| /* mpz_probab_prime_p -- |
| An implementation of the probabilistic primality test found in Knuth's |
| Seminumerical Algorithms book. If the function mpz_probab_prime_p() |
| returns 0 then n is not prime. If it returns 1, then n is 'probably' |
| prime. If it returns 2, n is surely prime. The probability of a false |
| positive is (1/4)**reps, where reps is the number of internal passes of the |
| probabilistic algorithm. Knuth indicates that 25 passes are reasonable. |
| |
| Copyright 1991, 1993, 1994, 1996-2002, 2005, 2015, 2016 Free Software |
| Foundation, Inc. |
| |
| This file is part of the GNU MP Library. |
| |
| The GNU MP Library is free software; you can redistribute it and/or modify |
| it under the terms of either: |
| |
| * the GNU Lesser General Public License as published by the Free |
| Software Foundation; either version 3 of the License, or (at your |
| option) any later version. |
| |
| or |
| |
| * the GNU General Public License as published by the Free Software |
| Foundation; either version 2 of the License, or (at your option) any |
| later version. |
| |
| or both in parallel, as here. |
| |
| The GNU MP Library is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received copies of the GNU General Public License and the |
| GNU Lesser General Public License along with the GNU MP Library. If not, |
| see https://www.gnu.org/licenses/. */ |
| |
| #include "gmp-impl.h" |
| #include "longlong.h" |
| |
| static int isprime (unsigned long int); |
| |
| |
| /* MPN_MOD_OR_MODEXACT_1_ODD can be used instead of mpn_mod_1 for the trial |
| division. It gives a result which is not the actual remainder r but a |
| value congruent to r*2^n mod d. Since all the primes being tested are |
| odd, r*2^n mod p will be 0 if and only if r mod p is 0. */ |
| |
| int |
| mpz_probab_prime_p (mpz_srcptr n, int reps) |
| { |
| mp_limb_t r; |
| mpz_t n2; |
| |
| /* Handle small and negative n. */ |
| if (mpz_cmp_ui (n, 1000000L) <= 0) |
| { |
| if (mpz_cmpabs_ui (n, 1000000L) <= 0) |
| { |
| int is_prime; |
| unsigned long n0; |
| n0 = mpz_get_ui (n); |
| is_prime = n0 & (n0 > 1) ? isprime (n0) : n0 == 2; |
| return is_prime ? 2 : 0; |
| } |
| /* Negative number. Negate and fall out. */ |
| PTR(n2) = PTR(n); |
| SIZ(n2) = -SIZ(n); |
| n = n2; |
| } |
| |
| /* If n is now even, it is not a prime. */ |
| if (mpz_even_p (n)) |
| return 0; |
| |
| #if defined (PP) |
| /* Check if n has small factors. */ |
| #if defined (PP_INVERTED) |
| r = MPN_MOD_OR_PREINV_MOD_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) PP, |
| (mp_limb_t) PP_INVERTED); |
| #else |
| r = mpn_mod_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) PP); |
| #endif |
| if (r % 3 == 0 |
| #if GMP_LIMB_BITS >= 4 |
| || r % 5 == 0 |
| #endif |
| #if GMP_LIMB_BITS >= 8 |
| || r % 7 == 0 |
| #endif |
| #if GMP_LIMB_BITS >= 16 |
| || r % 11 == 0 || r % 13 == 0 |
| #endif |
| #if GMP_LIMB_BITS >= 32 |
| || r % 17 == 0 || r % 19 == 0 || r % 23 == 0 || r % 29 == 0 |
| #endif |
| #if GMP_LIMB_BITS >= 64 |
| || r % 31 == 0 || r % 37 == 0 || r % 41 == 0 || r % 43 == 0 |
| || r % 47 == 0 || r % 53 == 0 |
| #endif |
| ) |
| { |
| return 0; |
| } |
| #endif /* PP */ |
| |
| /* Do more dividing. We collect small primes, using umul_ppmm, until we |
| overflow a single limb. We divide our number by the small primes product, |
| and look for factors in the remainder. */ |
| { |
| unsigned long int ln2; |
| unsigned long int q; |
| mp_limb_t p1, p0, p; |
| unsigned int primes[15]; |
| int nprimes; |
| |
| nprimes = 0; |
| p = 1; |
| ln2 = mpz_sizeinbase (n, 2); /* FIXME: tune this limit */ |
| for (q = PP_FIRST_OMITTED; q < ln2; q += 2) |
| { |
| if (isprime (q)) |
| { |
| umul_ppmm (p1, p0, p, q); |
| if (p1 != 0) |
| { |
| r = MPN_MOD_OR_MODEXACT_1_ODD (PTR(n), (mp_size_t) SIZ(n), p); |
| while (--nprimes >= 0) |
| if (r % primes[nprimes] == 0) |
| { |
| ASSERT_ALWAYS (mpn_mod_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) primes[nprimes]) == 0); |
| return 0; |
| } |
| p = q; |
| nprimes = 0; |
| } |
| else |
| { |
| p = p0; |
| } |
| primes[nprimes++] = q; |
| } |
| } |
| } |
| |
| /* Perform a number of Miller-Rabin tests. */ |
| return mpz_millerrabin (n, reps); |
| } |
| |
| static int |
| isprime (unsigned long int t) |
| { |
| unsigned long int q, r, d; |
| |
| ASSERT (t >= 3 && (t & 1) != 0); |
| |
| d = 3; |
| do { |
| q = t / d; |
| r = t - q * d; |
| if (q < d) |
| return 1; |
| d += 2; |
| } while (r != 0); |
| return 0; |
| } |