blob: c7829928d83d27a69cdf18a06962d2ef88f2c95e [file] [log] [blame]
Milind Upadhyay7c205222022-11-16 18:20:58 -08001#ifndef FRC971_VISION_TARGET_MAPPER_H_
2#define FRC971_VISION_TARGET_MAPPER_H_
3
4#include <unordered_map>
5
6#include "aos/events/simulated_event_loop.h"
Milind Upadhyayc5beba12022-12-17 17:41:20 -08007#include "ceres/ceres.h"
Milind Upadhyay7c205222022-11-16 18:20:58 -08008#include "frc971/vision/ceres/types.h"
Milind Upadhyaycd677a32022-12-04 13:06:43 -08009#include "frc971/vision/target_map_generated.h"
Milind Upadhyay7c205222022-11-16 18:20:58 -080010
11namespace frc971::vision {
12
13// Estimates positions of vision targets (ex. April Tags) using
14// target detections relative to a robot (which were computed using robot
15// positions at the time of those detections). Solves SLAM problem to estimate
16// target locations using deltas between consecutive target detections.
17class TargetMapper {
18 public:
19 using TargetId = int;
Milind Upadhyayc5beba12022-12-17 17:41:20 -080020 using ConfidenceMatrix = Eigen::Matrix<double, 6, 6>;
Milind Upadhyay7c205222022-11-16 18:20:58 -080021
22 struct TargetPose {
23 TargetId id;
Milind Upadhyayc5beba12022-12-17 17:41:20 -080024 ceres::examples::Pose3d pose;
Milind Upadhyay7c205222022-11-16 18:20:58 -080025 };
26
Milind Upadhyaycd677a32022-12-04 13:06:43 -080027 // target_poses_path is the path to a TargetMap json with initial guesses for
28 // the actual locations of the targets on the field.
Milind Upadhyay7c205222022-11-16 18:20:58 -080029 // target_constraints are the deltas between consecutive target detections,
30 // and are usually prepared by the DataAdapter class below.
Milind Upadhyaycd677a32022-12-04 13:06:43 -080031 TargetMapper(std::string_view target_poses_path,
Milind Upadhyayc5beba12022-12-17 17:41:20 -080032 const ceres::examples::VectorOfConstraints &target_constraints);
Milind Upadhyaycd677a32022-12-04 13:06:43 -080033 // Alternate constructor for tests.
34 // Takes in the actual intial guesses instead of a file containing them
Milind Upadhyayc5beba12022-12-17 17:41:20 -080035 TargetMapper(const ceres::examples::MapOfPoses &target_poses,
36 const ceres::examples::VectorOfConstraints &target_constraints);
Milind Upadhyay7c205222022-11-16 18:20:58 -080037
Milind Upadhyay05652cb2022-12-07 20:51:51 -080038 // Solves for the target map. If output_dir is set, the map will be saved to
39 // output_dir/field_name.json
40 void Solve(std::string_view field_name,
41 std::optional<std::string_view> output_dir = std::nullopt);
Milind Upadhyaycd677a32022-12-04 13:06:43 -080042
43 // Prints target poses into a TargetMap flatbuffer json
Milind Upadhyay05652cb2022-12-07 20:51:51 -080044 std::string MapToJson(std::string_view field_name) const;
Milind Upadhyay7c205222022-11-16 18:20:58 -080045
46 static std::optional<TargetPose> GetTargetPoseById(
47 std::vector<TargetPose> target_poses, TargetId target_id);
48
Jim Ostrowski49be8232023-03-23 01:00:14 -070049 // Version that gets based on internal target_poses
milind-u2ab4db12023-03-25 21:59:23 -070050 std::optional<TargetPose> GetTargetPoseById(TargetId target_id) const;
Jim Ostrowski49be8232023-03-23 01:00:14 -070051
Milind Upadhyayc5beba12022-12-17 17:41:20 -080052 ceres::examples::MapOfPoses target_poses() { return target_poses_; }
Milind Upadhyay7c205222022-11-16 18:20:58 -080053
54 private:
Milind Upadhyay7c205222022-11-16 18:20:58 -080055 // Constructs the nonlinear least squares optimization problem from the
56 // pose graph constraints.
57 void BuildOptimizationProblem(
Milind Upadhyayc5beba12022-12-17 17:41:20 -080058 const ceres::examples::VectorOfConstraints &constraints,
59 ceres::examples::MapOfPoses *poses, ceres::Problem *problem);
Milind Upadhyay7c205222022-11-16 18:20:58 -080060
61 // Returns true if the solve was successful.
62 bool SolveOptimizationProblem(ceres::Problem *problem);
63
Milind Upadhyayc5beba12022-12-17 17:41:20 -080064 ceres::examples::MapOfPoses target_poses_;
65 ceres::examples::VectorOfConstraints target_constraints_;
Milind Upadhyay7c205222022-11-16 18:20:58 -080066};
67
Milind Upadhyayc5beba12022-12-17 17:41:20 -080068// Utility functions for dealing with ceres::examples::Pose3d structs
Milind Upadhyay7c205222022-11-16 18:20:58 -080069class PoseUtils {
70 public:
Milind Upadhyayc5beba12022-12-17 17:41:20 -080071 // Embeds a 3d pose into an affine transformation
72 static Eigen::Affine3d Pose3dToAffine3d(
73 const ceres::examples::Pose3d &pose3d);
74 // Inverse of above function
75 static ceres::examples::Pose3d Affine3dToPose3d(const Eigen::Affine3d &H);
Milind Upadhyay7c205222022-11-16 18:20:58 -080076
77 // Computes pose_2 relative to pose_1. This is equivalent to (pose_1^-1 *
78 // pose_2)
Milind Upadhyayc5beba12022-12-17 17:41:20 -080079 static ceres::examples::Pose3d ComputeRelativePose(
80 const ceres::examples::Pose3d &pose_1,
81 const ceres::examples::Pose3d &pose_2);
Milind Upadhyay7c205222022-11-16 18:20:58 -080082
83 // Computes pose_2 given a pose_1 and pose_2 relative to pose_1. This is
84 // equivalent to (pose_1 * pose_2_relative)
Milind Upadhyayc5beba12022-12-17 17:41:20 -080085 static ceres::examples::Pose3d ComputeOffsetPose(
86 const ceres::examples::Pose3d &pose_1,
87 const ceres::examples::Pose3d &pose_2_relative);
88
89 // Converts a rotation with roll, pitch, and yaw into a quaternion
90 static Eigen::Quaterniond EulerAnglesToQuaternion(const Eigen::Vector3d &rpy);
91 // Inverse of above function
92 static Eigen::Vector3d QuaternionToEulerAngles(const Eigen::Quaterniond &q);
93 // Converts a 3d rotation matrix into a rotation with roll, pitch, and yaw
94 static Eigen::Vector3d RotationMatrixToEulerAngles(const Eigen::Matrix3d &R);
milind-u3f5f83c2023-01-29 15:23:51 -080095
96 // Builds a TargetPoseFbs from a TargetPose
97 static flatbuffers::Offset<TargetPoseFbs> TargetPoseToFbs(
98 const TargetMapper::TargetPose &target_pose,
99 flatbuffers::FlatBufferBuilder *fbb);
100 // Converts a TargetPoseFbs to a TargetPose
101 static TargetMapper::TargetPose TargetPoseFromFbs(
102 const TargetPoseFbs &target_pose_fbs);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800103};
104
105// Transforms robot position and target detection data into target constraints
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800106// to be used for mapping.
Milind Upadhyay7c205222022-11-16 18:20:58 -0800107class DataAdapter {
108 public:
Milind Upadhyay7c205222022-11-16 18:20:58 -0800109 // Pairs target detection with a time point
110 struct TimestampedDetection {
111 aos::distributed_clock::time_point time;
112 // Pose of target relative to robot
113 Eigen::Affine3d H_robot_target;
Milind Upadhyayebf93ee2023-01-05 14:12:58 -0800114 // Horizontal distance from camera to target, used for confidence
115 // calculation
116 double distance_from_camera;
milind-ud62f80a2023-03-04 16:37:09 -0800117 // A measure of how much distortion affected this detection from 0-1.
118 double distortion_factor;
Milind Upadhyay7c205222022-11-16 18:20:58 -0800119 TargetMapper::TargetId id;
120 };
121
Milind Upadhyayec493912022-12-18 21:33:15 -0800122 // Pairs consecutive target detections that are not too far apart in time into
123 // constraints. Meant to be used on a system without a position measurement.
124 // Assumes timestamped_target_detections is in chronological order.
125 // max_dt is the maximum time between two target detections to match them up.
126 // If too much time passes, the recoding device (box of pis) could have moved
127 // too much
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800128 static ceres::examples::VectorOfConstraints MatchTargetDetections(
Milind Upadhyayec493912022-12-18 21:33:15 -0800129 const std::vector<TimestampedDetection> &timestamped_target_detections,
milind-u8791bed2023-03-04 14:45:52 -0800130 aos::distributed_clock::duration max_dt = std::chrono::milliseconds(10));
Milind Upadhyayec493912022-12-18 21:33:15 -0800131
Milind Upadhyay7c205222022-11-16 18:20:58 -0800132 // Computes inverse of covariance matrix, assuming there was a target
133 // detection between robot movement over the given time period. Ceres calls
134 // this matrix the "information"
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800135 static TargetMapper::ConfidenceMatrix ComputeConfidence(
milind-ud62f80a2023-03-04 16:37:09 -0800136 const TimestampedDetection &detection_start,
137 const TimestampedDetection &detection_end);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800138
Milind Upadhyay7c205222022-11-16 18:20:58 -0800139 // Computes the constraint between the start and end pose of the targets: the
140 // relative pose between the start and end target locations in the frame of
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800141 // the start target.
142 static ceres::examples::Constraint3d ComputeTargetConstraint(
Milind Upadhyayec493912022-12-18 21:33:15 -0800143 const TimestampedDetection &target_detection_start,
144 const TimestampedDetection &target_detection_end,
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800145 const TargetMapper::ConfidenceMatrix &confidence);
Milind Upadhyay7c205222022-11-16 18:20:58 -0800146};
147
milind-ufbc5c812023-04-06 21:24:29 -0700148} // namespace frc971::vision
149
Milind Upadhyayc5beba12022-12-17 17:41:20 -0800150std::ostream &operator<<(std::ostream &os, ceres::examples::Pose3d pose);
151std::ostream &operator<<(std::ostream &os,
152 ceres::examples::Constraint3d constraint);
153
Milind Upadhyay7c205222022-11-16 18:20:58 -0800154#endif // FRC971_VISION_TARGET_MAPPER_H_