Austin Schuh | dace2a6 | 2020-08-18 10:56:48 -0700 | [diff] [blame] | 1 | /* mpz_probab_prime_p -- |
| 2 | An implementation of the probabilistic primality test found in Knuth's |
| 3 | Seminumerical Algorithms book. If the function mpz_probab_prime_p() |
| 4 | returns 0 then n is not prime. If it returns 1, then n is 'probably' |
| 5 | prime. If it returns 2, n is surely prime. The probability of a false |
| 6 | positive is (1/4)**reps, where reps is the number of internal passes of the |
| 7 | probabilistic algorithm. Knuth indicates that 25 passes are reasonable. |
| 8 | |
| 9 | Copyright 1991, 1993, 1994, 1996-2002, 2005, 2015, 2016 Free Software |
| 10 | Foundation, Inc. |
| 11 | |
| 12 | This file is part of the GNU MP Library. |
| 13 | |
| 14 | The GNU MP Library is free software; you can redistribute it and/or modify |
| 15 | it under the terms of either: |
| 16 | |
| 17 | * the GNU Lesser General Public License as published by the Free |
| 18 | Software Foundation; either version 3 of the License, or (at your |
| 19 | option) any later version. |
| 20 | |
| 21 | or |
| 22 | |
| 23 | * the GNU General Public License as published by the Free Software |
| 24 | Foundation; either version 2 of the License, or (at your option) any |
| 25 | later version. |
| 26 | |
| 27 | or both in parallel, as here. |
| 28 | |
| 29 | The GNU MP Library is distributed in the hope that it will be useful, but |
| 30 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| 31 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 32 | for more details. |
| 33 | |
| 34 | You should have received copies of the GNU General Public License and the |
| 35 | GNU Lesser General Public License along with the GNU MP Library. If not, |
| 36 | see https://www.gnu.org/licenses/. */ |
| 37 | |
| 38 | #include "gmp-impl.h" |
| 39 | #include "longlong.h" |
| 40 | |
| 41 | static int isprime (unsigned long int); |
| 42 | |
| 43 | |
| 44 | /* MPN_MOD_OR_MODEXACT_1_ODD can be used instead of mpn_mod_1 for the trial |
| 45 | division. It gives a result which is not the actual remainder r but a |
| 46 | value congruent to r*2^n mod d. Since all the primes being tested are |
| 47 | odd, r*2^n mod p will be 0 if and only if r mod p is 0. */ |
| 48 | |
| 49 | int |
| 50 | mpz_probab_prime_p (mpz_srcptr n, int reps) |
| 51 | { |
| 52 | mp_limb_t r; |
| 53 | mpz_t n2; |
| 54 | |
| 55 | /* Handle small and negative n. */ |
| 56 | if (mpz_cmp_ui (n, 1000000L) <= 0) |
| 57 | { |
| 58 | if (mpz_cmpabs_ui (n, 1000000L) <= 0) |
| 59 | { |
| 60 | int is_prime; |
| 61 | unsigned long n0; |
| 62 | n0 = mpz_get_ui (n); |
| 63 | is_prime = n0 & (n0 > 1) ? isprime (n0) : n0 == 2; |
| 64 | return is_prime ? 2 : 0; |
| 65 | } |
| 66 | /* Negative number. Negate and fall out. */ |
| 67 | PTR(n2) = PTR(n); |
| 68 | SIZ(n2) = -SIZ(n); |
| 69 | n = n2; |
| 70 | } |
| 71 | |
| 72 | /* If n is now even, it is not a prime. */ |
| 73 | if (mpz_even_p (n)) |
| 74 | return 0; |
| 75 | |
| 76 | #if defined (PP) |
| 77 | /* Check if n has small factors. */ |
| 78 | #if defined (PP_INVERTED) |
| 79 | r = MPN_MOD_OR_PREINV_MOD_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) PP, |
| 80 | (mp_limb_t) PP_INVERTED); |
| 81 | #else |
| 82 | r = mpn_mod_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) PP); |
| 83 | #endif |
| 84 | if (r % 3 == 0 |
| 85 | #if GMP_LIMB_BITS >= 4 |
| 86 | || r % 5 == 0 |
| 87 | #endif |
| 88 | #if GMP_LIMB_BITS >= 8 |
| 89 | || r % 7 == 0 |
| 90 | #endif |
| 91 | #if GMP_LIMB_BITS >= 16 |
| 92 | || r % 11 == 0 || r % 13 == 0 |
| 93 | #endif |
| 94 | #if GMP_LIMB_BITS >= 32 |
| 95 | || r % 17 == 0 || r % 19 == 0 || r % 23 == 0 || r % 29 == 0 |
| 96 | #endif |
| 97 | #if GMP_LIMB_BITS >= 64 |
| 98 | || r % 31 == 0 || r % 37 == 0 || r % 41 == 0 || r % 43 == 0 |
| 99 | || r % 47 == 0 || r % 53 == 0 |
| 100 | #endif |
| 101 | ) |
| 102 | { |
| 103 | return 0; |
| 104 | } |
| 105 | #endif /* PP */ |
| 106 | |
| 107 | /* Do more dividing. We collect small primes, using umul_ppmm, until we |
| 108 | overflow a single limb. We divide our number by the small primes product, |
| 109 | and look for factors in the remainder. */ |
| 110 | { |
| 111 | unsigned long int ln2; |
| 112 | unsigned long int q; |
| 113 | mp_limb_t p1, p0, p; |
| 114 | unsigned int primes[15]; |
| 115 | int nprimes; |
| 116 | |
| 117 | nprimes = 0; |
| 118 | p = 1; |
| 119 | ln2 = mpz_sizeinbase (n, 2); /* FIXME: tune this limit */ |
| 120 | for (q = PP_FIRST_OMITTED; q < ln2; q += 2) |
| 121 | { |
| 122 | if (isprime (q)) |
| 123 | { |
| 124 | umul_ppmm (p1, p0, p, q); |
| 125 | if (p1 != 0) |
| 126 | { |
| 127 | r = MPN_MOD_OR_MODEXACT_1_ODD (PTR(n), (mp_size_t) SIZ(n), p); |
| 128 | while (--nprimes >= 0) |
| 129 | if (r % primes[nprimes] == 0) |
| 130 | { |
| 131 | ASSERT_ALWAYS (mpn_mod_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) primes[nprimes]) == 0); |
| 132 | return 0; |
| 133 | } |
| 134 | p = q; |
| 135 | nprimes = 0; |
| 136 | } |
| 137 | else |
| 138 | { |
| 139 | p = p0; |
| 140 | } |
| 141 | primes[nprimes++] = q; |
| 142 | } |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | /* Perform a number of Miller-Rabin tests. */ |
| 147 | return mpz_millerrabin (n, reps); |
| 148 | } |
| 149 | |
| 150 | static int |
| 151 | isprime (unsigned long int t) |
| 152 | { |
| 153 | unsigned long int q, r, d; |
| 154 | |
| 155 | ASSERT (t >= 3 && (t & 1) != 0); |
| 156 | |
| 157 | d = 3; |
| 158 | do { |
| 159 | q = t / d; |
| 160 | r = t - q * d; |
| 161 | if (q < d) |
| 162 | return 1; |
| 163 | d += 2; |
| 164 | } while (r != 0); |
| 165 | return 0; |
| 166 | } |