blob: 30cfc818b7a676ad0c55dacf1a8e8f69bbada07a [file] [log] [blame]
Brian Silvermana498bbb2019-03-03 17:18:04 -08001#include <inttypes.h>
2#include <stdio.h>
3
Brian Silverman3240e102019-02-16 18:24:24 -08004#include "aos/time/time.h"
5#include "motors/core/kinetis.h"
6#include "motors/core/time.h"
7#include "motors/peripheral/configuration.h"
Brian Silvermand7d01102019-02-24 16:11:21 -08008#include "motors/peripheral/spi.h"
Brian Silverman3240e102019-02-16 18:24:24 -08009#include "motors/peripheral/uart.h"
10#include "motors/print/print.h"
11#include "motors/util.h"
Brian Silvermand7d01102019-02-24 16:11:21 -080012#include "third_party/GSL/include/gsl/gsl"
13#include "y2019/jevois/cobs.h"
14#include "y2019/jevois/spi.h"
15#include "y2019/jevois/uart.h"
Brian Silvermana498bbb2019-03-03 17:18:04 -080016#include "y2019/vision/constants.h"
Brian Silvermand7d01102019-02-24 16:11:21 -080017
18using frc971::teensy::InterruptBufferedUart;
19using frc971::teensy::InterruptBufferedSpi;
20
21// All indices here refer to the ports as numbered on the PCB.
Brian Silverman3240e102019-02-16 18:24:24 -080022
23namespace frc971 {
24namespace jevois {
25namespace {
26
Brian Silvermand7d01102019-02-24 16:11:21 -080027// Holds all of our hardware UARTs. There is exactly one global instance for
28// interrupt handlers to access.
Brian Silverman3240e102019-02-16 18:24:24 -080029struct Uarts {
30 Uarts() {
31 DisableInterrupts disable_interrupts;
Brian Silvermand7d01102019-02-24 16:11:21 -080032 global_instance = this;
Brian Silverman3240e102019-02-16 18:24:24 -080033 }
34 ~Uarts() {
35 DisableInterrupts disable_interrupts;
Brian Silvermand7d01102019-02-24 16:11:21 -080036 global_instance = nullptr;
Brian Silverman3240e102019-02-16 18:24:24 -080037 }
Brian Silvermand7d01102019-02-24 16:11:21 -080038 Uarts(const Uarts &) = delete;
39 Uarts &operator=(const Uarts &) = delete;
Brian Silverman3240e102019-02-16 18:24:24 -080040
41 void Initialize(int baud_rate) {
42 cam0.Initialize(baud_rate);
43 cam1.Initialize(baud_rate);
44 cam2.Initialize(baud_rate);
45 cam3.Initialize(baud_rate);
46 cam4.Initialize(baud_rate);
47 }
48
Brian Silvermand7d01102019-02-24 16:11:21 -080049 InterruptBufferedUart cam0{&UART1, F_CPU};
50 InterruptBufferedUart cam1{&UART0, F_CPU};
51 InterruptBufferedUart cam2{&UART2, BUS_CLOCK_FREQUENCY};
52 InterruptBufferedUart cam3{&UART3, BUS_CLOCK_FREQUENCY};
53 InterruptBufferedUart cam4{&UART4, BUS_CLOCK_FREQUENCY};
Brian Silverman3240e102019-02-16 18:24:24 -080054
Brian Silvermand7d01102019-02-24 16:11:21 -080055 static Uarts *global_instance;
Brian Silverman3240e102019-02-16 18:24:24 -080056};
57
Brian Silvermand7d01102019-02-24 16:11:21 -080058Uarts *Uarts::global_instance = nullptr;
59
60// Manages the transmit buffer to a single camera.
61//
62// We have to add delays between sending each byte in order for the camera to
63// successfully receive them.
64struct TransmitBuffer {
65 TransmitBuffer(InterruptBufferedUart *camera_in) : camera(camera_in) {}
66 InterruptBufferedUart *const camera;
67
68 frc971::teensy::UartBuffer<1024> buffer;
69 aos::monotonic_clock::time_point last_send = aos::monotonic_clock::min_time;
70
71 // Sends a byte to the camera if it's time.
72 void Tick(aos::monotonic_clock::time_point now) {
73 if (buffer.empty()) {
74 return;
75 }
76 if (now < last_send + std::chrono::milliseconds(1)) {
77 return;
78 }
79 last_send = now;
80 camera->Write(std::array<char, 1>{{buffer.PopSingle()}});
81 }
82
83 // Queues up another packet to send, only if the previous one has finished.
84 void MaybeWritePacket(const CameraCalibration &calibration) {
85 if (!buffer.empty()) {
86 return;
87 }
88 const auto serialized = UartPackToCamera(calibration);
89 buffer.PushSingle(0);
90 if (buffer.PushSpan(serialized) == static_cast<int>(serialized.size())) {
91 buffer.PushSingle(0);
92 }
93 }
Brian Silvermanbac77542019-03-03 13:57:00 -080094
95 void FillAs() {
96 while (!buffer.full()) {
97 buffer.PushSingle('a');
98 }
99 }
Brian Silvermand7d01102019-02-24 16:11:21 -0800100};
101
102InterruptBufferedSpi *global_spi_instance = nullptr;
103
104// Manages queueing a transfer to send via SPI.
105class SpiQueue {
106 public:
107 SpiQueue() {
108 DisableInterrupts disable_interrupts;
109 global_instance = this;
110 }
111 ~SpiQueue() {
112 DisableInterrupts disable_interrupts;
113 global_instance = nullptr;
114 }
115 SpiQueue(const SpiQueue &) = delete;
116 SpiQueue &operator=(const SpiQueue &) = delete;
117
118 tl::optional<gsl::span<const char, spi_transfer_size()>> Tick() {
119 {
120 DisableInterrupts disable_interrupts;
121 if (waiting_for_enable_ || waiting_for_disable_) {
122 return tl::nullopt;
123 }
124 }
125 const auto now = aos::monotonic_clock::now();
126 if (TransferTimedOut(now)) {
127 printf("SPI timeout with %d left\n", static_cast<int>(to_receive_.size()));
128 WaitForNextTransfer();
129 return tl::nullopt;
130 }
131 {
132 DisableInterrupts disable_interrupts;
133 if (!PERIPHERAL_BITBAND(GPIOA_PDIR, 17) &&
134 cs_deassert_time_ == aos::monotonic_clock::max_time) {
135 cs_deassert_time_ = now;
136 }
137 }
138 if (DeassertHappened(now)) {
139 printf("CS deasserted with %d left\n", static_cast<int>(to_receive_.size()));
140 WaitForNextTransfer();
141 return tl::nullopt;
142 }
143 bool all_done;
144 {
145 DisableInterrupts disable_interrupts;
146 if (received_dummy_) {
147 to_receive_ = to_receive_.subspan(
148 global_spi_instance->Read(to_receive_, &disable_interrupts).size());
149 all_done = to_receive_.empty();
150 } else {
151 std::array<char, 1> dummy_data;
152 if (global_spi_instance->Read(dummy_data, &disable_interrupts).size() >=
153 1) {
154 received_dummy_ = true;
155 }
156 all_done = false;
157 }
158 }
159 if (all_done) {
160 WaitForNextTransfer();
161 return received_transfer_;
162 }
163 return tl::nullopt;
164 }
165
166 void HandleInterrupt() {
167 DisableInterrupts disable_interrupts;
168 if (waiting_for_disable_) {
169 if (!PERIPHERAL_BITBAND(GPIOA_PDIR, 17)) {
170 PORTA_PCR17 =
171 PORT_PCR_MUX(1) | PORT_PCR_IRQC(0xC) /* Interrupt when logic 1 */;
172 // Clear the interrupt flag now that we've reconfigured it.
173 PORTA_ISFR = 1 << 17;
174 waiting_for_disable_ = false;
175 } else {
176 // Clear the interrupt flag. It shouldn't trigger again immediately
177 // because the pin is still asserted.
178 PORTA_ISFR = 1 << 17;
179 }
180 return;
181 }
182 if (waiting_for_enable_) {
183 if (PERIPHERAL_BITBAND(GPIOA_PDIR, 17)) {
184 global_spi_instance->ClearQueues(disable_interrupts);
185 // Tell the SPI peripheral its CS is asserted.
186 PERIPHERAL_BITBAND(GPIOB_PDOR, 17) = 0;
187 // Disable interrupts on the enable pin. We'll re-enable once we finish
188 // the transfer.
189 PORTA_PCR17 = PORT_PCR_MUX(1);
190 // Clear the interrupt flag now that we've reconfigured it.
191 PORTA_ISFR = 1 << 17;
192 if (have_transfer_) {
193 global_spi_instance->Write(transfer_, &disable_interrupts);
194 have_transfer_ = false;
195 } else {
196 printf("Writing dummy SPI frame\n");
197 // If we don't have anything, just write 0s to avoid getting the
198 // hardware confused.
199 global_spi_instance->Write(SpiTransfer{}, &disable_interrupts);
200 }
201 // Queue up a dummy byte at the end. This won't actually be sent,
202 // because the first byte we do send will be garbage, but it will
203 // synchronize our queues so we receive all the useful data bytes.
204 global_spi_instance->Write(std::array<char, 1>(), &disable_interrupts);
205 waiting_for_enable_ = false;
206 receive_start_ = aos::monotonic_clock::now();
207 cs_deassert_time_ = aos::monotonic_clock::max_time;
208 // To make debugging easier.
209 received_transfer_.fill(0);
210 } else {
211 // Clear the interrupt flag. It shouldn't trigger again immediately
212 // because the pin is still asserted.
213 PORTA_ISFR = 1 << 17;
214 }
215 return;
216 }
217 // We shouldn't ever get here. Clear all the flags and hope they don't get
218 // re-asserted immediately.
219 PORTA_ISFR = UINT32_C(0xFFFFFFFF);
220 }
221
222 void UpdateTransfer(const SpiTransfer &transfer, const DisableInterrupts &) {
223 have_transfer_ = true;
224 transfer_ = transfer;
225 }
226
227 // Returns whether a transfer is currently queued. This will be true between a
228 // call to UpdateTransfer and that transfer actually being moved out to the
229 // hardware.
230 bool HaveTransfer(const DisableInterrupts &) const { return have_transfer_; }
231
232 static SpiQueue *global_instance;
233
234 private:
235 void WaitForNextTransfer() {
236 to_receive_ = received_transfer_;
237 received_dummy_ = false;
238 {
239 DisableInterrupts disable_interrupts;
240 waiting_for_enable_ = true;
241 waiting_for_disable_ = true;
242 PORTA_PCR17 =
243 PORT_PCR_MUX(1) | PORT_PCR_IRQC(0x8) /* Interrupt when logic 0 */;
244 // Clear the interrupt flag now that we've reconfigured it.
245 PORTA_ISFR = 1 << 17;
246 }
247 // Tell the SPI peripheral its CS is de-asserted.
248 PERIPHERAL_BITBAND(GPIOB_PDOR, 17) = 1;
249 }
250
251 bool TransferTimedOut(aos::monotonic_clock::time_point now) {
252 DisableInterrupts disable_interrupts;
253 // TODO: Revise this timeout.
254 return now - std::chrono::milliseconds(50) > receive_start_;
255 }
256
257 bool DeassertHappened(aos::monotonic_clock::time_point now) {
258 DisableInterrupts disable_interrupts;
259 return now - std::chrono::microseconds(50) > cs_deassert_time_;
260 }
261
262 bool waiting_for_enable_ = true;
263 bool waiting_for_disable_ = false;
264 bool have_transfer_ = false;
265 SpiTransfer transfer_;
266 bool received_dummy_ = false;
267 SpiTransfer received_transfer_;
268 gsl::span<char> to_receive_ = received_transfer_;
269 aos::monotonic_clock::time_point receive_start_;
270 aos::monotonic_clock::time_point cs_deassert_time_;
271};
272
273SpiQueue *SpiQueue::global_instance = nullptr;
274
275// All methods here must be fully synchronized by the caller.
276class FrameQueue {
277 public:
278 FrameQueue() = default;
279 FrameQueue(const FrameQueue &) = delete;
280 FrameQueue &operator=(const FrameQueue &) = delete;
281
Brian Silvermanc41fb862019-03-02 21:14:46 -0800282 void UpdateFrame(int camera, const CameraFrame &frame) {
Brian Silvermand7d01102019-02-24 16:11:21 -0800283 frames_[camera].targets = frame.targets;
284 frames_[camera].capture_time = aos::monotonic_clock::now() - frame.age;
Brian Silvermanc41fb862019-03-02 21:14:46 -0800285 frames_[camera].camera_index = camera;
Brian Silvermand7d01102019-02-24 16:11:21 -0800286 const aos::SizedArray<int, 3> old_last_frames = last_frames_;
287 last_frames_.clear();
288 for (int index : old_last_frames) {
289 if (index != camera) {
290 last_frames_.push_back(index);
291 }
292 }
293 }
294
295 // Creates and returns a transfer with all the current information.
296 //
297 // This does not actually record these frames as transferred until
298 // RemoveLatestFrames() is called.
299 SpiTransfer MakeTransfer();
300
301 // Records the frames represented in the result of the latest MakeTransfer()
302 // call as being transferred, so they will not be represented in subsequent
303 // MakeTransfer() calls.
304 void RemoveLatestFrames() {
305 for (int index : last_frames_) {
306 frames_[index].capture_time = aos::monotonic_clock::min_time;
307 }
308 last_frames_.clear();
309 }
310
311 private:
312 struct FrameData {
313 aos::SizedArray<Target, 3> targets;
314 aos::monotonic_clock::time_point capture_time =
315 aos::monotonic_clock::min_time;
Brian Silvermanc41fb862019-03-02 21:14:46 -0800316 int camera_index;
Brian Silvermand7d01102019-02-24 16:11:21 -0800317 };
318
319 std::array<FrameData, 5> frames_;
320 // The indices into frames_ which we returned in the last MakeTransfer() call.
321 aos::SizedArray<int, 3> last_frames_;
322};
323
324SpiTransfer FrameQueue::MakeTransfer() {
325 aos::SizedArray<int, 5> oldest_indices;
326 for (size_t i = 0; i < frames_.size(); ++i) {
327 if (frames_[i].capture_time != aos::monotonic_clock::min_time) {
328 oldest_indices.push_back(i);
329 }
330 }
331 std::sort(oldest_indices.begin(), oldest_indices.end(), [this](int a, int b) {
332 return frames_[a].capture_time < frames_[b].capture_time;
333 });
334
335 TeensyToRoborio message;
336 last_frames_.clear();
337 for (int i = 0; i < std::min<int>(oldest_indices.size(), 3); ++i) {
338 const int index = oldest_indices[i];
339 const FrameData &frame = frames_[index];
340 const auto age = aos::monotonic_clock::now() - frame.capture_time;
341 const auto rounded_age = aos::time::round<camera_duration>(age);
Brian Silvermanc41fb862019-03-02 21:14:46 -0800342 message.frames.push_back({frame.targets, rounded_age, frame.camera_index});
Brian Silvermand7d01102019-02-24 16:11:21 -0800343 last_frames_.push_back(index);
344 }
345 return SpiPackToRoborio(message);
346}
Brian Silverman3240e102019-02-16 18:24:24 -0800347
Brian Silverman2294f352019-03-02 16:31:18 -0800348// Manages turning the debug light on and off periodically.
349//
350// It blinks at 1Hz with a variable duty cycle.
351class DebugLight {
352 public:
353 static constexpr aos::monotonic_clock::duration period() {
354 return std::chrono::seconds(1);
355 }
356
357 void set_next_off_time(aos::monotonic_clock::duration next_off_time) {
358 next_off_time_ = next_off_time;
359 }
360
361 void Tick() {
362 const auto now = aos::monotonic_clock::now();
363 if (last_cycle_start_ == aos::monotonic_clock::min_time) {
364 last_cycle_start_ = now;
365 current_off_point_ = last_cycle_start_ + next_off_time_;
366 } else if (now > last_cycle_start_ + period()) {
367 last_cycle_start_ += period();
368 current_off_point_ = last_cycle_start_ + next_off_time_;
369 }
370 if (now > current_off_point_) {
371 GPIOC_PCOR = 1 << 5;
372 } else {
373 GPIOC_PSOR = 1 << 5;
374 }
375 }
376
377 private:
378 aos::monotonic_clock::time_point last_cycle_start_ =
379 aos::monotonic_clock::min_time;
380
Brian Silvermanbac77542019-03-03 13:57:00 -0800381 aos::monotonic_clock::duration next_off_time_ =
382 std::chrono::milliseconds(100);
Brian Silverman2294f352019-03-02 16:31:18 -0800383 aos::monotonic_clock::time_point current_off_point_ =
384 aos::monotonic_clock::min_time;
385};
386
Brian Silvermana498bbb2019-03-03 17:18:04 -0800387// Returns an identifier for the processor we're running on.
388uint32_t ProcessorIdentifier() {
389 uint32_t r = 0;
390 r |= SIM_UIDH << 24;
391 r |= SIM_UIDMH << 16;
392 r |= SIM_UIDML << 8;
393 r |= SIM_UIDL << 0;
394 return r;
395}
396
397std::array<int, 5> CameraSerialNumbers() {
398 switch (ProcessorIdentifier()) {
Alex Perryf8e980d2019-03-03 17:46:01 -0800399 case 0xffff322e: // CODE bot
400 return {{0, 0, 0, 16, 19}};
Brian Silvermana498bbb2019-03-03 17:18:04 -0800401 default:
402 return {{0, 0, 0, 0, 0}};
403 }
404}
405
Brian Silverman3240e102019-02-16 18:24:24 -0800406extern "C" {
407
408void *__stack_chk_guard = (void *)0x67111971;
409void __stack_chk_fail(void) {
410 while (true) {
411 GPIOC_PSOR = (1 << 5);
412 printf("Stack corruption detected\n");
413 delay(1000);
414 GPIOC_PCOR = (1 << 5);
415 delay(1000);
416 }
417}
418
419extern char *__brkval;
420extern uint32_t __bss_ram_start__[];
421extern uint32_t __heap_start__[];
422extern uint32_t __stack_end__[];
423
424void uart0_status_isr(void) {
425 DisableInterrupts disable_interrupts;
Brian Silvermand7d01102019-02-24 16:11:21 -0800426 Uarts::global_instance->cam1.HandleInterrupt(disable_interrupts);
Brian Silverman3240e102019-02-16 18:24:24 -0800427}
428
429void uart1_status_isr(void) {
430 DisableInterrupts disable_interrupts;
Brian Silvermand7d01102019-02-24 16:11:21 -0800431 Uarts::global_instance->cam0.HandleInterrupt(disable_interrupts);
Brian Silverman3240e102019-02-16 18:24:24 -0800432}
433
434void uart2_status_isr(void) {
435 DisableInterrupts disable_interrupts;
Brian Silvermand7d01102019-02-24 16:11:21 -0800436 Uarts::global_instance->cam2.HandleInterrupt(disable_interrupts);
Brian Silverman3240e102019-02-16 18:24:24 -0800437}
438
439void uart3_status_isr(void) {
440 DisableInterrupts disable_interrupts;
Brian Silvermand7d01102019-02-24 16:11:21 -0800441 Uarts::global_instance->cam3.HandleInterrupt(disable_interrupts);
Brian Silverman3240e102019-02-16 18:24:24 -0800442}
443
444void uart4_status_isr(void) {
445 DisableInterrupts disable_interrupts;
Brian Silvermand7d01102019-02-24 16:11:21 -0800446 Uarts::global_instance->cam4.HandleInterrupt(disable_interrupts);
447}
448
449void spi0_isr(void) {
450 DisableInterrupts disable_interrupts;
451 global_spi_instance->HandleInterrupt(disable_interrupts);
452}
453
454void porta_isr(void) {
455 SpiQueue::global_instance->HandleInterrupt();
Brian Silverman3240e102019-02-16 18:24:24 -0800456}
457
458} // extern "C"
459
460// A test program which echos characters back after adding a per-UART offset to
461// them (CAM0 adds 1, CAM1 adds 2, etc).
462__attribute__((unused)) void TestUarts() {
Brian Silvermand7d01102019-02-24 16:11:21 -0800463 Uarts *const uarts = Uarts::global_instance;
Brian Silverman3240e102019-02-16 18:24:24 -0800464 while (true) {
465 {
466 std::array<char, 10> buffer;
467 const auto data = uarts->cam0.Read(buffer);
468 for (int i = 0; i < data.size(); ++i) {
469 data[i] += 1;
470 }
471 uarts->cam0.Write(data);
472 }
473 {
474 std::array<char, 10> buffer;
475 const auto data = uarts->cam1.Read(buffer);
476 for (int i = 0; i < data.size(); ++i) {
477 data[i] += 2;
478 }
479 uarts->cam1.Write(data);
480 }
481 {
482 std::array<char, 10> buffer;
483 const auto data = uarts->cam2.Read(buffer);
484 for (int i = 0; i < data.size(); ++i) {
485 data[i] += 3;
486 }
487 uarts->cam2.Write(data);
488 }
489 {
490 std::array<char, 10> buffer;
491 const auto data = uarts->cam3.Read(buffer);
492 for (int i = 0; i < data.size(); ++i) {
493 data[i] += 4;
494 }
495 uarts->cam3.Write(data);
496 }
497 {
498 std::array<char, 10> buffer;
499 const auto data = uarts->cam4.Read(buffer);
500 for (int i = 0; i < data.size(); ++i) {
501 data[i] += 5;
502 }
503 uarts->cam4.Write(data);
504 }
505 }
506}
507
508// Tests all the I/O pins. Cycles through each one for 1 second. While active,
509// each output is turned on, and each input has its value printed.
510__attribute__((unused)) void TestIo() {
511 // Set SPI0 pins to GPIO.
512 // SPI_OUT
513 PERIPHERAL_BITBAND(GPIOC_PDDR, 6) = 1;
514 PORTC_PCR6 = PORT_PCR_DSE | PORT_PCR_MUX(1);
515 // SPI_CS
516 PERIPHERAL_BITBAND(GPIOD_PDDR, 0) = 0;
517 PORTD_PCR0 = PORT_PCR_DSE | PORT_PCR_MUX(1);
518 // SPI_IN
519 PERIPHERAL_BITBAND(GPIOC_PDDR, 7) = 0;
520 PORTC_PCR7 = PORT_PCR_DSE | PORT_PCR_MUX(1);
521 // SPI_SCK
522 PERIPHERAL_BITBAND(GPIOD_PDDR, 1) = 0;
523 PORTD_PCR1 = PORT_PCR_DSE | PORT_PCR_MUX(1);
524
525 // Set LED pins to GPIO.
526 PERIPHERAL_BITBAND(GPIOC_PDDR, 11) = 1;
527 PORTC_PCR11 = PORT_PCR_DSE | PORT_PCR_MUX(1);
528 PERIPHERAL_BITBAND(GPIOC_PDDR, 10) = 1;
529 PORTC_PCR10 = PORT_PCR_DSE | PORT_PCR_MUX(1);
530 PERIPHERAL_BITBAND(GPIOC_PDDR, 8) = 1;
531 PORTC_PCR8 = PORT_PCR_DSE | PORT_PCR_MUX(1);
532 PERIPHERAL_BITBAND(GPIOC_PDDR, 9) = 1;
533 PORTC_PCR9 = PORT_PCR_DSE | PORT_PCR_MUX(1);
534 PERIPHERAL_BITBAND(GPIOB_PDDR, 18) = 1;
535 PORTB_PCR18 = PORT_PCR_DSE | PORT_PCR_MUX(1);
536 PERIPHERAL_BITBAND(GPIOC_PDDR, 2) = 1;
537 PORTC_PCR2 = PORT_PCR_DSE | PORT_PCR_MUX(1);
538 PERIPHERAL_BITBAND(GPIOD_PDDR, 7) = 1;
539 PORTD_PCR7 = PORT_PCR_DSE | PORT_PCR_MUX(1);
540 PERIPHERAL_BITBAND(GPIOC_PDDR, 1) = 1;
541 PORTC_PCR1 = PORT_PCR_DSE | PORT_PCR_MUX(1);
542 PERIPHERAL_BITBAND(GPIOB_PDDR, 19) = 1;
543 PORTB_PCR19 = PORT_PCR_DSE | PORT_PCR_MUX(1);
544 PERIPHERAL_BITBAND(GPIOD_PDDR, 5) = 1;
545 PORTD_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(1);
546
547 auto next = aos::monotonic_clock::now();
548 static constexpr auto kTick = std::chrono::seconds(1);
549 while (true) {
550 printf("SPI_MISO\n");
551 PERIPHERAL_BITBAND(GPIOC_PDOR, 6) = 1;
552 while (aos::monotonic_clock::now() < next + kTick) {
553 }
554 PERIPHERAL_BITBAND(GPIOC_PDOR, 6) = 0;
555 next += kTick;
556
557 while (aos::monotonic_clock::now() < next + kTick) {
558 printf("SPI_CS %d\n", (int)PERIPHERAL_BITBAND(GPIOD_PDIR, 0));
559 }
560 next += kTick;
561
562 while (aos::monotonic_clock::now() < next + kTick) {
563 printf("SPI_MOSI %d\n", (int)PERIPHERAL_BITBAND(GPIOC_PDIR, 7));
564 }
565 next += kTick;
566
567 while (aos::monotonic_clock::now() < next + kTick) {
568 printf("SPI_CLK %d\n", (int)PERIPHERAL_BITBAND(GPIOD_PDIR, 1));
569 }
570 next += kTick;
571
572 printf("CAM0\n");
573 PERIPHERAL_BITBAND(GPIOC_PDOR, 11) = 1;
574 while (aos::monotonic_clock::now() < next + kTick) {
575 }
576 PERIPHERAL_BITBAND(GPIOC_PDOR, 11) = 0;
577 next += kTick;
578
579 printf("CAM1\n");
580 PERIPHERAL_BITBAND(GPIOC_PDOR, 10) = 1;
581 while (aos::monotonic_clock::now() < next + kTick) {
582 }
583 PERIPHERAL_BITBAND(GPIOC_PDOR, 10) = 0;
584 next += kTick;
585
586 printf("CAM2\n");
587 PERIPHERAL_BITBAND(GPIOC_PDOR, 8) = 1;
588 while (aos::monotonic_clock::now() < next + kTick) {
589 }
590 PERIPHERAL_BITBAND(GPIOC_PDOR, 8) = 0;
591 next += kTick;
592
593 printf("CAM3\n");
594 PERIPHERAL_BITBAND(GPIOC_PDOR, 9) = 1;
595 while (aos::monotonic_clock::now() < next + kTick) {
596 }
597 PERIPHERAL_BITBAND(GPIOC_PDOR, 9) = 0;
598 next += kTick;
599
600 printf("CAM4\n");
601 PERIPHERAL_BITBAND(GPIOB_PDOR, 18) = 1;
602 while (aos::monotonic_clock::now() < next + kTick) {
603 }
604 PERIPHERAL_BITBAND(GPIOB_PDOR, 18) = 0;
605 next += kTick;
606
607 printf("CAM5\n");
608 PERIPHERAL_BITBAND(GPIOC_PDOR, 2) = 1;
609 while (aos::monotonic_clock::now() < next + kTick) {
610 }
611 PERIPHERAL_BITBAND(GPIOC_PDOR, 2) = 0;
612 next += kTick;
613
614 printf("CAM6\n");
615 PERIPHERAL_BITBAND(GPIOD_PDOR, 7) = 1;
616 while (aos::monotonic_clock::now() < next + kTick) {
617 }
618 PERIPHERAL_BITBAND(GPIOD_PDOR, 7) = 0;
619 next += kTick;
620
621 printf("CAM7\n");
622 PERIPHERAL_BITBAND(GPIOC_PDOR, 1) = 1;
623 while (aos::monotonic_clock::now() < next + kTick) {
624 }
625 PERIPHERAL_BITBAND(GPIOC_PDOR, 1) = 0;
626 next += kTick;
627
628 printf("CAM8\n");
629 PERIPHERAL_BITBAND(GPIOB_PDOR, 19) = 1;
630 while (aos::monotonic_clock::now() < next + kTick) {
631 }
632 PERIPHERAL_BITBAND(GPIOB_PDOR, 19) = 0;
633 next += kTick;
634
635 printf("CAM9\n");
636 PERIPHERAL_BITBAND(GPIOD_PDOR, 5) = 1;
637 while (aos::monotonic_clock::now() < next + kTick) {
638 }
639 PERIPHERAL_BITBAND(GPIOD_PDOR, 5) = 0;
640 next += kTick;
641 }
642}
643
Brian Silvermand7d01102019-02-24 16:11:21 -0800644// Does the normal work of transferring data in all directions.
645//
646// https://community.nxp.com/thread/466937#comment-983881 is a post from NXP
647// claiming that it's impossible to queue up the first byte for the slave end of
648// an SPI connection properly. Instead, we just accept there will be a garbage
649// byte and the other end ignores it.
Brian Silverman83693e42019-03-02 15:45:52 -0800650__attribute__((unused)) void TransferData(
651 frc971::motors::PrintingImplementation *printing) {
Brian Silvermand7d01102019-02-24 16:11:21 -0800652 Uarts *const uarts = Uarts::global_instance;
653 std::array<CobsPacketizer<uart_to_teensy_size()>, 5> packetizers;
654 std::array<TransmitBuffer, 5> transmit_buffers{
655 {&uarts->cam0, &uarts->cam1, &uarts->cam2, &uarts->cam3, &uarts->cam4}};
656 FrameQueue frame_queue;
657 aos::monotonic_clock::time_point last_camera_send =
658 aos::monotonic_clock::min_time;
Brian Silverman83693e42019-03-02 15:45:52 -0800659 CameraCommand stdin_camera_command = CameraCommand::kNormal;
660 CameraCommand last_roborio_camera_command = CameraCommand::kNormal;
Brian Silverman2294f352019-03-02 16:31:18 -0800661 DebugLight debug_light;
Brian Silverman83693e42019-03-02 15:45:52 -0800662
Brian Silvermand7d01102019-02-24 16:11:21 -0800663 bool first = true;
664 while (true) {
Brian Silverman2294f352019-03-02 16:31:18 -0800665 debug_light.Tick();
666
Brian Silvermand7d01102019-02-24 16:11:21 -0800667 {
668 const auto received_transfer = SpiQueue::global_instance->Tick();
669 if (received_transfer) {
670 const auto unpacked = SpiUnpackToTeensy(*received_transfer);
Brian Silverman83693e42019-03-02 15:45:52 -0800671 if (unpacked) {
672 last_roborio_camera_command = unpacked->camera_command;
673 } else {
Brian Silvermand7d01102019-02-24 16:11:21 -0800674 printf("UART decode error\n");
675 }
676 }
677 }
678
679 {
680 std::array<char, 20> buffer;
681 packetizers[0].ParseData(uarts->cam0.Read(buffer));
682 packetizers[1].ParseData(uarts->cam1.Read(buffer));
683 packetizers[2].ParseData(uarts->cam2.Read(buffer));
684 packetizers[3].ParseData(uarts->cam3.Read(buffer));
685 packetizers[4].ParseData(uarts->cam4.Read(buffer));
686 }
687 for (size_t i = 0; i < packetizers.size(); ++i) {
688 if (!packetizers[i].received_packet().empty()) {
689 const auto decoded =
690 UartUnpackToTeensy(packetizers[i].received_packet());
691 packetizers[i].clear_received_packet();
692 if (decoded) {
Brian Silvermand7d01102019-02-24 16:11:21 -0800693 frame_queue.UpdateFrame(i, *decoded);
694 }
695 }
696 }
697 {
698 bool made_transfer = false;
699 if (!first) {
700 DisableInterrupts disable_interrupts;
701 made_transfer =
702 !SpiQueue::global_instance->HaveTransfer(disable_interrupts);
703 }
704 if (made_transfer) {
705 frame_queue.RemoveLatestFrames();
706 }
707 const auto transfer = frame_queue.MakeTransfer();
708 {
709 DisableInterrupts disable_interrupts;
710 SpiQueue::global_instance->UpdateTransfer(transfer, disable_interrupts);
711 }
712 }
713 {
714 const auto now = aos::monotonic_clock::now();
Brian Silvermanbac77542019-03-03 13:57:00 -0800715 CameraCommand current_camera_command = CameraCommand::kNormal;
716 if (last_roborio_camera_command != CameraCommand::kNormal) {
717 current_camera_command = last_roborio_camera_command;
718 } else {
719 current_camera_command = stdin_camera_command;
720 }
721 if (current_camera_command == CameraCommand::kUsb) {
722 debug_light.set_next_off_time(std::chrono::milliseconds(900));
723 } else if (current_camera_command == CameraCommand::kCameraPassthrough) {
724 debug_light.set_next_off_time(std::chrono::milliseconds(500));
725 } else {
726 debug_light.set_next_off_time(std::chrono::milliseconds(100));
727 }
728
729 if (current_camera_command == CameraCommand::kAs) {
730 for (size_t i = 0; i < transmit_buffers.size(); ++i) {
731 transmit_buffers[i].FillAs();
Brian Silverman83693e42019-03-02 15:45:52 -0800732 }
Brian Silvermanbac77542019-03-03 13:57:00 -0800733 } else {
734 if (last_camera_send + std::chrono::milliseconds(1000) < now) {
735 last_camera_send = now;
736 CameraCalibration calibration{};
737 calibration.teensy_now = aos::monotonic_clock::now();
738 calibration.realtime_now = aos::realtime_clock::min_time;
739 calibration.camera_command = current_camera_command;
Brian Silvermana498bbb2019-03-03 17:18:04 -0800740
741 for (int i = 0; i < 5; ++i) {
742 const y2019::vision::CameraCalibration *const constants =
743 y2019::vision::GetCamera(CameraSerialNumbers()[i]);
744 (void)constants;
Alex Perryf3e46be2019-03-03 17:26:14 -0800745 calibration.calibration(0, 0) = constants->intrinsics.mount_angle;
746 calibration.calibration(0, 1) = constants->intrinsics.focal_length;
747 calibration.calibration(0, 2) = constants->intrinsics.barrel_mount;
Brian Silvermana498bbb2019-03-03 17:18:04 -0800748 transmit_buffers[i].MaybeWritePacket(calibration);
749 }
Brian Silverman2294f352019-03-02 16:31:18 -0800750 }
Brian Silvermand7d01102019-02-24 16:11:21 -0800751 }
752 for (TransmitBuffer &transmit_buffer : transmit_buffers) {
753 transmit_buffer.Tick(now);
754 }
755 }
756
Brian Silverman83693e42019-03-02 15:45:52 -0800757 {
758 const auto stdin_data = printing->ReadStdin();
759 if (!stdin_data.empty()) {
760 switch (stdin_data.back()) {
761 case 'p':
Brian Silvermana498bbb2019-03-03 17:18:04 -0800762 printf("Sending passthrough mode\n");
Brian Silverman83693e42019-03-02 15:45:52 -0800763 stdin_camera_command = CameraCommand::kCameraPassthrough;
764 break;
765 case 'u':
Brian Silvermana498bbb2019-03-03 17:18:04 -0800766 printf("Sending USB mode\n");
Brian Silverman83693e42019-03-02 15:45:52 -0800767 stdin_camera_command = CameraCommand::kUsb;
768 break;
769 case 'n':
Brian Silvermana498bbb2019-03-03 17:18:04 -0800770 printf("Sending normal mode\n");
Brian Silverman83693e42019-03-02 15:45:52 -0800771 stdin_camera_command = CameraCommand::kNormal;
772 break;
Brian Silvermanbac77542019-03-03 13:57:00 -0800773 case 'a':
Brian Silvermana498bbb2019-03-03 17:18:04 -0800774 printf("Sending all 'a's\n");
Brian Silvermanbac77542019-03-03 13:57:00 -0800775 stdin_camera_command = CameraCommand::kAs;
776 break;
Brian Silvermana498bbb2019-03-03 17:18:04 -0800777 case 'c':
778 printf("This UART board is 0x%" PRIx32 "\n", ProcessorIdentifier());
779 for (int i = 0; i < 5; ++i) {
780 printf("Camera slot %d's serial number is %d\n", i,
781 CameraSerialNumbers()[i]);
782 }
783 break;
784 case 'h':
785 printf("UART board commands:\n");
786 printf(" p: Send passthrough mode\n");
787 printf(" u: Send USB mode\n");
788 printf(" n: Send normal mode\n");
789 printf(" a: Send all-'a' mode\n");
790 printf(" c: Dump camera configuration\n");
791 break;
Brian Silverman83693e42019-03-02 15:45:52 -0800792 default:
793 printf("Unrecognized character\n");
794 break;
795 }
796 }
797 }
798
Brian Silvermand7d01102019-02-24 16:11:21 -0800799 first = false;
800 }
801}
802
Brian Silverman3240e102019-02-16 18:24:24 -0800803int Main() {
804 // for background about this startup delay, please see these conversations
805 // https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980
806 // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273
807 delay(400);
808
809 // Set all interrupts to the second-lowest priority to start with.
810 for (int i = 0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_SANE_PRIORITY(i, 0xD);
811
812 // Now set priorities for all the ones we care about. They only have meaning
813 // relative to each other, which means centralizing them here makes it a lot
814 // more manageable.
Brian Silvermand7d01102019-02-24 16:11:21 -0800815 NVIC_SET_SANE_PRIORITY(IRQ_USBOTG, 0x7);
816 NVIC_SET_SANE_PRIORITY(IRQ_UART0_STATUS, 0x3);
817 NVIC_SET_SANE_PRIORITY(IRQ_UART1_STATUS, 0x3);
818 NVIC_SET_SANE_PRIORITY(IRQ_UART2_STATUS, 0x3);
819 NVIC_SET_SANE_PRIORITY(IRQ_UART3_STATUS, 0x3);
820 NVIC_SET_SANE_PRIORITY(IRQ_UART4_STATUS, 0x3);
821 // This one is relatively sensitive to latencies. The buffer is ~4800 clock
822 // cycles long.
823 NVIC_SET_SANE_PRIORITY(IRQ_SPI0, 0x2);
824 NVIC_SET_SANE_PRIORITY(IRQ_PORTA, 0x3);
Brian Silverman3240e102019-02-16 18:24:24 -0800825
826 // Set the LED's pin to output mode.
827 PERIPHERAL_BITBAND(GPIOC_PDDR, 5) = 1;
828 PORTC_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(1);
829
830 frc971::motors::PrintingParameters printing_parameters;
831 printing_parameters.dedicated_usb = true;
832 const ::std::unique_ptr<frc971::motors::PrintingImplementation> printing =
833 CreatePrinting(printing_parameters);
834 printing->Initialize();
835
836 DMA.CR = M_DMA_EMLM;
837
Brian Silvermand7d01102019-02-24 16:11:21 -0800838 SIM_SCGC1 |= SIM_SCGC1_UART4;
Brian Silverman3240e102019-02-16 18:24:24 -0800839 SIM_SCGC4 |=
840 SIM_SCGC4_UART0 | SIM_SCGC4_UART1 | SIM_SCGC4_UART2 | SIM_SCGC4_UART3;
Brian Silvermand7d01102019-02-24 16:11:21 -0800841 SIM_SCGC6 |= SIM_SCGC6_SPI0;
Brian Silverman3240e102019-02-16 18:24:24 -0800842
843 // SPI0 goes to the roboRIO.
844 // SPI0_PCS0 is SPI_CS.
Brian Silvermand7d01102019-02-24 16:11:21 -0800845 PORTD_PCR0 = PORT_PCR_MUX(2);
Brian Silverman3240e102019-02-16 18:24:24 -0800846 // SPI0_SOUT is SPI_MISO.
847 PORTC_PCR6 = PORT_PCR_DSE | PORT_PCR_MUX(2);
848 // SPI0_SIN is SPI_MOSI.
849 PORTC_PCR7 = PORT_PCR_DSE | PORT_PCR_MUX(2);
850 // SPI0_SCK is SPI_CLK.
851 PORTD_PCR1 = PORT_PCR_DSE | PORT_PCR_MUX(2);
Brian Silvermand7d01102019-02-24 16:11:21 -0800852 // SPI_CS_DRIVE
853 PERIPHERAL_BITBAND(GPIOB_PDDR, 17) = 1;
854 PERIPHERAL_BITBAND(GPIOB_PDOR, 17) = 1;
855 PORTB_PCR17 = PORT_PCR_DSE | PORT_PCR_MUX(1);
856 // SPI_CS_IN
857 PERIPHERAL_BITBAND(GPIOA_PDDR, 17) = 0;
858 // Set the filter width.
859 PORTA_DFWR = 31;
860 // Enable the filter.
861 PERIPHERAL_BITBAND(PORTA_DFER, 17) = 1;
862 PORTA_PCR17 =
863 PORT_PCR_MUX(1) | PORT_PCR_IRQC(0xC) /* Interrupt when logic 1 */;
864 // Clear the interrupt flag now that we've reconfigured it.
865 PORTA_ISFR = 1 << 17;
Brian Silverman3240e102019-02-16 18:24:24 -0800866
867 // FTM0_CH0 is LED0 (7 in silkscreen, a beacon channel).
868 PORTC_PCR1 = PORT_PCR_DSE | PORT_PCR_MUX(4);
869 // FTM0_CH1 is LED1 (5 in silkscreen, a beacon channel).
870 PORTC_PCR2 = PORT_PCR_DSE | PORT_PCR_MUX(4);
871 // FTM0_CH7 is LED2 (6 in silkscreen, a beacon channel).
872 PORTD_PCR7 = PORT_PCR_DSE | PORT_PCR_MUX(4);
873 // FTM0_CH5 is LED3 (9 in silkscreen, a vision camera).
874 PORTD_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(4);
875
876 // FTM2_CH1 is LED4 (8 in silkscreen, a vision camera).
877 PORTB_PCR19 = PORT_PCR_DSE | PORT_PCR_MUX(3);
878 // FTM2_CH0 is LED5 (for CAM4).
879 PORTB_PCR18 = PORT_PCR_DSE | PORT_PCR_MUX(3);
880
881 // FTM3_CH4 is LED6 (for CAM2).
882 PORTC_PCR8 = PORT_PCR_DSE | PORT_PCR_MUX(3);
883 // FTM3_CH5 is LED7 (for CAM3).
884 PORTC_PCR9 = PORT_PCR_DSE | PORT_PCR_MUX(3);
885 // FTM3_CH6 is LED8 (for CAM1).
886 PORTC_PCR10 = PORT_PCR_DSE | PORT_PCR_MUX(3);
887 // FTM3_CH7 is LED9 (for CAM0).
888 PORTC_PCR11 = PORT_PCR_DSE | PORT_PCR_MUX(3);
889
890 // This hardware has been deactivated, but keep this comment for now to
891 // document which pins it is on.
892#if 0
893 // This is ODROID_EN.
894 PERIPHERAL_BITBAND(GPIOC_PDDR, 0) = 1;
895 PERIPHERAL_BITBAND(GPIOC_PDOR, 0) = 0;
896 PORTC_PCR0 = PORT_PCR_DSE | PORT_PCR_MUX(1);
897 // This is CAM_EN.
898 PERIPHERAL_BITBAND(GPIOB_PDDR, 0) = 1;
899 PERIPHERAL_BITBAND(GPIOB_PDOR, 0) = 0;
900 PORTB_PCR0 = PORT_PCR_DSE | PORT_PCR_MUX(1);
901#endif
902 // This is 5V_PGOOD.
903 PERIPHERAL_BITBAND(GPIOD_PDDR, 6) = 0;
904 PORTD_PCR6 = PORT_PCR_MUX(1);
905
906 // These go to CAM1.
907 // UART0_RX (peripheral) is UART1_RX (schematic).
Brian Silvermand7d01102019-02-24 16:11:21 -0800908 PORTA_PCR15 = PORT_PCR_DSE | PORT_PCR_MUX(3) | PORT_PCR_PE /* Do a pull */ |
909 0 /* !PS to pull down */;
Brian Silverman3240e102019-02-16 18:24:24 -0800910 // UART0_TX (peripheral) is UART1_TX (schematic).
911 PORTA_PCR14 = PORT_PCR_DSE | PORT_PCR_MUX(3);
912
913 // These go to CAM0.
914 // UART1_RX (peripheral) is UART0_RX (schematic).
Brian Silvermand7d01102019-02-24 16:11:21 -0800915 PORTC_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(3) | PORT_PCR_PE /* Do a pull */ |
916 0 /* !PS to pull down */;
Brian Silverman3240e102019-02-16 18:24:24 -0800917 // UART1_TX (peripheral) is UART0_TX (schematic).
918 PORTC_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(3);
919
920 // These go to CAM2.
921 // UART2_RX
Brian Silvermand7d01102019-02-24 16:11:21 -0800922 PORTD_PCR2 = PORT_PCR_DSE | PORT_PCR_MUX(3) | PORT_PCR_PE /* Do a pull */ |
923 0 /* !PS to pull down */;
Brian Silverman3240e102019-02-16 18:24:24 -0800924 // UART2_TX
925 PORTD_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(3);
926
927 // These go to CAM3.
928 // UART3_RX
Brian Silvermand7d01102019-02-24 16:11:21 -0800929 PORTB_PCR10 = PORT_PCR_DSE | PORT_PCR_MUX(3) | PORT_PCR_PE /* Do a pull */ |
930 0 /* !PS to pull down */;
Brian Silverman3240e102019-02-16 18:24:24 -0800931 // UART3_TX
932 PORTB_PCR11 = PORT_PCR_DSE | PORT_PCR_MUX(3);
933
934 // These go to CAM4.
935 // UART4_RX
Brian Silvermand7d01102019-02-24 16:11:21 -0800936 PORTE_PCR25 = PORT_PCR_DSE | PORT_PCR_MUX(3) | PORT_PCR_PE /* Do a pull */ |
937 0 /* !PS to pull down */;
Brian Silverman3240e102019-02-16 18:24:24 -0800938 // UART4_TX
939 PORTE_PCR24 = PORT_PCR_DSE | PORT_PCR_MUX(3);
940
941 Uarts uarts;
Brian Silvermand7d01102019-02-24 16:11:21 -0800942 InterruptBufferedSpi spi0{&SPI0, BUS_CLOCK_FREQUENCY};
943 global_spi_instance = &spi0;
944 SpiQueue spi_queue;
Brian Silverman3240e102019-02-16 18:24:24 -0800945
946 // Give everything a chance to get going.
947 delay(100);
948
949 printf("Ram start: %p\n", __bss_ram_start__);
950 printf("Heap start: %p\n", __heap_start__);
951 printf("Heap end: %p\n", __brkval);
952 printf("Stack start: %p\n", __stack_end__);
953
954 uarts.Initialize(115200);
955 NVIC_ENABLE_IRQ(IRQ_UART0_STATUS);
956 NVIC_ENABLE_IRQ(IRQ_UART1_STATUS);
957 NVIC_ENABLE_IRQ(IRQ_UART2_STATUS);
958 NVIC_ENABLE_IRQ(IRQ_UART3_STATUS);
959 NVIC_ENABLE_IRQ(IRQ_UART4_STATUS);
Brian Silvermand7d01102019-02-24 16:11:21 -0800960 spi0.Initialize();
961 NVIC_ENABLE_IRQ(IRQ_SPI0);
962 NVIC_ENABLE_IRQ(IRQ_PORTA);
963
Brian Silverman83693e42019-03-02 15:45:52 -0800964 TransferData(printing.get());
Brian Silverman3240e102019-02-16 18:24:24 -0800965
966 while (true) {
967 }
968}
969
970extern "C" {
971
972int main(void) {
973 return Main();
974}
975
976} // extern "C"
977
978} // namespace
979} // namespace jevois
980} // namespace frc971