
173 def robot_radius_r(self):
174 return self._drivetrain.robot_radius_r
175
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800176
177class VelocityDrivetrain(object):
Tyler Chatow6738c362019-02-16 14:12:30 -0800178 HIGH = 'high'
179 LOW = 'low'
180 SHIFTING_UP = 'up'
181 SHIFTING_DOWN = 'down'
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800182
Tyler Chatow6738c362019-02-16 14:12:30 -0800183 def __init__(self, drivetrain_params, name='VelocityDrivetrain'):
184 self.drivetrain_low_low = VelocityDrivetrainModel(
185 left_low=True,
186 right_low=True,
187 name=name + 'LowLow',
188 drivetrain_params=drivetrain_params)
189 self.drivetrain_low_high = VelocityDrivetrainModel(
190 left_low=True,
191 right_low=False,
192 name=name + 'LowHigh',
193 drivetrain_params=drivetrain_params)
194 self.drivetrain_high_low = VelocityDrivetrainModel(
195 left_low=False,
196 right_low=True,
197 name=name + 'HighLow',
198 drivetrain_params=drivetrain_params)
199 self.drivetrain_high_high = VelocityDrivetrainModel(
200 left_low=False,
201 right_low=False,
202 name=name + 'HighHigh',
203 drivetrain_params=drivetrain_params)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800204
Tyler Chatow6738c362019-02-16 14:12:30 -0800205 # X is [lvel, rvel]
206 self.X = numpy.matrix([[0.0], [0.0]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800207
Tyler Chatow6738c362019-02-16 14:12:30 -0800208 self.U_poly = polytope.HPolytope(
209 numpy.matrix([[1, 0], [-1, 0], [0, 1], [0, -1]]),
210 numpy.matrix([[12], [12], [12], [12]]))
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800211
Tyler Chatow6738c362019-02-16 14:12:30 -0800212 self.U_max = numpy.matrix([[12.0], [12.0]])
213 self.U_min = numpy.matrix([[-12.0000000000], [-12.0000000000]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800214
Tyler Chatow6738c362019-02-16 14:12:30 -0800215 self.dt = 0.00505
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800216
Tyler Chatow6738c362019-02-16 14:12:30 -0800217 self.R = numpy.matrix([[0.0], [0.0]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800218
Tyler Chatow6738c362019-02-16 14:12:30 -0800219 self.U_ideal = numpy.matrix([[0.0], [0.0]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800220
Tyler Chatow6738c362019-02-16 14:12:30 -0800221 # ttrust is the comprimise between having full throttle negative inertia,
222 # and having no throttle negative inertia. A value of 0 is full throttle
223 # inertia. A value of 1 is no throttle negative inertia.
224 self.ttrust = 1.0
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800225
Tyler Chatow6738c362019-02-16 14:12:30 -0800226 self.left_gear = VelocityDrivetrain.LOW
227 self.right_gear = VelocityDrivetrain.LOW
228 self.left_shifter_position = 0.0
229 self.right_shifter_position = 0.0
230 self.left_cim = CIM()
231 self.right_cim = CIM()
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800232
Tyler Chatow6738c362019-02-16 14:12:30 -0800233 def IsInGear(self, gear):
234 return gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.LOW
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800235
Tyler Chatow6738c362019-02-16 14:12:30 -0800236 def MotorRPM(self, shifter_position, velocity):
237 if shifter_position > 0.5:
238 return (velocity / self.CurrentDrivetrain().G_high /
239 self.CurrentDrivetrain().r)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800240 else:
Tyler Chatow6738c362019-02-16 14:12:30 -0800241 return (velocity / self.CurrentDrivetrain().G_low /
242 self.CurrentDrivetrain().r)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800243
Tyler Chatow6738c362019-02-16 14:12:30 -0800244 def CurrentDrivetrain(self):
245 if self.left_shifter_position > 0.5:
246 if self.right_shifter_position > 0.5:
247 return self.drivetrain_high_high
248 else:
249 return self.drivetrain_high_low
250 else:
251 if self.right_shifter_position > 0.5:
252 return self.drivetrain_low_high
253 else:
254 return self.drivetrain_low_low
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800255
Tyler Chatow6738c362019-02-16 14:12:30 -0800256 def SimShifter(self, gear, shifter_position):
257 if gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.SHIFTING_UP:
258 shifter_position = min(shifter_position + 0.5, 1.0)
259 else:
260 shifter_position = max(shifter_position - 0.5, 0.0)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800261
Tyler Chatow6738c362019-02-16 14:12:30 -0800262 if shifter_position == 1.0:
263 gear = VelocityDrivetrain.HIGH
264 elif shifter_position == 0.0:
265 gear = VelocityDrivetrain.LOW
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800266
Tyler Chatow6738c362019-02-16 14:12:30 -0800267 return gear, shifter_position
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800268
Tyler Chatow6738c362019-02-16 14:12:30 -0800269 def ComputeGear(self,
270 wheel_velocity,
271 should_print=False,
272 current_gear=False,
273 gear_name=None):
274 high_omega = (wheel_velocity / self.CurrentDrivetrain().G_high /
275 self.CurrentDrivetrain().r)
276 low_omega = (wheel_velocity / self.CurrentDrivetrain().G_low /
277 self.CurrentDrivetrain().r)
278 #print gear_name, "Motor Energy Difference.", 0.5 * 0.000140032647 * (low_omega * low_omega - high_omega * high_omega), "joules"
279 high_torque = (
280 (12.0 - high_omega / self.CurrentDrivetrain().Kv) *
281 self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
282 low_torque = (
283 (12.0 - low_omega / self.CurrentDrivetrain().Kv) *
284 self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
285 high_power = high_torque * high_omega
286 low_power = low_torque * low_omega
287 #if should_print:
288 # print gear_name, "High omega", high_omega, "Low omega", low_omega
289 # print gear_name, "High torque", high_torque, "Low torque", low_torque
290 # print gear_name, "High power", high_power, "Low power", low_power
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800291
Tyler Chatow6738c362019-02-16 14:12:30 -0800292 # Shift algorithm improvements.
293 # TODO(aschuh):
294 # It takes time to shift. Shifting down for 1 cycle doesn't make sense
295 # because you will end up slower than without shifting. Figure out how
296 # to include that info.
297 # If the driver is still in high gear, but isn't asking for the extra power
298 # from low gear, don't shift until he asks for it.
299 goal_gear_is_high = high_power > low_power
300 #goal_gear_is_high = True
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800301
Tyler Chatow6738c362019-02-16 14:12:30 -0800302 if not self.IsInGear(current_gear):
303 glog.debug('%s Not in gear.', gear_name)
304 return current_gear
305 else:
306 is_high = current_gear is VelocityDrivetrain.HIGH
307 if is_high != goal_gear_is_high:
308 if goal_gear_is_high:
309 glog.debug('%s Shifting up.', gear_name)
310 return VelocityDrivetrain.SHIFTING_UP
311 else:
312 glog.debug('%s Shifting down.', gear_name)
313 return VelocityDrivetrain.SHIFTING_DOWN
314 else:
315 return current_gear
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800316
Tyler Chatow6738c362019-02-16 14:12:30 -0800317 def FilterVelocity(self, throttle):
318 # Invert the plant to figure out how the velocity filter would have to work
319 # out in order to filter out the forwards negative inertia.
320 # This math assumes that the left and right power and velocity are equal.
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800321
Tyler Chatow6738c362019-02-16 14:12:30 -0800322 # The throttle filter should filter such that the motor in the highest gear
323 # should be controlling the time constant.
324 # Do this by finding the index of FF that has the lowest value, and computing
325 # the sums using that index.
326 FF_sum = self.CurrentDrivetrain().FF.sum(axis=1)
327 min_FF_sum_index = numpy.argmin(FF_sum)
328 min_FF_sum = FF_sum[min_FF_sum_index, 0]
329 min_K_sum = self.CurrentDrivetrain().K[min_FF_sum_index, :].sum()
330 # Compute the FF sum for high gear.
331 high_min_FF_sum = self.drivetrain_high_high.FF[0, :].sum()
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800332
Tyler Chatow6738c362019-02-16 14:12:30 -0800333 # U = self.K[0, :].sum() * (R - x_avg) + self.FF[0, :].sum() * R
334 # throttle * 12.0 = (self.K[0, :].sum() + self.FF[0, :].sum()) * R
335 # - self.K[0, :].sum() * x_avg
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800336
Tyler Chatow6738c362019-02-16 14:12:30 -0800337 # R = (throttle * 12.0 + self.K[0, :].sum() * x_avg) /
338 # (self.K[0, :].sum() + self.FF[0, :].sum())
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800339
Tyler Chatow6738c362019-02-16 14:12:30 -0800340 # U = (K + FF) * R - K * X
341 # (K + FF) ^-1 * (U + K * X) = R
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800342
Tyler Chatow6738c362019-02-16 14:12:30 -0800343 # Scale throttle by min_FF_sum / high_min_FF_sum. This will make low gear
344 # have the same velocity goal as high gear, and so that the robot will hold
345 # the same speed for the same throttle for all gears.
346 adjusted_ff_voltage = numpy.clip(
347 throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0)
348 return ((adjusted_ff_voltage + self.ttrust * min_K_sum *
349 (self.X[0, 0] + self.X[1, 0]) / 2.0) /
350 (self.ttrust * min_K_sum + min_FF_sum))
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800351
Tyler Chatow6738c362019-02-16 14:12:30 -0800352 def Update(self, throttle, steering):
353 # Shift into the gear which sends the most power to the floor.
354 # This is the same as sending the most torque down to the floor at the
355 # wheel.
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800356
Tyler Chatow6738c362019-02-16 14:12:30 -0800357 self.left_gear = self.right_gear = True
358 if True:
359 self.left_gear = self.ComputeGear(
360 self.X[0, 0],
361 should_print=True,
362 current_gear=self.left_gear,
363 gear_name="left")
364 self.right_gear = self.ComputeGear(
365 self.X[1, 0],
366 should_print=True,
367 current_gear=self.right_gear,
368 gear_name="right")
369 if self.IsInGear(self.left_gear):
370 self.left_cim.X[0, 0] = self.MotorRPM(
371 self.left_shifter_position, self.X[0, 0])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800372
Tyler Chatow6738c362019-02-16 14:12:30 -0800373 if self.IsInGear(self.right_gear):
374 self.right_cim.X[0, 0] = self.MotorRPM(
375 self.right_shifter_position, self.X[0, 0])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800376
Tyler Chatow6738c362019-02-16 14:12:30 -0800377 if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
378 # Filter the throttle to provide a nicer response.
379 fvel = self.FilterVelocity(throttle)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800380
Tyler Chatow6738c362019-02-16 14:12:30 -0800381 # Constant radius means that angualar_velocity / linear_velocity = constant.
382 # Compute the left and right velocities.
383 steering_velocity = numpy.abs(fvel) * steering
384 left_velocity = fvel - steering_velocity
385 right_velocity = fvel + steering_velocity
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800386
Tyler Chatow6738c362019-02-16 14:12:30 -0800387 # Write this constraint in the form of K * R = w
388 # angular velocity / linear velocity = constant
389 # (left - right) / (left + right) = constant
390 # left - right = constant * left + constant * right
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800391
Tyler Chatow6738c362019-02-16 14:12:30 -0800392 # (fvel - steering * numpy.abs(fvel) - fvel - steering * numpy.abs(fvel)) /
393 # (fvel - steering * numpy.abs(fvel) + fvel + steering * numpy.abs(fvel)) =
394 # constant
395 # (- 2 * steering * numpy.abs(fvel)) / (2 * fvel) = constant
396 # (-steering * sign(fvel)) = constant
397 # (-steering * sign(fvel)) * (left + right) = left - right
398 # (steering * sign(fvel) + 1) * left + (steering * sign(fvel) - 1) * right = 0
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800399
Tyler Chatow6738c362019-02-16 14:12:30 -0800400 equality_k = numpy.matrix([[
401 1 + steering * numpy.sign(fvel),
402 -(1 - steering * numpy.sign(fvel))
403 ]])
404 equality_w = 0.0
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800405
Tyler Chatow6738c362019-02-16 14:12:30 -0800406 self.R[0, 0] = left_velocity
407 self.R[1, 0] = right_velocity
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800408
Tyler Chatow6738c362019-02-16 14:12:30 -0800409 # Construct a constraint on R by manipulating the constraint on U
410 # Start out with H * U <= k
411 # U = FF * R + K * (R - X)
412 # H * (FF * R + K * R - K * X) <= k
413 # H * (FF + K) * R <= k + H * K * X
414 R_poly = polytope.HPolytope(
415 self.U_poly.H *
416 (self.CurrentDrivetrain().K + self.CurrentDrivetrain().FF),
417 self.U_poly.k +
418 self.U_poly.H * self.CurrentDrivetrain().K * self.X)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800419
Tyler Chatow6738c362019-02-16 14:12:30 -0800420 # Limit R back inside the box.
421 self.boxed_R = CoerceGoal(R_poly, equality_k, equality_w, self.R)
422
423 FF_volts = self.CurrentDrivetrain().FF * self.boxed_R
424 self.U_ideal = self.CurrentDrivetrain().K * (
425 self.boxed_R - self.X) + FF_volts
426 else:
427 glog.debug('Not all in gear')
428 if not self.IsInGear(self.left_gear) and not self.IsInGear(
429 self.right_gear):
430 # TODO(austin): Use battery volts here.
431 R_left = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
432 self.U_ideal[0, 0] = numpy.clip(
433 self.left_cim.K * (R_left - self.left_cim.X) +
434 R_left / self.left_cim.Kv, self.left_cim.U_min,
435 self.left_cim.U_max)
436 self.left_cim.Update(self.U_ideal[0, 0])
437
438 R_right = self.MotorRPM(self.right_shifter_position,
439 self.X[1, 0])
440 self.U_ideal[1, 0] = numpy.clip(
441 self.right_cim.K * (R_right - self.right_cim.X) +
442 R_right / self.right_cim.Kv, self.right_cim.U_min,
443 self.right_cim.U_max)
444 self.right_cim.Update(self.U_ideal[1, 0])
445 else:
446 assert False
447
448 self.U = numpy.clip(self.U_ideal, self.U_min, self.U_max)
449
450 # TODO(austin): Model the robot as not accelerating when you shift...
451 # This hack only works when you shift at the same time.
452 if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
453 self.X = self.CurrentDrivetrain(
454 ).A * self.X + self.CurrentDrivetrain().B * self.U
455
456 self.left_gear, self.left_shifter_position = self.SimShifter(
457 self.left_gear, self.left_shifter_position)
458 self.right_gear, self.right_shifter_position = self.SimShifter(
459 self.right_gear, self.right_shifter_position)
460
461 glog.debug('U is %s %s', str(self.U[0, 0]), str(self.U[1, 0]))
462 glog.debug('Left shifter %s %d Right shifter %s %d', self.left_gear,
463 self.left_shifter_position, self.right_gear,
464 self.right_shifter_position)
465
466
467def WritePolyDrivetrain(drivetrain_files,
468 motor_files,
469 hybrid_files,
470 year_namespace,
471 drivetrain_params,
Austin Schuh74425152018-12-21 11:37:14 +1100472 scalar_type='double'):
Tyler Chatow6738c362019-02-16 14:12:30 -0800473 vdrivetrain = VelocityDrivetrain(drivetrain_params)
474 hybrid_vdrivetrain = VelocityDrivetrain(
475 drivetrain_params, name="HybridVelocityDrivetrain")
476 if isinstance(year_namespace, list):
477 namespaces = year_namespace
478 else:
479 namespaces = [year_namespace, 'control_loops', 'drivetrain']
480 dog_loop_writer = control_loop.ControlLoopWriter(
481 "VelocityDrivetrain", [
482 vdrivetrain.drivetrain_low_low, vdrivetrain.drivetrain_low_high,
483 vdrivetrain.drivetrain_high_low, vdrivetrain.drivetrain_high_high
484 ],
485 namespaces=namespaces,
486 scalar_type=scalar_type)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800487
Tyler Chatow6738c362019-02-16 14:12:30 -0800488 dog_loop_writer.Write(drivetrain_files[0], drivetrain_files[1])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800489
Tyler Chatow6738c362019-02-16 14:12:30 -0800490 hybrid_loop_writer = control_loop.ControlLoopWriter(
491 "HybridVelocityDrivetrain", [
492 hybrid_vdrivetrain.drivetrain_low_low,
493 hybrid_vdrivetrain.drivetrain_low_high,
494 hybrid_vdrivetrain.drivetrain_high_low,
495 hybrid_vdrivetrain.drivetrain_high_high
496 ],
497 namespaces=namespaces,
498 scalar_type=scalar_type,
499 plant_type='StateFeedbackHybridPlant',
500 observer_type='HybridKalman')
Austin Schuh74425152018-12-21 11:37:14 +1100501
Tyler Chatow6738c362019-02-16 14:12:30 -0800502 hybrid_loop_writer.Write(hybrid_files[0], hybrid_files[1])
Austin Schuh74425152018-12-21 11:37:14 +1100503
Tyler Chatow6738c362019-02-16 14:12:30 -0800504 cim_writer = control_loop.ControlLoopWriter(
505 "CIM", [CIM()], scalar_type=scalar_type)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800506
Tyler Chatow6738c362019-02-16 14:12:30 -0800507 cim_writer.Write(motor_files[0], motor_files[1])
508
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800509
510def PlotPolyDrivetrainMotions(drivetrain_params):
Tyler Chatow6738c362019-02-16 14:12:30 -0800511 vdrivetrain = VelocityDrivetrain(drivetrain_params)
512 vl_plot = []
513 vr_plot = []
514 ul_plot = []
515 ur_plot = []
516 radius_plot = []
517 t_plot = []
518 left_gear_plot = []
519 right_gear_plot = []
520 vdrivetrain.left_shifter_position = 0.0
521 vdrivetrain.right_shifter_position = 0.0
522 vdrivetrain.left_gear = VelocityDrivetrain.LOW
523 vdrivetrain.right_gear = VelocityDrivetrain.LOW
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800524
Tyler Chatow6738c362019-02-16 14:12:30 -0800525 glog.debug('K is %s', str(vdrivetrain.CurrentDrivetrain().K))
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800526
Tyler Chatow6738c362019-02-16 14:12:30 -0800527 if vdrivetrain.left_gear is VelocityDrivetrain.HIGH:
528 glog.debug('Left is high')
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800529 else:
Tyler Chatow6738c362019-02-16 14:12:30 -0800530 glog.debug('Left is low')
531 if vdrivetrain.right_gear is VelocityDrivetrain.HIGH:
532 glog.debug('Right is high')
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800533 else:
Tyler Chatow6738c362019-02-16 14:12:30 -0800534 glog.debug('Right is low')
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800535
Tyler Chatow6738c362019-02-16 14:12:30 -0800536 for t in numpy.arange(0, 1.7, vdrivetrain.dt):
537 if t < 0.5:
538 vdrivetrain.Update(throttle=0.00, steering=1.0)
539 elif t < 1.2:
540 vdrivetrain.Update(throttle=0.5, steering=1.0)
541 else:
542 vdrivetrain.Update(throttle=0.00, steering=1.0)
543 t_plot.append(t)
544 vl_plot.append(vdrivetrain.X[0, 0])
545 vr_plot.append(vdrivetrain.X[1, 0])
546 ul_plot.append(vdrivetrain.U[0, 0])
547 ur_plot.append(vdrivetrain.U[1, 0])
548 left_gear_plot.append(
549 (vdrivetrain.left_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
550 right_gear_plot.append(
551 (vdrivetrain.right_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800552
Tyler Chatow6738c362019-02-16 14:12:30 -0800553 fwd_velocity = (vdrivetrain.X[1, 0] + vdrivetrain.X[0, 0]) / 2
554 turn_velocity = (vdrivetrain.X[1, 0] - vdrivetrain.X[0, 0])
555 if abs(fwd_velocity) < 0.0000001:
556 radius_plot.append(turn_velocity)
557 else:
558 radius_plot.append(turn_velocity / fwd_velocity)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800559
Tyler Chatow6738c362019-02-16 14:12:30 -0800560 # TODO(austin):
561 # Shifting compensation.
562
563 # Tighten the turn.
564 # Closed loop drive.
565
566 pylab.plot(t_plot, vl_plot, label='left velocity')
567 pylab.plot(t_plot, vr_plot, label='right velocity')
568 pylab.plot(t_plot, ul_plot, label='left voltage')
569 pylab.plot(t_plot, ur_plot, label='right voltage')
570 pylab.plot(t_plot, radius_plot, label='radius')
571 pylab.plot(t_plot, left_gear_plot, label='left gear high')
572 pylab.plot(t_plot, right_gear_plot, label='right gear high')
573 pylab.legend()
574 pylab.show()