blob: 7caf8bcac32a4712640896708e0a87c1afba0318 [file] [log] [blame]
Maxwell Henderson7af00982023-02-04 12:42:07 -08001#!/usr/bin/python3
2
3from __future__ import print_function
4import os
5from frc971.control_loops.python import basic_window
6from frc971.control_loops.python.color import Color, palette
7import random
8import gi
9import numpy
10
11gi.require_version('Gtk', '3.0')
12from gi.repository import Gdk, Gtk
13import cairo
Maxwell Hendersonf5123fe2023-02-04 13:44:41 -080014from graph_tools import XYSegment, AngleSegment, to_theta, to_xy, alpha_blend, draw_lines
15from graph_tools import back_to_xy_loop, subdivide_theta, to_theta_loop, px
16from graph_tools import l1, l2, joint_center
17from graph_paths import segments
Maxwell Henderson7af00982023-02-04 12:42:07 -080018
Maxwell Hendersonf5123fe2023-02-04 13:44:41 -080019from frc971.control_loops.python.basic_window import quit_main_loop, set_color
Maxwell Henderson7af00982023-02-04 12:42:07 -080020
21import shapely
22from shapely.geometry import Polygon
23
24
Maxwell Henderson7af00982023-02-04 12:42:07 -080025def draw_px_cross(cr, length_px):
26 """Draws a cross with fixed dimensions in pixel space."""
27 with px(cr):
28 x, y = cr.get_current_point()
29 cr.move_to(x, y - length_px)
30 cr.line_to(x, y + length_px)
31 cr.stroke()
32
33 cr.move_to(x - length_px, y)
34 cr.line_to(x + length_px, y)
35 cr.stroke()
36
37
38def angle_dist_sqr(a1, a2):
39 """Distance between two points in angle space."""
40 return (a1[0] - a2[0])**2 + (a1[1] - a2[1])**2
41
42
43# Find the highest y position that intersects the vertical line defined by x.
44def inter_y(x):
45 return numpy.sqrt((l2 + l1)**2 -
46 (x - joint_center[0])**2) + joint_center[1]
47
48
49# This is the x position where the inner (hyperextension) circle intersects the horizontal line
50derr = numpy.sqrt((l1 - l2)**2 - (joint_center[1] - 0.3048)**2)
51
52
53# Define min and max l1 angles based on vertical constraints.
54def get_angle(boundary):
55 h = numpy.sqrt((l1)**2 - (boundary - joint_center[0])**2) + joint_center[1]
56 return numpy.arctan2(h, boundary - joint_center[0])
57
58
59# left hand side lines
60lines1 = [
61 (-0.826135, inter_y(-0.826135)),
62 (-0.826135, 0.1397),
63 (-23.025 * 0.0254, 0.1397),
64 (-23.025 * 0.0254, 0.3048),
65 (joint_center[0] - derr, 0.3048),
66]
67
68# right hand side lines
69lines2 = [(joint_center[0] + derr, 0.3048), (0.422275, 0.3048),
70 (0.422275, 0.1397), (0.826135, 0.1397),
71 (0.826135, inter_y(0.826135))]
72
73t1_min = get_angle((32.525 - 4.0) * 0.0254)
74t2_min = -7.0 / 4.0 * numpy.pi
75
76t1_max = get_angle((-32.525 + 4.0) * 0.0254)
77t2_max = numpy.pi * 3.0 / 4.0
78
79
Maxwell Henderson7af00982023-02-04 12:42:07 -080080# Rotate a rasterized loop such that it aligns to when the parameters loop
81def rotate_to_jump_point(points):
82 last_pt = points[0]
83 for pt_i in range(1, len(points)):
84 pt = points[pt_i]
85 delta = last_pt[1] - pt[1]
86 if abs(delta) > numpy.pi:
87 return points[pt_i:] + points[:pt_i]
88 last_pt = pt
89 return points
90
91
92# shift points vertically by dy.
93def y_shift(points, dy):
94 return [(x, y + dy) for x, y in points]
95
96
97lines1_theta_part = rotate_to_jump_point(to_theta_loop(lines1, 0))
98lines2_theta_part = rotate_to_jump_point(to_theta_loop(lines2))
99
100# Some hacks here to make a single polygon by shifting to get an extra copy of the contraints.
101lines1_theta = y_shift(lines1_theta_part, -numpy.pi * 2) + lines1_theta_part + \
102 y_shift(lines1_theta_part, numpy.pi * 2)
103lines2_theta = y_shift(lines2_theta_part, numpy.pi * 2) + lines2_theta_part + \
104 y_shift(lines2_theta_part, -numpy.pi * 2)
105
106lines_theta = lines1_theta + lines2_theta
107
108p1 = Polygon(lines_theta)
109
110p2 = Polygon([(t1_min, t2_min), (t1_max, t2_min), (t1_max, t2_max),
111 (t1_min, t2_max)])
112
113# Fully computed theta constrints.
114lines_theta = list(p1.intersection(p2).exterior.coords)
115
116lines1_theta_back = back_to_xy_loop(lines1_theta)
117lines2_theta_back = back_to_xy_loop(lines2_theta)
118
119lines_theta_back = back_to_xy_loop(lines_theta)
120
121
122# Get the closest point to a line from a test pt.
123def get_closest(prev, cur, pt):
124 dx_ang = (cur[0] - prev[0])
125 dy_ang = (cur[1] - prev[1])
126
127 d = numpy.sqrt(dx_ang**2 + dy_ang**2)
128 if (d < 0.000001):
129 return prev, numpy.sqrt((prev[0] - pt[0])**2 + (prev[1] - pt[1])**2)
130
131 pdx = -dy_ang / d
132 pdy = dx_ang / d
133
134 dpx = pt[0] - prev[0]
135 dpy = pt[1] - prev[1]
136
137 alpha = (dx_ang * dpx + dy_ang * dpy) / d / d
138
139 if (alpha < 0):
140 return prev, numpy.sqrt((prev[0] - pt[0])**2 + (prev[1] - pt[1])**2)
141 elif (alpha > 1):
142 return cur, numpy.sqrt((cur[0] - pt[0])**2 + (cur[1] - pt[1])**2)
143 else:
144 return (alpha_blend(prev[0], cur[0], alpha), alpha_blend(prev[1], cur[1], alpha)), \
145 abs(dpx * pdx + dpy * pdy)
146
147
148def closest_segment(lines, pt):
149 c_pt, c_pt_dist = get_closest(lines[-1], lines[0], pt)
150 for i in range(1, len(lines)):
151 prev = lines[i - 1]
152 cur = lines[i]
153 c_pt_new, c_pt_new_dist = get_closest(prev, cur, pt)
154 if c_pt_new_dist < c_pt_dist:
155 c_pt = c_pt_new
156 c_pt_dist = c_pt_new_dist
157 return c_pt, c_pt_dist
158
159
160# Create a GTK+ widget on which we will draw using Cairo
161class Silly(basic_window.BaseWindow):
162
163 def __init__(self):
164 super(Silly, self).__init__()
165
166 self.window = Gtk.Window()
167 self.window.set_title("DrawingArea")
168
169 self.window.set_events(Gdk.EventMask.BUTTON_PRESS_MASK
170 | Gdk.EventMask.BUTTON_RELEASE_MASK
171 | Gdk.EventMask.POINTER_MOTION_MASK
172 | Gdk.EventMask.SCROLL_MASK
173 | Gdk.EventMask.KEY_PRESS_MASK)
174 self.method_connect("key-press-event", self.do_key_press)
175 self.method_connect("button-press-event",
176 self._do_button_press_internal)
177 self.method_connect("configure-event", self._do_configure)
178 self.window.add(self)
179 self.window.show_all()
180
181 self.theta_version = False
182 self.reinit_extents()
183
184 self.last_pos = (numpy.pi / 2.0, 1.0)
185 self.circular_index_select = -1
186
187 # Extra stuff for drawing lines.
188 self.segments = []
189 self.prev_segment_pt = None
190 self.now_segment_pt = None
191 self.spline_edit = 0
192 self.edit_control1 = True
193
194 def do_key_press(self, event):
195 pass
196
197 def _do_button_press_internal(self, event):
198 o_x = event.x
199 o_y = event.y
200 x = event.x - self.window_shape[0] / 2
201 y = self.window_shape[1] / 2 - event.y
202 scale = self.get_current_scale()
203 event.x = x / scale + self.center[0]
204 event.y = y / scale + self.center[1]
205 self.do_button_press(event)
206 event.x = o_x
207 event.y = o_y
208
209 def do_button_press(self, event):
210 pass
211
212 def _do_configure(self, event):
213 self.window_shape = (event.width, event.height)
214
215 def redraw(self):
216 if not self.needs_redraw:
217 self.needs_redraw = True
218 self.window.queue_draw()
219
220 def method_connect(self, event, cb):
221
222 def handler(obj, *args):
223 cb(*args)
224
225 self.window.connect(event, handler)
226
227 def reinit_extents(self):
228 if self.theta_version:
229 self.extents_x_min = -numpy.pi * 2
230 self.extents_x_max = numpy.pi * 2
231 self.extents_y_min = -numpy.pi * 2
232 self.extents_y_max = numpy.pi * 2
233 else:
234 self.extents_x_min = -40.0 * 0.0254
235 self.extents_x_max = 40.0 * 0.0254
236 self.extents_y_min = -4.0 * 0.0254
237 self.extents_y_max = 110.0 * 0.0254
238
239 self.init_extents(
240 (0.5 * (self.extents_x_min + self.extents_x_max), 0.5 *
241 (self.extents_y_max + self.extents_y_min)),
242 (1.0 * (self.extents_x_max - self.extents_x_min), 1.0 *
243 (self.extents_y_max - self.extents_y_min)))
244
245 # Handle the expose-event by drawing
246 def handle_draw(self, cr):
247 # use "with px(cr): blah;" to transform to pixel coordinates.
248
249 # Fill the background color of the window with grey
250 set_color(cr, palette["GREY"])
251 cr.paint()
252
253 # Draw a extents rectangle
254 set_color(cr, palette["WHITE"])
255 cr.rectangle(self.extents_x_min, self.extents_y_min,
256 (self.extents_x_max - self.extents_x_min),
257 self.extents_y_max - self.extents_y_min)
258 cr.fill()
259
260 if not self.theta_version:
261 # Draw a filled white rectangle.
262 set_color(cr, palette["WHITE"])
263 cr.rectangle(-2.0, -2.0, 4.0, 4.0)
264 cr.fill()
265
266 set_color(cr, palette["BLUE"])
267 cr.arc(joint_center[0], joint_center[1], l2 + l1, 0,
268 2.0 * numpy.pi)
269 with px(cr):
270 cr.stroke()
271 cr.arc(joint_center[0], joint_center[1], l1 - l2, 0,
272 2.0 * numpy.pi)
273 with px(cr):
274 cr.stroke()
275 else:
276 # Draw a filled white rectangle.
277 set_color(cr, palette["WHITE"])
278 cr.rectangle(-numpy.pi, -numpy.pi, numpy.pi * 2.0, numpy.pi * 2.0)
279 cr.fill()
280
281 if self.theta_version:
282 set_color(cr, palette["BLUE"])
283 for i in range(-6, 6):
284 cr.move_to(-40, -40 + i * numpy.pi)
285 cr.line_to(40, 40 + i * numpy.pi)
286 with px(cr):
287 cr.stroke()
288
289 if self.theta_version:
290 set_color(cr, Color(0.5, 0.5, 1.0))
291 draw_lines(cr, lines_theta)
292 else:
293 set_color(cr, Color(0.5, 1.0, 1.0))
294 draw_lines(cr, lines1)
295 draw_lines(cr, lines2)
296
297 def get_circular_index(pt):
298 theta1, theta2 = pt
299 circular_index = int(numpy.floor((theta2 - theta1) / numpy.pi))
300 return circular_index
301
302 set_color(cr, palette["BLUE"])
303 lines = subdivide_theta(lines_theta)
304 o_circular_index = circular_index = get_circular_index(lines[0])
305 p_xy = to_xy(lines[0][0], lines[0][1])
306 if circular_index == self.circular_index_select:
307 cr.move_to(p_xy[0] + circular_index * 0, p_xy[1])
308 for pt in lines[1:]:
309 p_xy = to_xy(pt[0], pt[1])
310 circular_index = get_circular_index(pt)
311 if o_circular_index == self.circular_index_select:
312 cr.line_to(p_xy[0] + o_circular_index * 0, p_xy[1])
313 if circular_index != o_circular_index:
314 o_circular_index = circular_index
315 with px(cr):
316 cr.stroke()
317 if circular_index == self.circular_index_select:
318 cr.move_to(p_xy[0] + circular_index * 0, p_xy[1])
319
320 with px(cr):
321 cr.stroke()
322
323 if not self.theta_version:
324 theta1, theta2 = to_theta(self.last_pos,
325 self.circular_index_select)
326 x, y = joint_center[0], joint_center[1]
327 cr.move_to(x, y)
328
329 x += numpy.cos(theta1) * l1
330 y += numpy.sin(theta1) * l1
331 cr.line_to(x, y)
332 x += numpy.cos(theta2) * l2
333 y += numpy.sin(theta2) * l2
334 cr.line_to(x, y)
335 with px(cr):
336 cr.stroke()
337
338 cr.move_to(self.last_pos[0], self.last_pos[1])
339 set_color(cr, Color(0.0, 1.0, 0.2))
340 draw_px_cross(cr, 20)
341
342 if self.theta_version:
343 set_color(cr, Color(0.0, 1.0, 0.2))
344 cr.move_to(self.last_pos[0], self.last_pos[1])
345 draw_px_cross(cr, 5)
346
347 c_pt, dist = closest_segment(lines_theta, self.last_pos)
348 print("dist:", dist, c_pt, self.last_pos)
349 set_color(cr, palette["CYAN"])
350 cr.move_to(c_pt[0], c_pt[1])
351 draw_px_cross(cr, 5)
352
353 set_color(cr, Color(0.0, 0.5, 1.0))
354 for segment in self.segments:
355 color = [0, random.random(), 1]
356 random.shuffle(color)
357 set_color(cr, Color(color[0], color[1], color[2]))
358 segment.DrawTo(cr, self.theta_version)
359 with px(cr):
360 cr.stroke()
361
362 set_color(cr, Color(0.0, 1.0, 0.5))
363 segment = self.current_seg()
364 if segment:
365 print(segment)
366 segment.DrawTo(cr, self.theta_version)
367 with px(cr):
368 cr.stroke()
369
370 def cur_pt_in_theta(self):
371 if self.theta_version: return self.last_pos
372 return to_theta(self.last_pos, self.circular_index_select)
373
374 # Current segment based on which mode the drawing system is in.
375 def current_seg(self):
376 if self.prev_segment_pt and self.now_segment_pt:
377 if self.theta_version:
378 return AngleSegment(self.prev_segment_pt, self.now_segment_pt)
379 else:
380 return XYSegment(self.prev_segment_pt, self.now_segment_pt)
381
382 def do_key_press(self, event):
383 keyval = Gdk.keyval_to_lower(event.keyval)
384 print("Gdk.KEY_" + Gdk.keyval_name(keyval))
385 if keyval == Gdk.KEY_q:
386 print("Found q key and exiting.")
387 quit_main_loop()
388 elif keyval == Gdk.KEY_c:
389 # Increment which arm solution we render
390 self.circular_index_select += 1
391 print(self.circular_index_select)
392 elif keyval == Gdk.KEY_v:
393 # Decrement which arm solution we render
394 self.circular_index_select -= 1
395 print(self.circular_index_select)
396 elif keyval == Gdk.KEY_w:
397 # Add this segment to the segment list.
398 segment = self.current_seg()
399 if segment: self.segments.append(segment)
400 self.prev_segment_pt = self.now_segment_pt
401
402 elif keyval == Gdk.KEY_r:
403 self.prev_segment_pt = self.now_segment_pt
404
405 elif keyval == Gdk.KEY_p:
406 # Print out the segments.
407 print(repr(self.segments))
408 elif keyval == Gdk.KEY_g:
409 # Generate theta points.
410 if self.segments:
411 print(repr(self.segments[0].ToThetaPoints()))
412 elif keyval == Gdk.KEY_e:
413 best_pt = self.now_segment_pt
414 best_dist = 1e10
415 for segment in self.segments:
416 d = angle_dist_sqr(segment.start, self.now_segment_pt)
417 if (d < best_dist):
418 best_pt = segment.start
419 best_dist = d
420 d = angle_dist_sqr(segment.end, self.now_segment_pt)
421 if (d < best_dist):
422 best_pt = segment.end
423 best_dist = d
424 self.now_segment_pt = best_pt
425
426 elif keyval == Gdk.KEY_t:
427 # Toggle between theta and xy renderings
428 if self.theta_version:
429 theta1, theta2 = self.last_pos
430 data = to_xy(theta1, theta2)
431 self.circular_index_select = int(
432 numpy.floor((theta2 - theta1) / numpy.pi))
433 self.last_pos = (data[0], data[1])
434 else:
435 self.last_pos = self.cur_pt_in_theta()
436
437 self.theta_version = not self.theta_version
438 self.reinit_extents()
439
440 elif keyval == Gdk.KEY_z:
441 self.edit_control1 = not self.edit_control1
442 if self.edit_control1:
443 self.now_segment_pt = self.segments[0].control1
444 else:
445 self.now_segment_pt = self.segments[0].control2
446 if not self.theta_version:
447 data = to_xy(self.now_segment_pt[0], self.now_segment_pt[1])
448 self.last_pos = (data[0], data[1])
449 else:
450 self.last_pos = self.now_segment_pt
451
452 print("self.last_pos: ", self.last_pos, " ci: ",
453 self.circular_index_select)
454
455 self.redraw()
456
457 def do_button_press(self, event):
458 self.last_pos = (event.x, event.y)
459 self.now_segment_pt = self.cur_pt_in_theta()
460
461 if self.edit_control1:
462 self.segments[0].control1 = self.now_segment_pt
463 else:
464 self.segments[0].control2 = self.now_segment_pt
465
466 print('Clicked at theta: %s' % (repr(self.now_segment_pt, )))
467 if not self.theta_version:
468 print('Clicked at xy, circular index: (%f, %f, %f)' %
469 (self.last_pos[0], self.last_pos[1],
470 self.circular_index_select))
471
472 print('c1: numpy.array([%f, %f])' %
473 (self.segments[0].control1[0], self.segments[0].control1[1]))
474 print('c2: numpy.array([%f, %f])' %
475 (self.segments[0].control2[0], self.segments[0].control2[1]))
476
477 self.redraw()
478
479
480silly = Silly()
Maxwell Hendersonf5123fe2023-02-04 13:44:41 -0800481silly.segments = segments
Maxwell Henderson7af00982023-02-04 12:42:07 -0800482basic_window.RunApp()