Austin Schuh | dace2a6 | 2020-08-18 10:56:48 -0700 | [diff] [blame] | 1 | /* mpn_fib2m -- calculate Fibonacci numbers, modulo m. |
| 2 | |
| 3 | Contributed to the GNU project by Marco Bodrato, based on the previous |
| 4 | fib2_ui.c file. |
| 5 | |
| 6 | THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST |
| 7 | CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN |
| 8 | FUTURE GNU MP RELEASES. |
| 9 | |
| 10 | Copyright 2001, 2002, 2005, 2009, 2018 Free Software Foundation, Inc. |
| 11 | |
| 12 | This file is part of the GNU MP Library. |
| 13 | |
| 14 | The GNU MP Library is free software; you can redistribute it and/or modify |
| 15 | it under the terms of either: |
| 16 | |
| 17 | * the GNU Lesser General Public License as published by the Free |
| 18 | Software Foundation; either version 3 of the License, or (at your |
| 19 | option) any later version. |
| 20 | |
| 21 | or |
| 22 | |
| 23 | * the GNU General Public License as published by the Free Software |
| 24 | Foundation; either version 2 of the License, or (at your option) any |
| 25 | later version. |
| 26 | |
| 27 | or both in parallel, as here. |
| 28 | |
| 29 | The GNU MP Library is distributed in the hope that it will be useful, but |
| 30 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| 31 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 32 | for more details. |
| 33 | |
| 34 | You should have received copies of the GNU General Public License and the |
| 35 | GNU Lesser General Public License along with the GNU MP Library. If not, |
| 36 | see https://www.gnu.org/licenses/. */ |
| 37 | |
| 38 | #include <stdio.h> |
| 39 | #include "gmp-impl.h" |
| 40 | #include "longlong.h" |
| 41 | |
| 42 | |
| 43 | /* Stores |{ap,n}-{bp,n}| in {rp,n}, |
| 44 | returns the sign of {ap,n}-{bp,n}. */ |
| 45 | static int |
| 46 | abs_sub_n (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t n) |
| 47 | { |
| 48 | mp_limb_t x, y; |
| 49 | while (--n >= 0) |
| 50 | { |
| 51 | x = ap[n]; |
| 52 | y = bp[n]; |
| 53 | if (x != y) |
| 54 | { |
| 55 | ++n; |
| 56 | if (x > y) |
| 57 | { |
| 58 | ASSERT_NOCARRY (mpn_sub_n (rp, ap, bp, n)); |
| 59 | return 1; |
| 60 | } |
| 61 | else |
| 62 | { |
| 63 | ASSERT_NOCARRY (mpn_sub_n (rp, bp, ap, n)); |
| 64 | return -1; |
| 65 | } |
| 66 | } |
| 67 | rp[n] = 0; |
| 68 | } |
| 69 | return 0; |
| 70 | } |
| 71 | |
| 72 | /* Store F[n] at fp and F[n-1] at f1p. Both are computed modulo m. |
| 73 | fp and f1p should have room for mn*2+1 limbs. |
| 74 | |
| 75 | The sign of one or both the values may be flipped (n-F, instead of F), |
| 76 | the return value is 0 (zero) if the signs are coherent (both positive |
| 77 | or both negative) and 1 (one) otherwise. |
| 78 | |
| 79 | Notes: |
| 80 | |
| 81 | In F[2k+1] with k even, +2 is applied to 4*F[k]^2 just by ORing into the |
| 82 | low limb. |
| 83 | |
| 84 | In F[2k+1] with k odd, -2 is applied to F[k-1]^2 just by ORing into the |
| 85 | low limb. |
| 86 | |
| 87 | TODO: Should {tp, 2 * mn} be passed as a scratch pointer? |
| 88 | Should the call to mpn_fib2_ui() obtain (up to) 2*mn limbs? |
| 89 | */ |
| 90 | |
| 91 | int |
| 92 | mpn_fib2m (mp_ptr fp, mp_ptr f1p, mp_srcptr np, mp_size_t nn, mp_srcptr mp, mp_size_t mn) |
| 93 | { |
| 94 | unsigned long nfirst; |
| 95 | mp_limb_t nh; |
| 96 | mp_bitcnt_t nbi; |
| 97 | mp_size_t sn, fn; |
| 98 | int fcnt, ncnt; |
| 99 | |
| 100 | ASSERT (! MPN_OVERLAP_P (fp, MAX(2*mn+1,5), f1p, MAX(2*mn+1,5))); |
| 101 | ASSERT (nn > 0 && np[nn - 1] != 0); |
| 102 | |
| 103 | /* Estimate the maximal n such that fibonacci(n) fits in mn limbs. */ |
| 104 | #if GMP_NUMB_BITS % 16 == 0 |
| 105 | if (UNLIKELY (ULONG_MAX / (23 * (GMP_NUMB_BITS / 16)) <= mn)) |
| 106 | nfirst = ULONG_MAX; |
| 107 | else |
| 108 | nfirst = mn * (23 * (GMP_NUMB_BITS / 16)); |
| 109 | #else |
| 110 | { |
| 111 | mp_bitcnt_t mbi; |
| 112 | mbi = (mp_bitcnt_t) mn * GMP_NUMB_BITS; |
| 113 | |
| 114 | if (UNLIKELY (ULONG_MAX / 23 < mbi)) |
| 115 | { |
| 116 | if (UNLIKELY (ULONG_MAX / 23 * 16 <= mbi)) |
| 117 | nfirst = ULONG_MAX; |
| 118 | else |
| 119 | nfirst = mbi / 16 * 23; |
| 120 | } |
| 121 | else |
| 122 | nfirst = mbi * 23 / 16; |
| 123 | } |
| 124 | #endif |
| 125 | |
| 126 | sn = nn - 1; |
| 127 | nh = np[sn]; |
| 128 | count_leading_zeros (ncnt, nh); |
| 129 | count_leading_zeros (fcnt, nfirst); |
| 130 | |
| 131 | if (fcnt >= ncnt) |
| 132 | { |
| 133 | ncnt = fcnt - ncnt; |
| 134 | nh >>= ncnt; |
| 135 | } |
| 136 | else if (sn > 0) |
| 137 | { |
| 138 | ncnt -= fcnt; |
| 139 | nh <<= ncnt; |
| 140 | ncnt = GMP_NUMB_BITS - ncnt; |
| 141 | --sn; |
| 142 | nh |= np[sn] >> ncnt; |
| 143 | } |
| 144 | else |
| 145 | ncnt = 0; |
| 146 | |
| 147 | nbi = sn * GMP_NUMB_BITS + ncnt; |
| 148 | if (nh > nfirst) |
| 149 | { |
| 150 | nh >>= 1; |
| 151 | ++nbi; |
| 152 | } |
| 153 | |
| 154 | ASSERT (nh <= nfirst); |
| 155 | /* Take a starting pair from mpn_fib2_ui. */ |
| 156 | fn = mpn_fib2_ui (fp, f1p, nh); |
| 157 | MPN_ZERO (fp + fn, mn - fn); |
| 158 | MPN_ZERO (f1p + fn, mn - fn); |
| 159 | |
| 160 | if (nbi == 0) |
| 161 | { |
| 162 | if (fn == mn) |
| 163 | { |
| 164 | mp_limb_t qp[2]; |
| 165 | mpn_tdiv_qr (qp, fp, 0, fp, fn, mp, mn); |
| 166 | mpn_tdiv_qr (qp, f1p, 0, f1p, fn, mp, mn); |
| 167 | } |
| 168 | |
| 169 | return 0; |
| 170 | } |
| 171 | else |
| 172 | { |
| 173 | mp_ptr tp; |
| 174 | unsigned pb = nh & 1; |
| 175 | int neg; |
| 176 | TMP_DECL; |
| 177 | |
| 178 | TMP_MARK; |
| 179 | |
| 180 | tp = TMP_ALLOC_LIMBS (2 * mn + (mn < 2)); |
| 181 | |
| 182 | do |
| 183 | { |
| 184 | mp_ptr rp; |
| 185 | /* Here fp==F[k] and f1p==F[k-1], with k being the bits of n from |
| 186 | nbi upwards. |
| 187 | |
| 188 | Based on the next bit of n, we'll double to the pair |
| 189 | fp==F[2k],f1p==F[2k-1] or fp==F[2k+1],f1p==F[2k], according as |
| 190 | that bit is 0 or 1 respectively. */ |
| 191 | |
| 192 | mpn_sqr (tp, fp, mn); |
| 193 | mpn_sqr (fp, f1p, mn); |
| 194 | |
| 195 | /* Calculate F[2k-1] = F[k]^2 + F[k-1]^2. */ |
| 196 | f1p[2 * mn] = mpn_add_n (f1p, tp, fp, 2 * mn); |
| 197 | |
| 198 | /* Calculate F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k. |
| 199 | pb is the low bit of our implied k. */ |
| 200 | |
| 201 | /* fp is F[k-1]^2 == 0 or 1 mod 4, like all squares. */ |
| 202 | ASSERT ((fp[0] & 2) == 0); |
| 203 | ASSERT (pb == (pb & 1)); |
| 204 | ASSERT ((fp[0] + (pb ? 2 : 0)) == (fp[0] | (pb << 1))); |
| 205 | fp[0] |= pb << 1; /* possible -2 */ |
| 206 | #if HAVE_NATIVE_mpn_rsblsh2_n |
| 207 | fp[2 * mn] = 1 + mpn_rsblsh2_n (fp, fp, tp, 2 * mn); |
| 208 | MPN_INCR_U(fp, 2 * mn + 1, (1 ^ pb) << 1); /* possible +2 */ |
| 209 | fp[2 * mn] = (fp[2 * mn] - 1) & GMP_NUMB_MAX; |
| 210 | #else |
| 211 | { |
| 212 | mp_limb_t c; |
| 213 | |
| 214 | c = mpn_lshift (tp, tp, 2 * mn, 2); |
| 215 | tp[0] |= (1 ^ pb) << 1; /* possible +2 */ |
| 216 | c -= mpn_sub_n (fp, tp, fp, 2 * mn); |
| 217 | fp[2 * mn] = c & GMP_NUMB_MAX; |
| 218 | } |
| 219 | #endif |
| 220 | neg = fp[2 * mn] == GMP_NUMB_MAX; |
| 221 | |
| 222 | /* Calculate F[2k-1] = F[k]^2 + F[k-1]^2 */ |
| 223 | /* Calculate F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k */ |
| 224 | |
| 225 | /* Calculate F[2k] = F[2k+1] - F[2k-1], replacing the unwanted one of |
| 226 | F[2k+1] and F[2k-1]. */ |
| 227 | --nbi; |
| 228 | pb = (np [nbi / GMP_NUMB_BITS] >> (nbi % GMP_NUMB_BITS)) & 1; |
| 229 | rp = pb ? f1p : fp; |
| 230 | if (neg) |
| 231 | { |
| 232 | /* Calculate -(F[2k+1] - F[2k-1]) */ |
| 233 | rp[2 * mn] = f1p[2 * mn] + 1 - mpn_sub_n (rp, f1p, fp, 2 * mn); |
| 234 | neg = ! pb; |
| 235 | if (pb) /* fp not overwritten, negate it. */ |
| 236 | fp [2 * mn] = 1 ^ mpn_neg (fp, fp, 2 * mn); |
| 237 | } |
| 238 | else |
| 239 | { |
| 240 | neg = abs_sub_n (rp, fp, f1p, 2 * mn + 1) < 0; |
| 241 | } |
| 242 | |
| 243 | mpn_tdiv_qr (tp, fp, 0, fp, 2 * mn + 1, mp, mn); |
| 244 | mpn_tdiv_qr (tp, f1p, 0, f1p, 2 * mn + 1, mp, mn); |
| 245 | } |
| 246 | while (nbi != 0); |
| 247 | |
| 248 | TMP_FREE; |
| 249 | |
| 250 | return neg; |
| 251 | } |
| 252 | } |