Reformat python and c++ files

Change-Id: I7d7d99a2094c2a9181ed882735b55159c14db3b0
diff --git a/frc971/control_loops/python/polydrivetrain.py b/frc971/control_loops/python/polydrivetrain.py
index 91dba3c..06a182e 100644
--- a/frc971/control_loops/python/polydrivetrain.py
+++ b/frc971/control_loops/python/polydrivetrain.py
@@ -10,516 +10,565 @@
 
 import glog
 
+
 def CoerceGoal(region, K, w, R):
-  """Intersects a line with a region, and finds the closest point to R.
+    """Intersects a line with a region, and finds the closest point to R.
 
-  Finds a point that is closest to R inside the region, and on the line
-  defined by K X = w.  If it is not possible to find a point on the line,
-  finds a point that is inside the region and closest to the line.  This
-  function assumes that
+    Finds a point that is closest to R inside the region, and on the line
+    defined by K X = w.  If it is not possible to find a point on the line,
+    finds a point that is inside the region and closest to the line.  This
+    function assumes that
 
-  Args:
-    region: HPolytope, the valid goal region.
-    K: numpy.matrix (2 x 1), the matrix for the equation [K1, K2] [x1; x2] = w
-    w: float, the offset in the equation above.
-    R: numpy.matrix (2 x 1), the point to be closest to.
+    Args:
+        region: HPolytope, the valid goal region.
+        K: numpy.matrix (2 x 1), the matrix for the equation [K1, K2] [x1; x2] = w
+        w: float, the offset in the equation above.
+        R: numpy.matrix (2 x 1), the point to be closest to.
 
-  Returns:
-    numpy.matrix (2 x 1), the point.
-  """
-  return DoCoerceGoal(region, K, w, R)[0]
+    Returns:
+        numpy.matrix (2 x 1), the point.
+    """
+    return DoCoerceGoal(region, K, w, R)[0]
+
 
 def DoCoerceGoal(region, K, w, R):
-  if region.IsInside(R):
-    return (R, True)
+    if region.IsInside(R):
+        return (R, True)
 
-  perpendicular_vector = K.T / numpy.linalg.norm(K)
-  parallel_vector = numpy.matrix([[perpendicular_vector[1, 0]],
-                                  [-perpendicular_vector[0, 0]]])
+    perpendicular_vector = K.T / numpy.linalg.norm(K)
+    parallel_vector = numpy.matrix([[perpendicular_vector[1, 0]],
+                                    [-perpendicular_vector[0, 0]]])
 
-  # We want to impose the constraint K * X = w on the polytope H * X <= k.
-  # We do this by breaking X up into parallel and perpendicular components to
-  # the half plane.  This gives us the following equation.
-  #
-  #  parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) = X
-  #
-  # Then, substitute this into the polytope.
-  #
-  #  H * (parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) <= k
-  #
-  # Substitute K * X = w
-  #
-  # H * parallel * (parallel.T \dot X) + H * perpendicular * w <= k
-  #
-  # Move all the knowns to the right side.
-  #
-  # H * parallel * ([parallel1 parallel2] * X) <= k - H * perpendicular * w
-  #
-  # Let t = parallel.T \dot X, the component parallel to the surface.
-  #
-  # H * parallel * t <= k - H * perpendicular * w
-  #
-  # This is a polytope which we can solve, and use to figure out the range of X
-  # that we care about!
+    # We want to impose the constraint K * X = w on the polytope H * X <= k.
+    # We do this by breaking X up into parallel and perpendicular components to
+    # the half plane.  This gives us the following equation.
+    #
+    #  parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) = X
+    #
+    # Then, substitute this into the polytope.
+    #
+    #  H * (parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) <= k
+    #
+    # Substitute K * X = w
+    #
+    # H * parallel * (parallel.T \dot X) + H * perpendicular * w <= k
+    #
+    # Move all the knowns to the right side.
+    #
+    # H * parallel * ([parallel1 parallel2] * X) <= k - H * perpendicular * w
+    #
+    # Let t = parallel.T \dot X, the component parallel to the surface.
+    #
+    # H * parallel * t <= k - H * perpendicular * w
+    #
+    # This is a polytope which we can solve, and use to figure out the range of X
+    # that we care about!
 
-  t_poly = polytope.HPolytope(
-      region.H * parallel_vector,
-      region.k - region.H * perpendicular_vector * w)
+    t_poly = polytope.HPolytope(region.H * parallel_vector,
+                                region.k - region.H * perpendicular_vector * w)
 
-  vertices = t_poly.Vertices()
+    vertices = t_poly.Vertices()
 
-  if vertices.shape[0]:
-    # The region exists!
-    # Find the closest vertex
-    min_distance = numpy.infty
-    closest_point = None
-    for vertex in vertices:
-      point = parallel_vector * vertex + perpendicular_vector * w
-      length = numpy.linalg.norm(R - point)
-      if length < min_distance:
-        min_distance = length
-        closest_point = point
+    if vertices.shape[0]:
+        # The region exists!
+        # Find the closest vertex
+        min_distance = numpy.infty
+        closest_point = None
+        for vertex in vertices:
+            point = parallel_vector * vertex + perpendicular_vector * w
+            length = numpy.linalg.norm(R - point)
+            if length < min_distance:
+                min_distance = length
+                closest_point = point
 
-    return (closest_point, True)
-  else:
-    # Find the vertex of the space that is closest to the line.
-    region_vertices = region.Vertices()
-    min_distance = numpy.infty
-    closest_point = None
-    for vertex in region_vertices:
-      point = vertex.T
-      length = numpy.abs((perpendicular_vector.T * point)[0, 0])
-      if length < min_distance:
-        min_distance = length
-        closest_point = point
+        return (closest_point, True)
+    else:
+        # Find the vertex of the space that is closest to the line.
+        region_vertices = region.Vertices()
+        min_distance = numpy.infty
+        closest_point = None
+        for vertex in region_vertices:
+            point = vertex.T
+            length = numpy.abs((perpendicular_vector.T * point)[0, 0])
+            if length < min_distance:
+                min_distance = length
+                closest_point = point
 
-    return (closest_point, False)
+        return (closest_point, False)
+
 
 class VelocityDrivetrainModel(control_loop.ControlLoop):
-  def __init__(self, drivetrain_params, left_low=True, right_low=True,
-                   name="VelocityDrivetrainModel"):
-    super(VelocityDrivetrainModel, self).__init__(name)
-    self._drivetrain = frc971.control_loops.python.drivetrain.Drivetrain(
-                           left_low=left_low, right_low=right_low,
-                           drivetrain_params=drivetrain_params)
-    self.dt = drivetrain_params.dt
-    self.A_continuous = numpy.matrix(
-        [[self._drivetrain.A_continuous[1, 1], self._drivetrain.A_continuous[1, 3]],
-         [self._drivetrain.A_continuous[3, 1], self._drivetrain.A_continuous[3, 3]]])
 
-    self.B_continuous = numpy.matrix(
-        [[self._drivetrain.B_continuous[1, 0], self._drivetrain.B_continuous[1, 1]],
-         [self._drivetrain.B_continuous[3, 0], self._drivetrain.B_continuous[3, 1]]])
-    self.C = numpy.matrix(numpy.eye(2))
-    self.D = numpy.matrix(numpy.zeros((2, 2)))
+    def __init__(self,
+                 drivetrain_params,
+                 left_low=True,
+                 right_low=True,
+                 name="VelocityDrivetrainModel"):
+        super(VelocityDrivetrainModel, self).__init__(name)
+        self._drivetrain = frc971.control_loops.python.drivetrain.Drivetrain(
+            left_low=left_low,
+            right_low=right_low,
+            drivetrain_params=drivetrain_params)
+        self.dt = drivetrain_params.dt
+        self.A_continuous = numpy.matrix(
+            [[
+                self._drivetrain.A_continuous[1, 1],
+                self._drivetrain.A_continuous[1, 3]
+            ],
+             [
+                 self._drivetrain.A_continuous[3, 1],
+                 self._drivetrain.A_continuous[3, 3]
+             ]])
 
-    self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
-                                               self.B_continuous, self.dt)
+        self.B_continuous = numpy.matrix(
+            [[
+                self._drivetrain.B_continuous[1, 0],
+                self._drivetrain.B_continuous[1, 1]
+            ],
+             [
+                 self._drivetrain.B_continuous[3, 0],
+                 self._drivetrain.B_continuous[3, 1]
+             ]])
+        self.C = numpy.matrix(numpy.eye(2))
+        self.D = numpy.matrix(numpy.zeros((2, 2)))
 
-    # FF * X = U (steady state)
-    self.FF = self.B.I * (numpy.eye(2) - self.A)
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.PlaceControllerPoles(drivetrain_params.controller_poles)
-    # Build a kalman filter for the velocity.  We don't care what the gains
-    # are, but the hybrid kalman filter that we want to write to disk to get
-    # access to A_continuous and B_continuous needs this for completeness.
-    self.Q_continuous = numpy.matrix([[(0.5 ** 2.0), 0.0], [0.0, (0.5 ** 2.0)]])
-    self.R_continuous = numpy.matrix([[(0.1 ** 2.0), 0.0], [0.0, (0.1 ** 2.0)]])
-    self.PlaceObserverPoles(drivetrain_params.observer_poles)
-    _, _, self.Q, self.R = controls.kalmd(
-        A_continuous=self.A_continuous, B_continuous=self.B_continuous,
-        Q_continuous=self.Q_continuous, R_continuous=self.R_continuous,
-        dt=self.dt)
+        # FF * X = U (steady state)
+        self.FF = self.B.I * (numpy.eye(2) - self.A)
 
-    self.KalmanGain, self.P_steady_state = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.PlaceControllerPoles(drivetrain_params.controller_poles)
+        # Build a kalman filter for the velocity.  We don't care what the gains
+        # are, but the hybrid kalman filter that we want to write to disk to get
+        # access to A_continuous and B_continuous needs this for completeness.
+        self.Q_continuous = numpy.matrix([[(0.5**2.0), 0.0], [0.0, (0.5**2.0)]])
+        self.R_continuous = numpy.matrix([[(0.1**2.0), 0.0], [0.0, (0.1**2.0)]])
+        self.PlaceObserverPoles(drivetrain_params.observer_poles)
+        _, _, self.Q, self.R = controls.kalmd(
+            A_continuous=self.A_continuous,
+            B_continuous=self.B_continuous,
+            Q_continuous=self.Q_continuous,
+            R_continuous=self.R_continuous,
+            dt=self.dt)
 
-    self.G_high = self._drivetrain.G_high
-    self.G_low = self._drivetrain.G_low
-    self.resistance = self._drivetrain.resistance
-    self.r = self._drivetrain.r
-    self.Kv = self._drivetrain.Kv
-    self.Kt = self._drivetrain.Kt
+        self.KalmanGain, self.P_steady_state = controls.kalman(
+            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
 
-    self.U_max = self._drivetrain.U_max
-    self.U_min = self._drivetrain.U_min
+        self.G_high = self._drivetrain.G_high
+        self.G_low = self._drivetrain.G_low
+        self.resistance = self._drivetrain.resistance
+        self.r = self._drivetrain.r
+        self.Kv = self._drivetrain.Kv
+        self.Kt = self._drivetrain.Kt
 
-  @property
-  def robot_radius_l(self):
-    return self._drivetrain.robot_radius_l
-  @property
-  def robot_radius_r(self):
-    return self._drivetrain.robot_radius_r
+        self.U_max = self._drivetrain.U_max
+        self.U_min = self._drivetrain.U_min
+
+    @property
+    def robot_radius_l(self):
+        return self._drivetrain.robot_radius_l
+
+    @property
+    def robot_radius_r(self):
+        return self._drivetrain.robot_radius_r
+
 
 class VelocityDrivetrain(object):
-  HIGH = 'high'
-  LOW = 'low'
-  SHIFTING_UP = 'up'
-  SHIFTING_DOWN = 'down'
+    HIGH = 'high'
+    LOW = 'low'
+    SHIFTING_UP = 'up'
+    SHIFTING_DOWN = 'down'
 
-  def __init__(self, drivetrain_params, name='VelocityDrivetrain'):
-    self.drivetrain_low_low = VelocityDrivetrainModel(
-        left_low=True, right_low=True, name=name + 'LowLow',
-        drivetrain_params=drivetrain_params)
-    self.drivetrain_low_high = VelocityDrivetrainModel(
-        left_low=True, right_low=False, name=name + 'LowHigh',
-        drivetrain_params=drivetrain_params)
-    self.drivetrain_high_low = VelocityDrivetrainModel(
-        left_low=False, right_low=True, name = name + 'HighLow',
-        drivetrain_params=drivetrain_params)
-    self.drivetrain_high_high = VelocityDrivetrainModel(
-        left_low=False, right_low=False, name = name + 'HighHigh',
-        drivetrain_params=drivetrain_params)
+    def __init__(self, drivetrain_params, name='VelocityDrivetrain'):
+        self.drivetrain_low_low = VelocityDrivetrainModel(
+            left_low=True,
+            right_low=True,
+            name=name + 'LowLow',
+            drivetrain_params=drivetrain_params)
+        self.drivetrain_low_high = VelocityDrivetrainModel(
+            left_low=True,
+            right_low=False,
+            name=name + 'LowHigh',
+            drivetrain_params=drivetrain_params)
+        self.drivetrain_high_low = VelocityDrivetrainModel(
+            left_low=False,
+            right_low=True,
+            name=name + 'HighLow',
+            drivetrain_params=drivetrain_params)
+        self.drivetrain_high_high = VelocityDrivetrainModel(
+            left_low=False,
+            right_low=False,
+            name=name + 'HighHigh',
+            drivetrain_params=drivetrain_params)
 
-    # X is [lvel, rvel]
-    self.X = numpy.matrix(
-        [[0.0],
-         [0.0]])
+        # X is [lvel, rvel]
+        self.X = numpy.matrix([[0.0], [0.0]])
 
-    self.U_poly = polytope.HPolytope(
-        numpy.matrix([[1, 0],
-                      [-1, 0],
-                      [0, 1],
-                      [0, -1]]),
-        numpy.matrix([[12],
-                      [12],
-                      [12],
-                      [12]]))
+        self.U_poly = polytope.HPolytope(
+            numpy.matrix([[1, 0], [-1, 0], [0, 1], [0, -1]]),
+            numpy.matrix([[12], [12], [12], [12]]))
 
-    self.U_max = numpy.matrix(
-        [[12.0],
-         [12.0]])
-    self.U_min = numpy.matrix(
-        [[-12.0000000000],
-         [-12.0000000000]])
+        self.U_max = numpy.matrix([[12.0], [12.0]])
+        self.U_min = numpy.matrix([[-12.0000000000], [-12.0000000000]])
 
-    self.dt = 0.00505
+        self.dt = 0.00505
 
-    self.R = numpy.matrix(
-        [[0.0],
-         [0.0]])
+        self.R = numpy.matrix([[0.0], [0.0]])
 
-    self.U_ideal = numpy.matrix(
-        [[0.0],
-         [0.0]])
+        self.U_ideal = numpy.matrix([[0.0], [0.0]])
 
-    # ttrust is the comprimise between having full throttle negative inertia,
-    # and having no throttle negative inertia.  A value of 0 is full throttle
-    # inertia.  A value of 1 is no throttle negative inertia.
-    self.ttrust = 1.0
+        # ttrust is the comprimise between having full throttle negative inertia,
+        # and having no throttle negative inertia.  A value of 0 is full throttle
+        # inertia.  A value of 1 is no throttle negative inertia.
+        self.ttrust = 1.0
 
-    self.left_gear = VelocityDrivetrain.LOW
-    self.right_gear = VelocityDrivetrain.LOW
-    self.left_shifter_position = 0.0
-    self.right_shifter_position = 0.0
-    self.left_cim = CIM()
-    self.right_cim = CIM()
+        self.left_gear = VelocityDrivetrain.LOW
+        self.right_gear = VelocityDrivetrain.LOW
+        self.left_shifter_position = 0.0
+        self.right_shifter_position = 0.0
+        self.left_cim = CIM()
+        self.right_cim = CIM()
 
-  def IsInGear(self, gear):
-    return gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.LOW
+    def IsInGear(self, gear):
+        return gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.LOW
 
-  def MotorRPM(self, shifter_position, velocity):
-    if shifter_position > 0.5:
-      return (velocity / self.CurrentDrivetrain().G_high /
-              self.CurrentDrivetrain().r)
-    else:
-      return (velocity / self.CurrentDrivetrain().G_low /
-              self.CurrentDrivetrain().r)
-
-  def CurrentDrivetrain(self):
-    if self.left_shifter_position > 0.5:
-      if self.right_shifter_position > 0.5:
-        return self.drivetrain_high_high
-      else:
-        return self.drivetrain_high_low
-    else:
-      if self.right_shifter_position > 0.5:
-        return self.drivetrain_low_high
-      else:
-        return self.drivetrain_low_low
-
-  def SimShifter(self, gear, shifter_position):
-    if gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.SHIFTING_UP:
-      shifter_position = min(shifter_position + 0.5, 1.0)
-    else:
-      shifter_position = max(shifter_position - 0.5, 0.0)
-
-    if shifter_position == 1.0:
-      gear = VelocityDrivetrain.HIGH
-    elif shifter_position == 0.0:
-      gear = VelocityDrivetrain.LOW
-
-    return gear, shifter_position
-
-  def ComputeGear(self, wheel_velocity, should_print=False, current_gear=False, gear_name=None):
-    high_omega = (wheel_velocity / self.CurrentDrivetrain().G_high /
-                  self.CurrentDrivetrain().r)
-    low_omega = (wheel_velocity / self.CurrentDrivetrain().G_low /
-                 self.CurrentDrivetrain().r)
-    #print gear_name, "Motor Energy Difference.", 0.5 * 0.000140032647 * (low_omega * low_omega - high_omega * high_omega), "joules"
-    high_torque = ((12.0 - high_omega / self.CurrentDrivetrain().Kv) *
-                   self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
-    low_torque = ((12.0 - low_omega / self.CurrentDrivetrain().Kv) *
-                  self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
-    high_power = high_torque * high_omega
-    low_power = low_torque * low_omega
-    #if should_print:
-    #  print gear_name, "High omega", high_omega, "Low omega", low_omega
-    #  print gear_name, "High torque", high_torque, "Low torque", low_torque
-    #  print gear_name, "High power", high_power, "Low power", low_power
-
-    # Shift algorithm improvements.
-    # TODO(aschuh):
-    # It takes time to shift.  Shifting down for 1 cycle doesn't make sense
-    # because you will end up slower than without shifting.  Figure out how
-    # to include that info.
-    # If the driver is still in high gear, but isn't asking for the extra power
-    # from low gear, don't shift until he asks for it.
-    goal_gear_is_high = high_power > low_power
-    #goal_gear_is_high = True
-
-    if not self.IsInGear(current_gear):
-      glog.debug('%s Not in gear.', gear_name)
-      return current_gear
-    else:
-      is_high = current_gear is VelocityDrivetrain.HIGH
-      if is_high != goal_gear_is_high:
-        if goal_gear_is_high:
-          glog.debug('%s Shifting up.', gear_name)
-          return VelocityDrivetrain.SHIFTING_UP
+    def MotorRPM(self, shifter_position, velocity):
+        if shifter_position > 0.5:
+            return (velocity / self.CurrentDrivetrain().G_high /
+                    self.CurrentDrivetrain().r)
         else:
-          glog.debug('%s Shifting down.', gear_name)
-          return VelocityDrivetrain.SHIFTING_DOWN
-      else:
-        return current_gear
+            return (velocity / self.CurrentDrivetrain().G_low /
+                    self.CurrentDrivetrain().r)
 
-  def FilterVelocity(self, throttle):
-    # Invert the plant to figure out how the velocity filter would have to work
-    # out in order to filter out the forwards negative inertia.
-    # This math assumes that the left and right power and velocity are equal.
+    def CurrentDrivetrain(self):
+        if self.left_shifter_position > 0.5:
+            if self.right_shifter_position > 0.5:
+                return self.drivetrain_high_high
+            else:
+                return self.drivetrain_high_low
+        else:
+            if self.right_shifter_position > 0.5:
+                return self.drivetrain_low_high
+            else:
+                return self.drivetrain_low_low
 
-    # The throttle filter should filter such that the motor in the highest gear
-    # should be controlling the time constant.
-    # Do this by finding the index of FF that has the lowest value, and computing
-    # the sums using that index.
-    FF_sum = self.CurrentDrivetrain().FF.sum(axis=1)
-    min_FF_sum_index = numpy.argmin(FF_sum)
-    min_FF_sum = FF_sum[min_FF_sum_index, 0]
-    min_K_sum = self.CurrentDrivetrain().K[min_FF_sum_index, :].sum()
-    # Compute the FF sum for high gear.
-    high_min_FF_sum = self.drivetrain_high_high.FF[0, :].sum()
+    def SimShifter(self, gear, shifter_position):
+        if gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.SHIFTING_UP:
+            shifter_position = min(shifter_position + 0.5, 1.0)
+        else:
+            shifter_position = max(shifter_position - 0.5, 0.0)
 
-    # U = self.K[0, :].sum() * (R - x_avg) + self.FF[0, :].sum() * R
-    # throttle * 12.0 = (self.K[0, :].sum() + self.FF[0, :].sum()) * R
-    #                   - self.K[0, :].sum() * x_avg
+        if shifter_position == 1.0:
+            gear = VelocityDrivetrain.HIGH
+        elif shifter_position == 0.0:
+            gear = VelocityDrivetrain.LOW
 
-    # R = (throttle * 12.0 + self.K[0, :].sum() * x_avg) /
-    #     (self.K[0, :].sum() + self.FF[0, :].sum())
+        return gear, shifter_position
 
-    # U = (K + FF) * R - K * X
-    # (K + FF) ^-1 * (U + K * X) = R
+    def ComputeGear(self,
+                    wheel_velocity,
+                    should_print=False,
+                    current_gear=False,
+                    gear_name=None):
+        high_omega = (wheel_velocity / self.CurrentDrivetrain().G_high /
+                      self.CurrentDrivetrain().r)
+        low_omega = (wheel_velocity / self.CurrentDrivetrain().G_low /
+                     self.CurrentDrivetrain().r)
+        #print gear_name, "Motor Energy Difference.", 0.5 * 0.000140032647 * (low_omega * low_omega - high_omega * high_omega), "joules"
+        high_torque = (
+            (12.0 - high_omega / self.CurrentDrivetrain().Kv) *
+            self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
+        low_torque = (
+            (12.0 - low_omega / self.CurrentDrivetrain().Kv) *
+            self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
+        high_power = high_torque * high_omega
+        low_power = low_torque * low_omega
+        #if should_print:
+        #  print gear_name, "High omega", high_omega, "Low omega", low_omega
+        #  print gear_name, "High torque", high_torque, "Low torque", low_torque
+        #  print gear_name, "High power", high_power, "Low power", low_power
 
-    # Scale throttle by min_FF_sum / high_min_FF_sum.  This will make low gear
-    # have the same velocity goal as high gear, and so that the robot will hold
-    # the same speed for the same throttle for all gears.
-    adjusted_ff_voltage = numpy.clip(throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0)
-    return ((adjusted_ff_voltage + self.ttrust * min_K_sum * (self.X[0, 0] + self.X[1, 0]) / 2.0)
-            / (self.ttrust * min_K_sum + min_FF_sum))
+        # Shift algorithm improvements.
+        # TODO(aschuh):
+        # It takes time to shift.  Shifting down for 1 cycle doesn't make sense
+        # because you will end up slower than without shifting.  Figure out how
+        # to include that info.
+        # If the driver is still in high gear, but isn't asking for the extra power
+        # from low gear, don't shift until he asks for it.
+        goal_gear_is_high = high_power > low_power
+        #goal_gear_is_high = True
 
-  def Update(self, throttle, steering):
-    # Shift into the gear which sends the most power to the floor.
-    # This is the same as sending the most torque down to the floor at the
-    # wheel.
+        if not self.IsInGear(current_gear):
+            glog.debug('%s Not in gear.', gear_name)
+            return current_gear
+        else:
+            is_high = current_gear is VelocityDrivetrain.HIGH
+            if is_high != goal_gear_is_high:
+                if goal_gear_is_high:
+                    glog.debug('%s Shifting up.', gear_name)
+                    return VelocityDrivetrain.SHIFTING_UP
+                else:
+                    glog.debug('%s Shifting down.', gear_name)
+                    return VelocityDrivetrain.SHIFTING_DOWN
+            else:
+                return current_gear
 
-    self.left_gear = self.right_gear = True
-    if True:
-      self.left_gear = self.ComputeGear(self.X[0, 0], should_print=True,
-                                        current_gear=self.left_gear,
-                                        gear_name="left")
-      self.right_gear = self.ComputeGear(self.X[1, 0], should_print=True,
-                                         current_gear=self.right_gear,
-                                         gear_name="right")
-      if self.IsInGear(self.left_gear):
-        self.left_cim.X[0, 0] = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
+    def FilterVelocity(self, throttle):
+        # Invert the plant to figure out how the velocity filter would have to work
+        # out in order to filter out the forwards negative inertia.
+        # This math assumes that the left and right power and velocity are equal.
 
-      if self.IsInGear(self.right_gear):
-        self.right_cim.X[0, 0] = self.MotorRPM(self.right_shifter_position, self.X[0, 0])
+        # The throttle filter should filter such that the motor in the highest gear
+        # should be controlling the time constant.
+        # Do this by finding the index of FF that has the lowest value, and computing
+        # the sums using that index.
+        FF_sum = self.CurrentDrivetrain().FF.sum(axis=1)
+        min_FF_sum_index = numpy.argmin(FF_sum)
+        min_FF_sum = FF_sum[min_FF_sum_index, 0]
+        min_K_sum = self.CurrentDrivetrain().K[min_FF_sum_index, :].sum()
+        # Compute the FF sum for high gear.
+        high_min_FF_sum = self.drivetrain_high_high.FF[0, :].sum()
 
-    if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
-      # Filter the throttle to provide a nicer response.
-      fvel = self.FilterVelocity(throttle)
+        # U = self.K[0, :].sum() * (R - x_avg) + self.FF[0, :].sum() * R
+        # throttle * 12.0 = (self.K[0, :].sum() + self.FF[0, :].sum()) * R
+        #                   - self.K[0, :].sum() * x_avg
 
-      # Constant radius means that angualar_velocity / linear_velocity = constant.
-      # Compute the left and right velocities.
-      steering_velocity = numpy.abs(fvel) * steering
-      left_velocity = fvel - steering_velocity
-      right_velocity = fvel + steering_velocity
+        # R = (throttle * 12.0 + self.K[0, :].sum() * x_avg) /
+        #     (self.K[0, :].sum() + self.FF[0, :].sum())
 
-      # Write this constraint in the form of K * R = w
-      # angular velocity / linear velocity = constant
-      # (left - right) / (left + right) = constant
-      # left - right = constant * left + constant * right
+        # U = (K + FF) * R - K * X
+        # (K + FF) ^-1 * (U + K * X) = R
 
-      # (fvel - steering * numpy.abs(fvel) - fvel - steering * numpy.abs(fvel)) /
-      #  (fvel - steering * numpy.abs(fvel) + fvel + steering * numpy.abs(fvel)) =
-      #       constant
-      # (- 2 * steering * numpy.abs(fvel)) / (2 * fvel) = constant
-      # (-steering * sign(fvel)) = constant
-      # (-steering * sign(fvel)) * (left + right) = left - right
-      # (steering * sign(fvel) + 1) * left + (steering * sign(fvel) - 1) * right = 0
+        # Scale throttle by min_FF_sum / high_min_FF_sum.  This will make low gear
+        # have the same velocity goal as high gear, and so that the robot will hold
+        # the same speed for the same throttle for all gears.
+        adjusted_ff_voltage = numpy.clip(
+            throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0)
+        return ((adjusted_ff_voltage + self.ttrust * min_K_sum *
+                 (self.X[0, 0] + self.X[1, 0]) / 2.0) /
+                (self.ttrust * min_K_sum + min_FF_sum))
 
-      equality_k = numpy.matrix(
-          [[1 + steering * numpy.sign(fvel), -(1 - steering * numpy.sign(fvel))]])
-      equality_w = 0.0
+    def Update(self, throttle, steering):
+        # Shift into the gear which sends the most power to the floor.
+        # This is the same as sending the most torque down to the floor at the
+        # wheel.
 
-      self.R[0, 0] = left_velocity
-      self.R[1, 0] = right_velocity
+        self.left_gear = self.right_gear = True
+        if True:
+            self.left_gear = self.ComputeGear(
+                self.X[0, 0],
+                should_print=True,
+                current_gear=self.left_gear,
+                gear_name="left")
+            self.right_gear = self.ComputeGear(
+                self.X[1, 0],
+                should_print=True,
+                current_gear=self.right_gear,
+                gear_name="right")
+            if self.IsInGear(self.left_gear):
+                self.left_cim.X[0, 0] = self.MotorRPM(
+                    self.left_shifter_position, self.X[0, 0])
 
-      # Construct a constraint on R by manipulating the constraint on U
-      # Start out with H * U <= k
-      # U = FF * R + K * (R - X)
-      # H * (FF * R + K * R - K * X) <= k
-      # H * (FF + K) * R <= k + H * K * X
-      R_poly = polytope.HPolytope(
-          self.U_poly.H * (self.CurrentDrivetrain().K + self.CurrentDrivetrain().FF),
-          self.U_poly.k + self.U_poly.H * self.CurrentDrivetrain().K * self.X)
+            if self.IsInGear(self.right_gear):
+                self.right_cim.X[0, 0] = self.MotorRPM(
+                    self.right_shifter_position, self.X[0, 0])
 
-      # Limit R back inside the box.
-      self.boxed_R = CoerceGoal(R_poly, equality_k, equality_w, self.R)
+        if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
+            # Filter the throttle to provide a nicer response.
+            fvel = self.FilterVelocity(throttle)
 
-      FF_volts = self.CurrentDrivetrain().FF * self.boxed_R
-      self.U_ideal = self.CurrentDrivetrain().K * (self.boxed_R - self.X) + FF_volts
-    else:
-      glog.debug('Not all in gear')
-      if not self.IsInGear(self.left_gear) and not self.IsInGear(self.right_gear):
-        # TODO(austin): Use battery volts here.
-        R_left = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
-        self.U_ideal[0, 0] = numpy.clip(
-            self.left_cim.K * (R_left - self.left_cim.X) + R_left / self.left_cim.Kv,
-            self.left_cim.U_min, self.left_cim.U_max)
-        self.left_cim.Update(self.U_ideal[0, 0])
+            # Constant radius means that angualar_velocity / linear_velocity = constant.
+            # Compute the left and right velocities.
+            steering_velocity = numpy.abs(fvel) * steering
+            left_velocity = fvel - steering_velocity
+            right_velocity = fvel + steering_velocity
 
-        R_right = self.MotorRPM(self.right_shifter_position, self.X[1, 0])
-        self.U_ideal[1, 0] = numpy.clip(
-            self.right_cim.K * (R_right - self.right_cim.X) + R_right / self.right_cim.Kv,
-            self.right_cim.U_min, self.right_cim.U_max)
-        self.right_cim.Update(self.U_ideal[1, 0])
-      else:
-        assert False
+            # Write this constraint in the form of K * R = w
+            # angular velocity / linear velocity = constant
+            # (left - right) / (left + right) = constant
+            # left - right = constant * left + constant * right
 
-    self.U = numpy.clip(self.U_ideal, self.U_min, self.U_max)
+            # (fvel - steering * numpy.abs(fvel) - fvel - steering * numpy.abs(fvel)) /
+            #  (fvel - steering * numpy.abs(fvel) + fvel + steering * numpy.abs(fvel)) =
+            #       constant
+            # (- 2 * steering * numpy.abs(fvel)) / (2 * fvel) = constant
+            # (-steering * sign(fvel)) = constant
+            # (-steering * sign(fvel)) * (left + right) = left - right
+            # (steering * sign(fvel) + 1) * left + (steering * sign(fvel) - 1) * right = 0
 
-    # TODO(austin): Model the robot as not accelerating when you shift...
-    # This hack only works when you shift at the same time.
-    if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
-      self.X = self.CurrentDrivetrain().A * self.X + self.CurrentDrivetrain().B * self.U
+            equality_k = numpy.matrix([[
+                1 + steering * numpy.sign(fvel),
+                -(1 - steering * numpy.sign(fvel))
+            ]])
+            equality_w = 0.0
 
-    self.left_gear, self.left_shifter_position = self.SimShifter(
-        self.left_gear, self.left_shifter_position)
-    self.right_gear, self.right_shifter_position = self.SimShifter(
-        self.right_gear, self.right_shifter_position)
+            self.R[0, 0] = left_velocity
+            self.R[1, 0] = right_velocity
 
-    glog.debug('U is %s %s', str(self.U[0, 0]), str(self.U[1, 0]))
-    glog.debug('Left shifter %s %d Right shifter %s %d',
-               self.left_gear, self.left_shifter_position,
-               self.right_gear, self.right_shifter_position)
+            # Construct a constraint on R by manipulating the constraint on U
+            # Start out with H * U <= k
+            # U = FF * R + K * (R - X)
+            # H * (FF * R + K * R - K * X) <= k
+            # H * (FF + K) * R <= k + H * K * X
+            R_poly = polytope.HPolytope(
+                self.U_poly.H *
+                (self.CurrentDrivetrain().K + self.CurrentDrivetrain().FF),
+                self.U_poly.k +
+                self.U_poly.H * self.CurrentDrivetrain().K * self.X)
 
-def WritePolyDrivetrain(drivetrain_files, motor_files, hybrid_files,
-                        year_namespace, drivetrain_params,
+            # Limit R back inside the box.
+            self.boxed_R = CoerceGoal(R_poly, equality_k, equality_w, self.R)
+
+            FF_volts = self.CurrentDrivetrain().FF * self.boxed_R
+            self.U_ideal = self.CurrentDrivetrain().K * (
+                self.boxed_R - self.X) + FF_volts
+        else:
+            glog.debug('Not all in gear')
+            if not self.IsInGear(self.left_gear) and not self.IsInGear(
+                    self.right_gear):
+                # TODO(austin): Use battery volts here.
+                R_left = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
+                self.U_ideal[0, 0] = numpy.clip(
+                    self.left_cim.K * (R_left - self.left_cim.X) +
+                    R_left / self.left_cim.Kv, self.left_cim.U_min,
+                    self.left_cim.U_max)
+                self.left_cim.Update(self.U_ideal[0, 0])
+
+                R_right = self.MotorRPM(self.right_shifter_position,
+                                        self.X[1, 0])
+                self.U_ideal[1, 0] = numpy.clip(
+                    self.right_cim.K * (R_right - self.right_cim.X) +
+                    R_right / self.right_cim.Kv, self.right_cim.U_min,
+                    self.right_cim.U_max)
+                self.right_cim.Update(self.U_ideal[1, 0])
+            else:
+                assert False
+
+        self.U = numpy.clip(self.U_ideal, self.U_min, self.U_max)
+
+        # TODO(austin): Model the robot as not accelerating when you shift...
+        # This hack only works when you shift at the same time.
+        if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
+            self.X = self.CurrentDrivetrain(
+            ).A * self.X + self.CurrentDrivetrain().B * self.U
+
+        self.left_gear, self.left_shifter_position = self.SimShifter(
+            self.left_gear, self.left_shifter_position)
+        self.right_gear, self.right_shifter_position = self.SimShifter(
+            self.right_gear, self.right_shifter_position)
+
+        glog.debug('U is %s %s', str(self.U[0, 0]), str(self.U[1, 0]))
+        glog.debug('Left shifter %s %d Right shifter %s %d', self.left_gear,
+                   self.left_shifter_position, self.right_gear,
+                   self.right_shifter_position)
+
+
+def WritePolyDrivetrain(drivetrain_files,
+                        motor_files,
+                        hybrid_files,
+                        year_namespace,
+                        drivetrain_params,
                         scalar_type='double'):
-  vdrivetrain = VelocityDrivetrain(drivetrain_params)
-  hybrid_vdrivetrain = VelocityDrivetrain(drivetrain_params,
-                                          name="HybridVelocityDrivetrain")
-  if isinstance(year_namespace, list):
-    namespaces = year_namespace
-  else:
-    namespaces = [year_namespace, 'control_loops', 'drivetrain']
-  dog_loop_writer = control_loop.ControlLoopWriter(
-      "VelocityDrivetrain", [vdrivetrain.drivetrain_low_low,
-                     vdrivetrain.drivetrain_low_high,
-                     vdrivetrain.drivetrain_high_low,
-                     vdrivetrain.drivetrain_high_high],
-                     namespaces=namespaces,
-                     scalar_type=scalar_type)
+    vdrivetrain = VelocityDrivetrain(drivetrain_params)
+    hybrid_vdrivetrain = VelocityDrivetrain(
+        drivetrain_params, name="HybridVelocityDrivetrain")
+    if isinstance(year_namespace, list):
+        namespaces = year_namespace
+    else:
+        namespaces = [year_namespace, 'control_loops', 'drivetrain']
+    dog_loop_writer = control_loop.ControlLoopWriter(
+        "VelocityDrivetrain", [
+            vdrivetrain.drivetrain_low_low, vdrivetrain.drivetrain_low_high,
+            vdrivetrain.drivetrain_high_low, vdrivetrain.drivetrain_high_high
+        ],
+        namespaces=namespaces,
+        scalar_type=scalar_type)
 
-  dog_loop_writer.Write(drivetrain_files[0], drivetrain_files[1])
+    dog_loop_writer.Write(drivetrain_files[0], drivetrain_files[1])
 
-  hybrid_loop_writer = control_loop.ControlLoopWriter(
-      "HybridVelocityDrivetrain", [hybrid_vdrivetrain.drivetrain_low_low,
-                     hybrid_vdrivetrain.drivetrain_low_high,
-                     hybrid_vdrivetrain.drivetrain_high_low,
-                     hybrid_vdrivetrain.drivetrain_high_high],
-                     namespaces=namespaces,
-                     scalar_type=scalar_type,
-                     plant_type='StateFeedbackHybridPlant',
-                     observer_type='HybridKalman')
+    hybrid_loop_writer = control_loop.ControlLoopWriter(
+        "HybridVelocityDrivetrain", [
+            hybrid_vdrivetrain.drivetrain_low_low,
+            hybrid_vdrivetrain.drivetrain_low_high,
+            hybrid_vdrivetrain.drivetrain_high_low,
+            hybrid_vdrivetrain.drivetrain_high_high
+        ],
+        namespaces=namespaces,
+        scalar_type=scalar_type,
+        plant_type='StateFeedbackHybridPlant',
+        observer_type='HybridKalman')
 
-  hybrid_loop_writer.Write(hybrid_files[0], hybrid_files[1])
+    hybrid_loop_writer.Write(hybrid_files[0], hybrid_files[1])
 
-  cim_writer = control_loop.ControlLoopWriter("CIM", [CIM()], scalar_type=scalar_type)
+    cim_writer = control_loop.ControlLoopWriter(
+        "CIM", [CIM()], scalar_type=scalar_type)
 
-  cim_writer.Write(motor_files[0], motor_files[1])
+    cim_writer.Write(motor_files[0], motor_files[1])
+
 
 def PlotPolyDrivetrainMotions(drivetrain_params):
-  vdrivetrain = VelocityDrivetrain(drivetrain_params)
-  vl_plot = []
-  vr_plot = []
-  ul_plot = []
-  ur_plot = []
-  radius_plot = []
-  t_plot = []
-  left_gear_plot = []
-  right_gear_plot = []
-  vdrivetrain.left_shifter_position = 0.0
-  vdrivetrain.right_shifter_position = 0.0
-  vdrivetrain.left_gear = VelocityDrivetrain.LOW
-  vdrivetrain.right_gear = VelocityDrivetrain.LOW
+    vdrivetrain = VelocityDrivetrain(drivetrain_params)
+    vl_plot = []
+    vr_plot = []
+    ul_plot = []
+    ur_plot = []
+    radius_plot = []
+    t_plot = []
+    left_gear_plot = []
+    right_gear_plot = []
+    vdrivetrain.left_shifter_position = 0.0
+    vdrivetrain.right_shifter_position = 0.0
+    vdrivetrain.left_gear = VelocityDrivetrain.LOW
+    vdrivetrain.right_gear = VelocityDrivetrain.LOW
 
-  glog.debug('K is %s', str(vdrivetrain.CurrentDrivetrain().K))
+    glog.debug('K is %s', str(vdrivetrain.CurrentDrivetrain().K))
 
-  if vdrivetrain.left_gear is VelocityDrivetrain.HIGH:
-    glog.debug('Left is high')
-  else:
-    glog.debug('Left is low')
-  if vdrivetrain.right_gear is VelocityDrivetrain.HIGH:
-    glog.debug('Right is high')
-  else:
-    glog.debug('Right is low')
-
-  for t in numpy.arange(0, 1.7, vdrivetrain.dt):
-    if t < 0.5:
-      vdrivetrain.Update(throttle=0.00, steering=1.0)
-    elif t < 1.2:
-      vdrivetrain.Update(throttle=0.5, steering=1.0)
+    if vdrivetrain.left_gear is VelocityDrivetrain.HIGH:
+        glog.debug('Left is high')
     else:
-      vdrivetrain.Update(throttle=0.00, steering=1.0)
-    t_plot.append(t)
-    vl_plot.append(vdrivetrain.X[0, 0])
-    vr_plot.append(vdrivetrain.X[1, 0])
-    ul_plot.append(vdrivetrain.U[0, 0])
-    ur_plot.append(vdrivetrain.U[1, 0])
-    left_gear_plot.append((vdrivetrain.left_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
-    right_gear_plot.append((vdrivetrain.right_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
-
-    fwd_velocity = (vdrivetrain.X[1, 0] + vdrivetrain.X[0, 0]) / 2
-    turn_velocity = (vdrivetrain.X[1, 0] - vdrivetrain.X[0, 0])
-    if abs(fwd_velocity) < 0.0000001:
-      radius_plot.append(turn_velocity)
+        glog.debug('Left is low')
+    if vdrivetrain.right_gear is VelocityDrivetrain.HIGH:
+        glog.debug('Right is high')
     else:
-      radius_plot.append(turn_velocity / fwd_velocity)
+        glog.debug('Right is low')
 
-  # TODO(austin):
-  # Shifting compensation.
+    for t in numpy.arange(0, 1.7, vdrivetrain.dt):
+        if t < 0.5:
+            vdrivetrain.Update(throttle=0.00, steering=1.0)
+        elif t < 1.2:
+            vdrivetrain.Update(throttle=0.5, steering=1.0)
+        else:
+            vdrivetrain.Update(throttle=0.00, steering=1.0)
+        t_plot.append(t)
+        vl_plot.append(vdrivetrain.X[0, 0])
+        vr_plot.append(vdrivetrain.X[1, 0])
+        ul_plot.append(vdrivetrain.U[0, 0])
+        ur_plot.append(vdrivetrain.U[1, 0])
+        left_gear_plot.append(
+            (vdrivetrain.left_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
+        right_gear_plot.append(
+            (vdrivetrain.right_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
 
-  # Tighten the turn.
-  # Closed loop drive.
+        fwd_velocity = (vdrivetrain.X[1, 0] + vdrivetrain.X[0, 0]) / 2
+        turn_velocity = (vdrivetrain.X[1, 0] - vdrivetrain.X[0, 0])
+        if abs(fwd_velocity) < 0.0000001:
+            radius_plot.append(turn_velocity)
+        else:
+            radius_plot.append(turn_velocity / fwd_velocity)
 
-  pylab.plot(t_plot, vl_plot, label='left velocity')
-  pylab.plot(t_plot, vr_plot, label='right velocity')
-  pylab.plot(t_plot, ul_plot, label='left voltage')
-  pylab.plot(t_plot, ur_plot, label='right voltage')
-  pylab.plot(t_plot, radius_plot, label='radius')
-  pylab.plot(t_plot, left_gear_plot, label='left gear high')
-  pylab.plot(t_plot, right_gear_plot, label='right gear high')
-  pylab.legend()
-  pylab.show()
+    # TODO(austin):
+    # Shifting compensation.
+
+    # Tighten the turn.
+    # Closed loop drive.
+
+    pylab.plot(t_plot, vl_plot, label='left velocity')
+    pylab.plot(t_plot, vr_plot, label='right velocity')
+    pylab.plot(t_plot, ul_plot, label='left voltage')
+    pylab.plot(t_plot, ur_plot, label='right voltage')
+    pylab.plot(t_plot, radius_plot, label='radius')
+    pylab.plot(t_plot, left_gear_plot, label='left gear high')
+    pylab.plot(t_plot, right_gear_plot, label='right gear high')
+    pylab.legend()
+    pylab.show()