Copy y2018 python arm visualization to y2023

Signed-off-by: Maxwell Henderson <mxwhenderson@gmail.com>
Change-Id: I0e4c2be36e46ab1d88ba04cfdb8e80f1e88ec5fc
diff --git a/y2023/control_loops/python/graph_edit.py b/y2023/control_loops/python/graph_edit.py
new file mode 100644
index 0000000..7b6179c
--- /dev/null
+++ b/y2023/control_loops/python/graph_edit.py
@@ -0,0 +1,495 @@
+#!/usr/bin/python3
+
+from __future__ import print_function
+import os
+from frc971.control_loops.python import basic_window
+from frc971.control_loops.python.color import Color, palette
+import random
+import gi
+import numpy
+
+gi.require_version('Gtk', '3.0')
+from gi.repository import Gdk, Gtk
+import cairo
+import graph_generate
+from graph_generate import XYSegment, AngleSegment, to_theta, to_xy, alpha_blend
+from graph_generate import back_to_xy_loop, subdivide_theta, to_theta_loop
+from graph_generate import l1, l2, joint_center
+
+from frc971.control_loops.python.basic_window import OverrideMatrix, identity, quit_main_loop, set_color
+
+import shapely
+from shapely.geometry import Polygon
+
+
+def px(cr):
+    return OverrideMatrix(cr, identity)
+
+
+def draw_px_cross(cr, length_px):
+    """Draws a cross with fixed dimensions in pixel space."""
+    with px(cr):
+        x, y = cr.get_current_point()
+        cr.move_to(x, y - length_px)
+        cr.line_to(x, y + length_px)
+        cr.stroke()
+
+        cr.move_to(x - length_px, y)
+        cr.line_to(x + length_px, y)
+        cr.stroke()
+
+
+def angle_dist_sqr(a1, a2):
+    """Distance between two points in angle space."""
+    return (a1[0] - a2[0])**2 + (a1[1] - a2[1])**2
+
+
+# Find the highest y position that intersects the vertical line defined by x.
+def inter_y(x):
+    return numpy.sqrt((l2 + l1)**2 -
+                      (x - joint_center[0])**2) + joint_center[1]
+
+
+# This is the x position where the inner (hyperextension) circle intersects the horizontal line
+derr = numpy.sqrt((l1 - l2)**2 - (joint_center[1] - 0.3048)**2)
+
+
+# Define min and max l1 angles based on vertical constraints.
+def get_angle(boundary):
+    h = numpy.sqrt((l1)**2 - (boundary - joint_center[0])**2) + joint_center[1]
+    return numpy.arctan2(h, boundary - joint_center[0])
+
+
+# left hand side lines
+lines1 = [
+    (-0.826135, inter_y(-0.826135)),
+    (-0.826135, 0.1397),
+    (-23.025 * 0.0254, 0.1397),
+    (-23.025 * 0.0254, 0.3048),
+    (joint_center[0] - derr, 0.3048),
+]
+
+# right hand side lines
+lines2 = [(joint_center[0] + derr, 0.3048), (0.422275, 0.3048),
+          (0.422275, 0.1397), (0.826135, 0.1397),
+          (0.826135, inter_y(0.826135))]
+
+t1_min = get_angle((32.525 - 4.0) * 0.0254)
+t2_min = -7.0 / 4.0 * numpy.pi
+
+t1_max = get_angle((-32.525 + 4.0) * 0.0254)
+t2_max = numpy.pi * 3.0 / 4.0
+
+
+# Draw lines to cr + stroke.
+def draw_lines(cr, lines):
+    cr.move_to(lines[0][0], lines[0][1])
+    for pt in lines[1:]:
+        cr.line_to(pt[0], pt[1])
+    with px(cr):
+        cr.stroke()
+
+
+# Rotate a rasterized loop such that it aligns to when the parameters loop
+def rotate_to_jump_point(points):
+    last_pt = points[0]
+    for pt_i in range(1, len(points)):
+        pt = points[pt_i]
+        delta = last_pt[1] - pt[1]
+        if abs(delta) > numpy.pi:
+            return points[pt_i:] + points[:pt_i]
+        last_pt = pt
+    return points
+
+
+# shift points vertically by dy.
+def y_shift(points, dy):
+    return [(x, y + dy) for x, y in points]
+
+
+lines1_theta_part = rotate_to_jump_point(to_theta_loop(lines1, 0))
+lines2_theta_part = rotate_to_jump_point(to_theta_loop(lines2))
+
+# Some hacks here to make a single polygon by shifting to get an extra copy of the contraints.
+lines1_theta = y_shift(lines1_theta_part, -numpy.pi * 2) + lines1_theta_part + \
+    y_shift(lines1_theta_part, numpy.pi * 2)
+lines2_theta = y_shift(lines2_theta_part, numpy.pi * 2) + lines2_theta_part + \
+    y_shift(lines2_theta_part, -numpy.pi * 2)
+
+lines_theta = lines1_theta + lines2_theta
+
+p1 = Polygon(lines_theta)
+
+p2 = Polygon([(t1_min, t2_min), (t1_max, t2_min), (t1_max, t2_max),
+              (t1_min, t2_max)])
+
+# Fully computed theta constrints.
+lines_theta = list(p1.intersection(p2).exterior.coords)
+
+lines1_theta_back = back_to_xy_loop(lines1_theta)
+lines2_theta_back = back_to_xy_loop(lines2_theta)
+
+lines_theta_back = back_to_xy_loop(lines_theta)
+
+
+# Get the closest point to a line from a test pt.
+def get_closest(prev, cur, pt):
+    dx_ang = (cur[0] - prev[0])
+    dy_ang = (cur[1] - prev[1])
+
+    d = numpy.sqrt(dx_ang**2 + dy_ang**2)
+    if (d < 0.000001):
+        return prev, numpy.sqrt((prev[0] - pt[0])**2 + (prev[1] - pt[1])**2)
+
+    pdx = -dy_ang / d
+    pdy = dx_ang / d
+
+    dpx = pt[0] - prev[0]
+    dpy = pt[1] - prev[1]
+
+    alpha = (dx_ang * dpx + dy_ang * dpy) / d / d
+
+    if (alpha < 0):
+        return prev, numpy.sqrt((prev[0] - pt[0])**2 + (prev[1] - pt[1])**2)
+    elif (alpha > 1):
+        return cur, numpy.sqrt((cur[0] - pt[0])**2 + (cur[1] - pt[1])**2)
+    else:
+        return (alpha_blend(prev[0], cur[0], alpha), alpha_blend(prev[1], cur[1], alpha)), \
+            abs(dpx * pdx + dpy * pdy)
+
+
+def closest_segment(lines, pt):
+    c_pt, c_pt_dist = get_closest(lines[-1], lines[0], pt)
+    for i in range(1, len(lines)):
+        prev = lines[i - 1]
+        cur = lines[i]
+        c_pt_new, c_pt_new_dist = get_closest(prev, cur, pt)
+        if c_pt_new_dist < c_pt_dist:
+            c_pt = c_pt_new
+            c_pt_dist = c_pt_new_dist
+    return c_pt, c_pt_dist
+
+
+# Create a GTK+ widget on which we will draw using Cairo
+class Silly(basic_window.BaseWindow):
+
+    def __init__(self):
+        super(Silly, self).__init__()
+
+        self.window = Gtk.Window()
+        self.window.set_title("DrawingArea")
+
+        self.window.set_events(Gdk.EventMask.BUTTON_PRESS_MASK
+                               | Gdk.EventMask.BUTTON_RELEASE_MASK
+                               | Gdk.EventMask.POINTER_MOTION_MASK
+                               | Gdk.EventMask.SCROLL_MASK
+                               | Gdk.EventMask.KEY_PRESS_MASK)
+        self.method_connect("key-press-event", self.do_key_press)
+        self.method_connect("button-press-event",
+                            self._do_button_press_internal)
+        self.method_connect("configure-event", self._do_configure)
+        self.window.add(self)
+        self.window.show_all()
+
+        self.theta_version = False
+        self.reinit_extents()
+
+        self.last_pos = (numpy.pi / 2.0, 1.0)
+        self.circular_index_select = -1
+
+        # Extra stuff for drawing lines.
+        self.segments = []
+        self.prev_segment_pt = None
+        self.now_segment_pt = None
+        self.spline_edit = 0
+        self.edit_control1 = True
+
+    def do_key_press(self, event):
+        pass
+
+    def _do_button_press_internal(self, event):
+        o_x = event.x
+        o_y = event.y
+        x = event.x - self.window_shape[0] / 2
+        y = self.window_shape[1] / 2 - event.y
+        scale = self.get_current_scale()
+        event.x = x / scale + self.center[0]
+        event.y = y / scale + self.center[1]
+        self.do_button_press(event)
+        event.x = o_x
+        event.y = o_y
+
+    def do_button_press(self, event):
+        pass
+
+    def _do_configure(self, event):
+        self.window_shape = (event.width, event.height)
+
+    def redraw(self):
+        if not self.needs_redraw:
+            self.needs_redraw = True
+            self.window.queue_draw()
+
+    def method_connect(self, event, cb):
+
+        def handler(obj, *args):
+            cb(*args)
+
+        self.window.connect(event, handler)
+
+    def reinit_extents(self):
+        if self.theta_version:
+            self.extents_x_min = -numpy.pi * 2
+            self.extents_x_max = numpy.pi * 2
+            self.extents_y_min = -numpy.pi * 2
+            self.extents_y_max = numpy.pi * 2
+        else:
+            self.extents_x_min = -40.0 * 0.0254
+            self.extents_x_max = 40.0 * 0.0254
+            self.extents_y_min = -4.0 * 0.0254
+            self.extents_y_max = 110.0 * 0.0254
+
+        self.init_extents(
+            (0.5 * (self.extents_x_min + self.extents_x_max), 0.5 *
+             (self.extents_y_max + self.extents_y_min)),
+            (1.0 * (self.extents_x_max - self.extents_x_min), 1.0 *
+             (self.extents_y_max - self.extents_y_min)))
+
+    # Handle the expose-event by drawing
+    def handle_draw(self, cr):
+        # use "with px(cr): blah;" to transform to pixel coordinates.
+
+        # Fill the background color of the window with grey
+        set_color(cr, palette["GREY"])
+        cr.paint()
+
+        # Draw a extents rectangle
+        set_color(cr, palette["WHITE"])
+        cr.rectangle(self.extents_x_min, self.extents_y_min,
+                     (self.extents_x_max - self.extents_x_min),
+                     self.extents_y_max - self.extents_y_min)
+        cr.fill()
+
+        if not self.theta_version:
+            # Draw a filled white rectangle.
+            set_color(cr, palette["WHITE"])
+            cr.rectangle(-2.0, -2.0, 4.0, 4.0)
+            cr.fill()
+
+            set_color(cr, palette["BLUE"])
+            cr.arc(joint_center[0], joint_center[1], l2 + l1, 0,
+                   2.0 * numpy.pi)
+            with px(cr):
+                cr.stroke()
+            cr.arc(joint_center[0], joint_center[1], l1 - l2, 0,
+                   2.0 * numpy.pi)
+            with px(cr):
+                cr.stroke()
+        else:
+            # Draw a filled white rectangle.
+            set_color(cr, palette["WHITE"])
+            cr.rectangle(-numpy.pi, -numpy.pi, numpy.pi * 2.0, numpy.pi * 2.0)
+            cr.fill()
+
+        if self.theta_version:
+            set_color(cr, palette["BLUE"])
+            for i in range(-6, 6):
+                cr.move_to(-40, -40 + i * numpy.pi)
+                cr.line_to(40, 40 + i * numpy.pi)
+            with px(cr):
+                cr.stroke()
+
+        if self.theta_version:
+            set_color(cr, Color(0.5, 0.5, 1.0))
+            draw_lines(cr, lines_theta)
+        else:
+            set_color(cr, Color(0.5, 1.0, 1.0))
+            draw_lines(cr, lines1)
+            draw_lines(cr, lines2)
+
+            def get_circular_index(pt):
+                theta1, theta2 = pt
+                circular_index = int(numpy.floor((theta2 - theta1) / numpy.pi))
+                return circular_index
+
+            set_color(cr, palette["BLUE"])
+            lines = subdivide_theta(lines_theta)
+            o_circular_index = circular_index = get_circular_index(lines[0])
+            p_xy = to_xy(lines[0][0], lines[0][1])
+            if circular_index == self.circular_index_select:
+                cr.move_to(p_xy[0] + circular_index * 0, p_xy[1])
+            for pt in lines[1:]:
+                p_xy = to_xy(pt[0], pt[1])
+                circular_index = get_circular_index(pt)
+                if o_circular_index == self.circular_index_select:
+                    cr.line_to(p_xy[0] + o_circular_index * 0, p_xy[1])
+                if circular_index != o_circular_index:
+                    o_circular_index = circular_index
+                    with px(cr):
+                        cr.stroke()
+                    if circular_index == self.circular_index_select:
+                        cr.move_to(p_xy[0] + circular_index * 0, p_xy[1])
+
+            with px(cr):
+                cr.stroke()
+
+        if not self.theta_version:
+            theta1, theta2 = to_theta(self.last_pos,
+                                      self.circular_index_select)
+            x, y = joint_center[0], joint_center[1]
+            cr.move_to(x, y)
+
+            x += numpy.cos(theta1) * l1
+            y += numpy.sin(theta1) * l1
+            cr.line_to(x, y)
+            x += numpy.cos(theta2) * l2
+            y += numpy.sin(theta2) * l2
+            cr.line_to(x, y)
+            with px(cr):
+                cr.stroke()
+
+            cr.move_to(self.last_pos[0], self.last_pos[1])
+            set_color(cr, Color(0.0, 1.0, 0.2))
+            draw_px_cross(cr, 20)
+
+        if self.theta_version:
+            set_color(cr, Color(0.0, 1.0, 0.2))
+            cr.move_to(self.last_pos[0], self.last_pos[1])
+            draw_px_cross(cr, 5)
+
+            c_pt, dist = closest_segment(lines_theta, self.last_pos)
+            print("dist:", dist, c_pt, self.last_pos)
+            set_color(cr, palette["CYAN"])
+            cr.move_to(c_pt[0], c_pt[1])
+            draw_px_cross(cr, 5)
+
+        set_color(cr, Color(0.0, 0.5, 1.0))
+        for segment in self.segments:
+            color = [0, random.random(), 1]
+            random.shuffle(color)
+            set_color(cr, Color(color[0], color[1], color[2]))
+            segment.DrawTo(cr, self.theta_version)
+            with px(cr):
+                cr.stroke()
+
+        set_color(cr, Color(0.0, 1.0, 0.5))
+        segment = self.current_seg()
+        if segment:
+            print(segment)
+            segment.DrawTo(cr, self.theta_version)
+            with px(cr):
+                cr.stroke()
+
+    def cur_pt_in_theta(self):
+        if self.theta_version: return self.last_pos
+        return to_theta(self.last_pos, self.circular_index_select)
+
+    # Current segment based on which mode the drawing system is in.
+    def current_seg(self):
+        if self.prev_segment_pt and self.now_segment_pt:
+            if self.theta_version:
+                return AngleSegment(self.prev_segment_pt, self.now_segment_pt)
+            else:
+                return XYSegment(self.prev_segment_pt, self.now_segment_pt)
+
+    def do_key_press(self, event):
+        keyval = Gdk.keyval_to_lower(event.keyval)
+        print("Gdk.KEY_" + Gdk.keyval_name(keyval))
+        if keyval == Gdk.KEY_q:
+            print("Found q key and exiting.")
+            quit_main_loop()
+        elif keyval == Gdk.KEY_c:
+            # Increment which arm solution we render
+            self.circular_index_select += 1
+            print(self.circular_index_select)
+        elif keyval == Gdk.KEY_v:
+            # Decrement which arm solution we render
+            self.circular_index_select -= 1
+            print(self.circular_index_select)
+        elif keyval == Gdk.KEY_w:
+            # Add this segment to the segment list.
+            segment = self.current_seg()
+            if segment: self.segments.append(segment)
+            self.prev_segment_pt = self.now_segment_pt
+
+        elif keyval == Gdk.KEY_r:
+            self.prev_segment_pt = self.now_segment_pt
+
+        elif keyval == Gdk.KEY_p:
+            # Print out the segments.
+            print(repr(self.segments))
+        elif keyval == Gdk.KEY_g:
+            # Generate theta points.
+            if self.segments:
+                print(repr(self.segments[0].ToThetaPoints()))
+        elif keyval == Gdk.KEY_e:
+            best_pt = self.now_segment_pt
+            best_dist = 1e10
+            for segment in self.segments:
+                d = angle_dist_sqr(segment.start, self.now_segment_pt)
+                if (d < best_dist):
+                    best_pt = segment.start
+                    best_dist = d
+                d = angle_dist_sqr(segment.end, self.now_segment_pt)
+                if (d < best_dist):
+                    best_pt = segment.end
+                    best_dist = d
+            self.now_segment_pt = best_pt
+
+        elif keyval == Gdk.KEY_t:
+            # Toggle between theta and xy renderings
+            if self.theta_version:
+                theta1, theta2 = self.last_pos
+                data = to_xy(theta1, theta2)
+                self.circular_index_select = int(
+                    numpy.floor((theta2 - theta1) / numpy.pi))
+                self.last_pos = (data[0], data[1])
+            else:
+                self.last_pos = self.cur_pt_in_theta()
+
+            self.theta_version = not self.theta_version
+            self.reinit_extents()
+
+        elif keyval == Gdk.KEY_z:
+            self.edit_control1 = not self.edit_control1
+            if self.edit_control1:
+                self.now_segment_pt = self.segments[0].control1
+            else:
+                self.now_segment_pt = self.segments[0].control2
+            if not self.theta_version:
+                data = to_xy(self.now_segment_pt[0], self.now_segment_pt[1])
+                self.last_pos = (data[0], data[1])
+            else:
+                self.last_pos = self.now_segment_pt
+
+            print("self.last_pos: ", self.last_pos, " ci: ",
+                  self.circular_index_select)
+
+        self.redraw()
+
+    def do_button_press(self, event):
+        self.last_pos = (event.x, event.y)
+        self.now_segment_pt = self.cur_pt_in_theta()
+
+        if self.edit_control1:
+            self.segments[0].control1 = self.now_segment_pt
+        else:
+            self.segments[0].control2 = self.now_segment_pt
+
+        print('Clicked at theta: %s' % (repr(self.now_segment_pt, )))
+        if not self.theta_version:
+            print('Clicked at xy, circular index: (%f, %f, %f)' %
+                  (self.last_pos[0], self.last_pos[1],
+                   self.circular_index_select))
+
+        print('c1: numpy.array([%f, %f])' %
+              (self.segments[0].control1[0], self.segments[0].control1[1]))
+        print('c2: numpy.array([%f, %f])' %
+              (self.segments[0].control2[0], self.segments[0].control2[1]))
+
+        self.redraw()
+
+
+silly = Silly()
+silly.segments = graph_generate.segments
+basic_window.RunApp()