Brian Silverman | b691f5e | 2015-08-02 11:37:55 -0700 | [diff] [blame] | 1 | #ifndef Y2015_UTIL_KINEMATICS_H_ |
| 2 | #define Y2015_UTIL_KINEMATICS_H_ |
Benjamin Fredrickson | a74b0bd | 2015-03-07 00:32:52 -0800 | [diff] [blame] | 3 | |
| 4 | #include <cmath> |
| 5 | #include "Eigen/Dense" |
Brian Silverman | b691f5e | 2015-08-02 11:37:55 -0700 | [diff] [blame] | 6 | #include "y2015/constants.h" |
Benjamin Fredrickson | a74b0bd | 2015-03-07 00:32:52 -0800 | [diff] [blame] | 7 | |
| 8 | namespace aos { |
| 9 | namespace util { |
| 10 | |
| 11 | // A class for performing forward and inverse kinematics on the elevator-arm |
| 12 | // system. It can calculate where the fridge grabbers will be if the arm and |
| 13 | // elevator are at a given position, as well as where the arm and elevator |
| 14 | // should go in order to get the grabbers to a specific location. |
| 15 | class ElevatorArmKinematics { |
| 16 | public: |
| 17 | typedef enum { |
| 18 | // These specify the particular region that an invalid request was in. Right |
| 19 | // is toward the front of the robot, left is toward the back. |
| 20 | |
| 21 | // Request is valid. |
| 22 | REGION_VALID = 0, |
| 23 | // Request is farther right than the arm can extend. |
| 24 | REGION_RIGHT = 1 << 0, |
| 25 | // Request is towards the front of the robot but higher than we can extend |
| 26 | // with the elevator and the arm. |
| 27 | REGION_UPPER_RIGHT = 1 << 1, |
| 28 | // We can get the x part of the request, which is towards the front of the |
| 29 | // robot, but not the h part, which is too high. |
| 30 | REGION_INSIDE_UPPER_RIGHT = 1 << 2, |
| 31 | // We can get the x part of the request, which is towards the front of the |
| 32 | // robot, but not the h part, which is too low. |
| 33 | REGION_INSIDE_LOWER_RIGHT = 1 << 3, |
| 34 | // Request is towards the front of the robot but lower than we can extend |
| 35 | // with the elevator and the arm. |
| 36 | REGION_LOWER_RIGHT = 1 << 4, |
| 37 | // Request is farther left than the arm can extend. |
| 38 | REGION_LEFT = 1 << 5, |
| 39 | // Request is towards the back of the robot but higher than we can extend |
| 40 | // with the elevator and the arm. |
| 41 | REGION_UPPER_LEFT = 1 << 6, |
| 42 | // We can get the x part of the request, which is towards the front of the |
| 43 | // robot, but not the h part, which is too high. |
| 44 | REGION_INSIDE_UPPER_LEFT = 1 << 7, |
| 45 | // We can get the x part of the request, which is towards the back of the |
| 46 | // robot, but not the h part, which is too low. |
| 47 | REGION_INSIDE_LOWER_LEFT = 1 << 8, |
| 48 | // Request is towards the back of the robot but lower than we can extend |
| 49 | // with the elevator and the arm. |
| 50 | REGION_LOWER_LEFT = 1 << 9, |
| 51 | // Request is invalid, but don't know where it is out of range. |
| 52 | REGION_UNKNOWN = 1 << 10, |
| 53 | } Region; |
| 54 | |
| 55 | class KinematicResult { |
| 56 | public: |
| 57 | // The elevator height result from an inverse kinematic. |
| 58 | double elevator_height; |
| 59 | // The arm angle result from an inverse kinematic. |
| 60 | double arm_angle; |
| 61 | // Resulting velocity of the elevator given x,y velocities. |
| 62 | double elevator_velocity; |
| 63 | // Resulting velocity of the arm given x,y velocities. |
| 64 | double arm_velocity; |
| 65 | // The fridge height value from a forward kinematic. |
| 66 | double fridge_h; |
| 67 | // The fridge x value from a forward kinematic. |
| 68 | double fridge_x; |
| 69 | // Resulting velocity of the fridge height given arm and elevator |
| 70 | // velocities. |
| 71 | double fridge_h_velocity; |
| 72 | // Resulting velocity of the fridge x given arm and elevator velocities. |
| 73 | double fridge_x_velocity; |
| 74 | }; |
| 75 | |
| 76 | // If we use the default constructor we wil just always not be able to move. |
| 77 | ElevatorArmKinematics() |
| 78 | : length_arm_(1.0), |
| 79 | elevator_max_(0.0), |
| 80 | elevator_min_(0.0), |
| 81 | upper_angle_limit_(0.0), |
| 82 | lower_angle_limit_(0.0) {} |
| 83 | |
| 84 | ElevatorArmKinematics(double length_arm, double height_max, double height_min, |
| 85 | double angle_max, double angle_min) |
| 86 | : length_arm_(length_arm), |
| 87 | elevator_max_(height_max), |
| 88 | elevator_min_(height_min), |
| 89 | upper_angle_limit_(angle_max), |
| 90 | lower_angle_limit_(angle_min), |
| 91 | geometry_(frc971::constants::GetValues().clawGeometry) {} |
| 92 | |
| 93 | ~ElevatorArmKinematics() {} |
| 94 | |
| 95 | // Limit a number to the speed of light. The loops should handle this a lot |
| 96 | // better than overflow. |
| 97 | void LimitLightSpeed(double* num) { |
| 98 | if (*num > 299792458.0) { |
| 99 | *num = 299792458.0; |
| 100 | } |
| 101 | if (*num < -299792458.0) { |
| 102 | *num = -299792458.0; |
| 103 | } |
| 104 | if (!::std::isfinite(*num)) { |
| 105 | *num = 0.0; |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | // Calculates the arm angle in radians and the elevator height in meters for |
| 110 | // a desired Fridge grabber height and x location. x is positive going |
| 111 | // toward the front of the robot. |
| 112 | // h is positive going up. x=0 and h=0 is the location of the top fridge |
| 113 | // grabber when the elevator is at 0 height and the arm angle is 0 (vertical). |
| 114 | // Both the x and h values are given in meters. |
| 115 | // Returns the region of the request. |
| 116 | // Result is: |
| 117 | // the angle of the arm in radians |
| 118 | // the height of the elevator in meters |
| 119 | // the resulting x |
| 120 | // and the resulting h |
| 121 | // If an impossible location is requested, the arm angle and elevator height |
| 122 | // returned are the closest possible for the requested fridge grabber height. |
| 123 | // If the requested height is above the max possible height, the angle |
| 124 | // will be 0 and the height will be the max possible height of the elevator. |
| 125 | int InverseKinematic(double request_x, double request_h, |
| 126 | double request_x_velocity, double request_y_velocity, |
| 127 | KinematicResult* result) { |
| 128 | int valid_or_invalid = REGION_VALID; |
| 129 | |
| 130 | double square_arm = length_arm_ * length_arm_; |
| 131 | double term = ::std::sqrt(square_arm - request_x * request_x); |
| 132 | |
| 133 | // Check to see if the x location can be satisfied. If the requested x |
| 134 | // location |
| 135 | // is further out than the arm can go, it is not possible for any elevator |
| 136 | // location. |
| 137 | if (request_x > length_arm_) { |
| 138 | result->arm_angle = -M_PI * 0.5; |
| 139 | valid_or_invalid |= REGION_RIGHT; |
| 140 | } else if (request_x < -length_arm_) { |
| 141 | result->arm_angle = M_PI * 0.5; |
| 142 | valid_or_invalid |= REGION_LEFT; |
| 143 | } else { |
| 144 | result->arm_angle = ::std::asin(-request_x / length_arm_); |
| 145 | result->arm_velocity = (-1.0 / term) * request_x_velocity; |
| 146 | LimitLightSpeed(&result->arm_velocity); |
| 147 | } |
| 148 | |
| 149 | result->elevator_height = |
| 150 | request_h + length_arm_ * (1.0 - ::std::cos(result->arm_angle)); |
| 151 | result->elevator_velocity = |
| 152 | (request_x / (square_arm * term)) * request_x_velocity + |
| 153 | request_y_velocity; |
| 154 | LimitLightSpeed(&result->elevator_velocity); |
| 155 | |
| 156 | // Check to see if the requested elevator height is possible |
| 157 | if (request_h > elevator_max_) { |
| 158 | // The elevator cannot go high enough with any arm angle to satisfy this |
| 159 | // request. So position the elevator at the top and the arm angle set to |
| 160 | // vertical. |
| 161 | result->elevator_height = elevator_max_; |
| 162 | result->arm_angle = 0.0; |
| 163 | if (request_x >= 0) { |
| 164 | valid_or_invalid |= REGION_UPPER_RIGHT; |
| 165 | } else { |
| 166 | valid_or_invalid |= REGION_UPPER_LEFT; |
| 167 | } |
| 168 | } else if (request_h < -length_arm_ + elevator_min_) { |
| 169 | // The elevator cannot go low enough with any arm angle to satisfy this |
| 170 | // request. So position the elevator at the bottom and the arm angle to |
| 171 | // satisfy the x request The elevator will move up as the grabber moves to |
| 172 | // the center of the robot when in this part of the motion space. |
| 173 | result->elevator_height = elevator_min_; |
| 174 | if (request_x >= 0) { |
| 175 | valid_or_invalid |= REGION_LOWER_RIGHT; |
| 176 | } else { |
| 177 | valid_or_invalid |= REGION_LOWER_LEFT; |
| 178 | } |
| 179 | } else if (result->elevator_height > elevator_max_) { |
| 180 | // Impossibly high request. So get as close to the x request with the |
| 181 | // elevator at the top of its range. |
| 182 | result->elevator_height = elevator_max_; |
| 183 | if (request_x >= 0) { |
| 184 | result->arm_angle = |
| 185 | -::std::acos((length_arm_ + request_h - elevator_max_) / |
| 186 | length_arm_); |
| 187 | valid_or_invalid |= REGION_INSIDE_UPPER_RIGHT; |
| 188 | } else { |
| 189 | result->arm_angle = ::std::acos( |
| 190 | (length_arm_ + request_h - elevator_max_) / length_arm_); |
| 191 | valid_or_invalid |= REGION_INSIDE_UPPER_LEFT; |
| 192 | } |
| 193 | } else if (result->elevator_height < elevator_min_) { |
| 194 | // Impossibly low request. So satisfy the x request with the elevator |
| 195 | // at the bottom of its range. |
| 196 | // The elevator will move up as the grabber moves to the center of the |
| 197 | // robot |
| 198 | // when in this part of the motion space. |
| 199 | result->elevator_height = elevator_min_; |
| 200 | if (request_x >= 0) { |
| 201 | valid_or_invalid |= REGION_INSIDE_LOWER_RIGHT; |
| 202 | } else { |
| 203 | valid_or_invalid |= REGION_INSIDE_LOWER_LEFT; |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | // if we are not in a valid region we will zero the velocity for now |
| 208 | if (valid_or_invalid != REGION_VALID) { |
| 209 | result->arm_velocity = 0.0; |
| 210 | result->elevator_velocity = 0.0; |
| 211 | } |
| 212 | |
| 213 | if (ForwardKinematic(result->elevator_height, result->arm_angle, |
| 214 | result->elevator_velocity, result->arm_velocity, |
| 215 | result) == REGION_UNKNOWN) { |
| 216 | return REGION_UNKNOWN; |
| 217 | } |
| 218 | return valid_or_invalid; |
| 219 | } |
| 220 | |
| 221 | // Takes an elevator height and arm angle and projects these to the resulting |
| 222 | // fridge height and x offset. Returns REGION_UNKNOWN if the values are |
| 223 | // outside |
| 224 | // limits. This will result in the height/angle being bounded and the |
| 225 | // resulting position will be returned. |
| 226 | Region ForwardKinematic(double elevator_height, double arm_angle, |
| 227 | double elevator_velocity, double arm_velocity, |
| 228 | KinematicResult* result) { |
| 229 | result->elevator_height = elevator_height; |
| 230 | result->arm_angle = arm_angle; |
| 231 | |
| 232 | Region valid = REGION_VALID; |
| 233 | if (elevator_height < elevator_min_) { |
| 234 | LOG(WARNING, "elevator %.2f limited at %.2f\n", result->elevator_height, |
| 235 | elevator_min_); |
| 236 | result->elevator_height = elevator_min_; |
| 237 | valid = REGION_UNKNOWN; |
| 238 | } |
| 239 | if (elevator_height > elevator_max_) { |
| 240 | LOG(WARNING, "elevator %.2f limited at %.2f\n", result->elevator_height, |
| 241 | elevator_max_); |
| 242 | result->elevator_height = elevator_max_; |
| 243 | valid = REGION_UNKNOWN; |
| 244 | } |
| 245 | if (arm_angle < lower_angle_limit_) { |
| 246 | LOG(WARNING, "arm %.2f limited at %.2f\n", result->arm_angle, |
| 247 | lower_angle_limit_); |
| 248 | result->arm_angle = lower_angle_limit_; |
| 249 | valid = REGION_UNKNOWN; |
| 250 | } |
| 251 | if (arm_angle > upper_angle_limit_) { |
| 252 | result->arm_angle = upper_angle_limit_; |
| 253 | LOG(WARNING, "arm %.2f limited at %.2f\n", result->arm_angle, |
| 254 | upper_angle_limit_); |
| 255 | valid = REGION_UNKNOWN; |
| 256 | } |
| 257 | // Compute the fridge grabber height and x location using the computed |
| 258 | // elevator height and arm angle. |
| 259 | result->fridge_h = result->elevator_height + |
| 260 | (::std::cos(result->arm_angle) - 1.0) * length_arm_; |
| 261 | result->fridge_x = -::std::sin(result->arm_angle) * length_arm_; |
| 262 | // velocity based on joacobian |
| 263 | result->fridge_x_velocity = |
| 264 | -length_arm_ * ::std::cos(result->arm_angle) * arm_velocity; |
| 265 | LimitLightSpeed(&result->fridge_x_velocity); |
| 266 | result->fridge_h_velocity = |
| 267 | -length_arm_ * ::std::sin(result->arm_angle) * arm_velocity + |
| 268 | elevator_velocity; |
| 269 | LimitLightSpeed(&result->fridge_h_velocity); |
| 270 | return valid; |
| 271 | } |
| 272 | |
| 273 | // Same as ForwardKinematic but without any checking. |
| 274 | Eigen::Vector2d ForwardKinematicNoChecking(double elevator_height, |
| 275 | double arm_angle) { |
| 276 | // Compute the fridge grabber height and x location using the computed |
| 277 | // elevator height and arm angle. |
| 278 | Eigen::Vector2d grabber_location; |
| 279 | grabber_location.y() = |
| 280 | elevator_height + (::std::cos(arm_angle) - 1.0) * length_arm_; |
| 281 | grabber_location.x() = -::std::sin(arm_angle) * length_arm_; |
| 282 | return grabber_location; |
| 283 | } |
| 284 | |
| 285 | // 2 dimensional version of cross product |
| 286 | double Cross(Eigen::Vector2d a, Eigen::Vector2d b) { |
| 287 | double crossProduct = a.x() * b.y() - a.y() * b.x(); |
| 288 | return crossProduct; |
| 289 | } |
| 290 | |
| 291 | // Tell whether or not it is safe to move the grabber to a position. |
| 292 | // Returns true if the current move is safe. |
| 293 | // If it returns false then a safe_claw_angle that is greater than zero is |
| 294 | // acceptable otherwise if safe_claw_angle is less than zero there will be no |
| 295 | // valid solution. |
| 296 | bool GrabberArmIntersectionCheck(double elevator_height, double arm_angle, |
| 297 | double claw_angle, double* safe_claw_angle) { |
| 298 | Eigen::Vector2d grabber_location = |
| 299 | ForwardKinematicNoChecking(elevator_height, arm_angle); |
| 300 | if (grabber_location.x() < geometry_.grabber_always_safe_x_max || |
| 301 | grabber_location.y() > geometry_.grabber_always_safe_h_min) { |
| 302 | *safe_claw_angle = claw_angle; |
| 303 | return true; |
| 304 | } |
| 305 | Eigen::Vector2d grabber_bottom_end; |
| 306 | Eigen::Vector2d claw_i_unit_direction(::std::cos(claw_angle), |
| 307 | sin(claw_angle)); |
| 308 | Eigen::Vector2d claw_j_unit_direction(-::std::sin(claw_angle), |
| 309 | cos(claw_angle)); |
| 310 | |
| 311 | // Vector from the center of the arm rotation axis to front bottom |
| 312 | // corner of the grabber. |
| 313 | Eigen::Vector2d grabber_end_location_from_arm_axis( |
| 314 | geometry_.grabber_half_length, -geometry_.grabber_delta_y); |
| 315 | |
| 316 | // Bottom front corner of the grabber. This is what will usually hit the |
| 317 | // claw first. |
| 318 | grabber_bottom_end = grabber_location + grabber_end_location_from_arm_axis; |
| 319 | |
| 320 | // Location of the claw horizontal axis of rotation relative to the |
| 321 | // arm axis of rotation with the elevator at 0 and the arm angle of 0 |
| 322 | // The horizontal axis is the up and down motion axis. |
| 323 | Eigen::Vector2d claw_updown_axis(geometry_.grabber_arm_horz_separation, |
| 324 | -geometry_.grabber_arm_vert_separation); |
| 325 | |
| 326 | // This point is used to make a cross product with the bottom end of the |
| 327 | // grabber |
| 328 | // The result of the cross product tells if the parts intersect or not. |
| 329 | Eigen::Vector2d claw_top_ref_point = |
| 330 | claw_updown_axis + geometry_.claw_top_thickness * claw_j_unit_direction; |
| 331 | |
| 332 | Eigen::Vector2d claw_top_ref_point_to_grabber_bottom_end = |
| 333 | grabber_bottom_end - claw_top_ref_point; |
| 334 | double claw_grabber_check = |
| 335 | Cross(claw_i_unit_direction, claw_top_ref_point_to_grabber_bottom_end); |
| 336 | |
| 337 | // Now set the safe claw angle. |
| 338 | if (claw_grabber_check > 0.0) { |
| 339 | *safe_claw_angle = claw_angle; |
| 340 | return true; |
| 341 | } else if (grabber_bottom_end.y() < |
| 342 | claw_updown_axis.y() + |
| 343 | geometry_.claw_top_thickness) { // grabber is too close |
| 344 | *safe_claw_angle = -1.0; |
| 345 | return false; |
| 346 | } else { |
| 347 | // To find the safe angle for the claw, draw a line between the claw |
| 348 | // rotation axis and the lower front corner of the grabber. The angle of |
| 349 | // this line is used with the angle between the edge of the claw and the |
| 350 | // center line of the claw to determine the angle of the claw. |
| 351 | Eigen::Vector2d claw_axis_to_grabber_bottom_end = |
| 352 | grabber_bottom_end - claw_updown_axis; |
| 353 | double hypot = claw_axis_to_grabber_bottom_end.norm(); |
| 354 | double angleDiff = ::std::asin(geometry_.claw_top_thickness / hypot); |
| 355 | *safe_claw_angle = ::std::atan2(claw_axis_to_grabber_bottom_end.y(), |
| 356 | claw_axis_to_grabber_bottom_end.x()) - |
| 357 | angleDiff; |
| 358 | return false; |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | double get_elevator_min() { return elevator_min_; } |
| 363 | |
| 364 | double get_elevator_max() { return elevator_max_; } |
| 365 | |
| 366 | double get_upper_angle_limit() { return upper_angle_limit_; } |
| 367 | |
| 368 | double get_lower_angle_limit() { return lower_angle_limit_; } |
| 369 | |
| 370 | private: |
| 371 | // length of the arm |
| 372 | double length_arm_; |
| 373 | // max height the elevator can go. |
| 374 | double elevator_max_; |
| 375 | // min height the elevator can go. |
| 376 | double elevator_min_; |
| 377 | // arm angle upper limit |
| 378 | double upper_angle_limit_; |
| 379 | // arm angle lower limit |
| 380 | double lower_angle_limit_; |
| 381 | // Geometry of the arm + fridge |
| 382 | frc971::constants::Values::ClawGeometry geometry_; |
| 383 | }; |
| 384 | |
| 385 | } // namespace util |
| 386 | } // namespace aos |
| 387 | |
Brian Silverman | b691f5e | 2015-08-02 11:37:55 -0700 | [diff] [blame] | 388 | #endif // Y2015_UTIL_KINEMATICS_H_ |