Add libgmp 6.2.0 to third_party

Don't build it yet.  That will come in the next review.

Change-Id: Idf3266558165e5ab45f4a41c98cc8c838c8244d5
diff --git a/third_party/gmp/mpn/generic/fib2m.c b/third_party/gmp/mpn/generic/fib2m.c
new file mode 100644
index 0000000..89d2b86
--- /dev/null
+++ b/third_party/gmp/mpn/generic/fib2m.c
@@ -0,0 +1,252 @@
+/* mpn_fib2m -- calculate Fibonacci numbers, modulo m.
+
+Contributed to the GNU project by Marco Bodrato, based on the previous
+fib2_ui.c file.
+
+   THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY.  THEY'RE ALMOST
+   CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN
+   FUTURE GNU MP RELEASES.
+
+Copyright 2001, 2002, 2005, 2009, 2018 Free Software Foundation, Inc.
+
+This file is part of the GNU MP Library.
+
+The GNU MP Library is free software; you can redistribute it and/or modify
+it under the terms of either:
+
+  * the GNU Lesser General Public License as published by the Free
+    Software Foundation; either version 3 of the License, or (at your
+    option) any later version.
+
+or
+
+  * the GNU General Public License as published by the Free Software
+    Foundation; either version 2 of the License, or (at your option) any
+    later version.
+
+or both in parallel, as here.
+
+The GNU MP Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received copies of the GNU General Public License and the
+GNU Lesser General Public License along with the GNU MP Library.  If not,
+see https://www.gnu.org/licenses/.  */
+
+#include <stdio.h>
+#include "gmp-impl.h"
+#include "longlong.h"
+
+
+/* Stores |{ap,n}-{bp,n}| in {rp,n},
+   returns the sign of {ap,n}-{bp,n}. */
+static int
+abs_sub_n (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t n)
+{
+  mp_limb_t  x, y;
+  while (--n >= 0)
+    {
+      x = ap[n];
+      y = bp[n];
+      if (x != y)
+        {
+          ++n;
+          if (x > y)
+            {
+              ASSERT_NOCARRY (mpn_sub_n (rp, ap, bp, n));
+              return 1;
+            }
+          else
+            {
+              ASSERT_NOCARRY (mpn_sub_n (rp, bp, ap, n));
+              return -1;
+            }
+        }
+      rp[n] = 0;
+    }
+  return 0;
+}
+
+/* Store F[n] at fp and F[n-1] at f1p.  Both are computed modulo m.
+   fp and f1p should have room for mn*2+1 limbs.
+
+   The sign of one or both the values may be flipped (n-F, instead of F),
+   the return value is 0 (zero) if the signs are coherent (both positive
+   or both negative) and 1 (one) otherwise.
+
+   Notes:
+
+   In F[2k+1] with k even, +2 is applied to 4*F[k]^2 just by ORing into the
+   low limb.
+
+   In F[2k+1] with k odd, -2 is applied to F[k-1]^2 just by ORing into the
+   low limb.
+
+   TODO: Should {tp, 2 * mn} be passed as a scratch pointer?
+   Should the call to mpn_fib2_ui() obtain (up to) 2*mn limbs?
+*/
+
+int
+mpn_fib2m (mp_ptr fp, mp_ptr f1p, mp_srcptr np, mp_size_t nn, mp_srcptr mp, mp_size_t mn)
+{
+  unsigned long	nfirst;
+  mp_limb_t	nh;
+  mp_bitcnt_t	nbi;
+  mp_size_t	sn, fn;
+  int		fcnt, ncnt;
+
+  ASSERT (! MPN_OVERLAP_P (fp, MAX(2*mn+1,5), f1p, MAX(2*mn+1,5)));
+  ASSERT (nn > 0 && np[nn - 1] != 0);
+
+  /* Estimate the maximal n such that fibonacci(n) fits in mn limbs. */
+#if GMP_NUMB_BITS % 16 == 0
+  if (UNLIKELY (ULONG_MAX / (23 * (GMP_NUMB_BITS / 16)) <= mn))
+    nfirst = ULONG_MAX;
+  else
+    nfirst = mn * (23 * (GMP_NUMB_BITS / 16));
+#else
+  {
+    mp_bitcnt_t	mbi;
+    mbi = (mp_bitcnt_t) mn * GMP_NUMB_BITS;
+
+    if (UNLIKELY (ULONG_MAX / 23 < mbi))
+      {
+	if (UNLIKELY (ULONG_MAX / 23 * 16 <= mbi))
+	  nfirst = ULONG_MAX;
+	else
+	  nfirst = mbi / 16 * 23;
+      }
+    else
+      nfirst = mbi * 23 / 16;
+  }
+#endif
+
+  sn = nn - 1;
+  nh = np[sn];
+  count_leading_zeros (ncnt, nh);
+  count_leading_zeros (fcnt, nfirst);
+
+  if (fcnt >= ncnt)
+    {
+      ncnt = fcnt - ncnt;
+      nh >>= ncnt;
+    }
+  else if (sn > 0)
+    {
+      ncnt -= fcnt;
+      nh <<= ncnt;
+      ncnt = GMP_NUMB_BITS - ncnt;
+      --sn;
+      nh |= np[sn] >> ncnt;
+    }
+  else
+    ncnt = 0;
+
+  nbi = sn * GMP_NUMB_BITS + ncnt;
+  if (nh > nfirst)
+    {
+      nh >>= 1;
+      ++nbi;
+    }
+
+  ASSERT (nh <= nfirst);
+  /* Take a starting pair from mpn_fib2_ui. */
+  fn = mpn_fib2_ui (fp, f1p, nh);
+  MPN_ZERO (fp + fn, mn - fn);
+  MPN_ZERO (f1p + fn, mn - fn);
+
+  if (nbi == 0)
+    {
+      if (fn == mn)
+	{
+	  mp_limb_t qp[2];
+	  mpn_tdiv_qr (qp, fp, 0, fp, fn, mp, mn);
+	  mpn_tdiv_qr (qp, f1p, 0, f1p, fn, mp, mn);
+	}
+
+      return 0;
+    }
+  else
+    {
+      mp_ptr	tp;
+      unsigned	pb = nh & 1;
+      int	neg;
+      TMP_DECL;
+
+      TMP_MARK;
+
+      tp = TMP_ALLOC_LIMBS (2 * mn + (mn < 2));
+
+      do
+	{
+	  mp_ptr	rp;
+	  /* Here fp==F[k] and f1p==F[k-1], with k being the bits of n from
+	     nbi upwards.
+
+	     Based on the next bit of n, we'll double to the pair
+	     fp==F[2k],f1p==F[2k-1] or fp==F[2k+1],f1p==F[2k], according as
+	     that bit is 0 or 1 respectively.  */
+
+	  mpn_sqr (tp, fp,  mn);
+	  mpn_sqr (fp, f1p, mn);
+
+	  /* Calculate F[2k-1] = F[k]^2 + F[k-1]^2. */
+	  f1p[2 * mn] = mpn_add_n (f1p, tp, fp, 2 * mn);
+
+	  /* Calculate F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k.
+	     pb is the low bit of our implied k.  */
+
+	  /* fp is F[k-1]^2 == 0 or 1 mod 4, like all squares. */
+	  ASSERT ((fp[0] & 2) == 0);
+	  ASSERT (pb == (pb & 1));
+	  ASSERT ((fp[0] + (pb ? 2 : 0)) == (fp[0] | (pb << 1)));
+	  fp[0] |= pb << 1;		/* possible -2 */
+#if HAVE_NATIVE_mpn_rsblsh2_n
+	  fp[2 * mn] = 1 + mpn_rsblsh2_n (fp, fp, tp, 2 * mn);
+	  MPN_INCR_U(fp, 2 * mn + 1, (1 ^ pb) << 1);	/* possible +2 */
+	  fp[2 * mn] = (fp[2 * mn] - 1) & GMP_NUMB_MAX;
+#else
+	  {
+	    mp_limb_t  c;
+
+	    c = mpn_lshift (tp, tp, 2 * mn, 2);
+	    tp[0] |= (1 ^ pb) << 1;	/* possible +2 */
+	    c -= mpn_sub_n (fp, tp, fp, 2 * mn);
+	    fp[2 * mn] = c & GMP_NUMB_MAX;
+	  }
+#endif
+	  neg = fp[2 * mn] == GMP_NUMB_MAX;
+
+	  /* Calculate F[2k-1] = F[k]^2 + F[k-1]^2 */
+	  /* Calculate F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k */
+
+	  /* Calculate F[2k] = F[2k+1] - F[2k-1], replacing the unwanted one of
+	     F[2k+1] and F[2k-1].  */
+	  --nbi;
+	  pb = (np [nbi / GMP_NUMB_BITS] >> (nbi % GMP_NUMB_BITS)) & 1;
+	  rp = pb ? f1p : fp;
+	  if (neg)
+	    {
+	      /* Calculate -(F[2k+1] - F[2k-1]) */
+	      rp[2 * mn] = f1p[2 * mn] + 1 - mpn_sub_n (rp, f1p, fp, 2 * mn);
+	      neg = ! pb;
+	      if (pb) /* fp not overwritten, negate it. */
+		fp [2 * mn] = 1 ^ mpn_neg (fp, fp, 2 * mn);
+	    }
+	  else
+	    {
+	      neg = abs_sub_n (rp, fp, f1p, 2 * mn + 1) < 0;
+	    }
+
+	  mpn_tdiv_qr (tp, fp, 0, fp, 2 * mn + 1, mp, mn);
+	  mpn_tdiv_qr (tp, f1p, 0, f1p, 2 * mn + 1, mp, mn);
+	}
+      while (nbi != 0);
+
+      TMP_FREE;
+
+      return neg;
+    }
+}