| #ifndef Y2015_UTIL_KINEMATICS_H_ |
| #define Y2015_UTIL_KINEMATICS_H_ |
| |
| #include <cmath> |
| #include "Eigen/Dense" |
| #include "y2015/constants.h" |
| |
| namespace aos { |
| namespace util { |
| |
| // A class for performing forward and inverse kinematics on the elevator-arm |
| // system. It can calculate where the fridge grabbers will be if the arm and |
| // elevator are at a given position, as well as where the arm and elevator |
| // should go in order to get the grabbers to a specific location. |
| class ElevatorArmKinematics { |
| public: |
| typedef enum { |
| // These specify the particular region that an invalid request was in. Right |
| // is toward the front of the robot, left is toward the back. |
| |
| // Request is valid. |
| REGION_VALID = 0, |
| // Request is farther right than the arm can extend. |
| REGION_RIGHT = 1 << 0, |
| // Request is towards the front of the robot but higher than we can extend |
| // with the elevator and the arm. |
| REGION_UPPER_RIGHT = 1 << 1, |
| // We can get the x part of the request, which is towards the front of the |
| // robot, but not the h part, which is too high. |
| REGION_INSIDE_UPPER_RIGHT = 1 << 2, |
| // We can get the x part of the request, which is towards the front of the |
| // robot, but not the h part, which is too low. |
| REGION_INSIDE_LOWER_RIGHT = 1 << 3, |
| // Request is towards the front of the robot but lower than we can extend |
| // with the elevator and the arm. |
| REGION_LOWER_RIGHT = 1 << 4, |
| // Request is farther left than the arm can extend. |
| REGION_LEFT = 1 << 5, |
| // Request is towards the back of the robot but higher than we can extend |
| // with the elevator and the arm. |
| REGION_UPPER_LEFT = 1 << 6, |
| // We can get the x part of the request, which is towards the front of the |
| // robot, but not the h part, which is too high. |
| REGION_INSIDE_UPPER_LEFT = 1 << 7, |
| // We can get the x part of the request, which is towards the back of the |
| // robot, but not the h part, which is too low. |
| REGION_INSIDE_LOWER_LEFT = 1 << 8, |
| // Request is towards the back of the robot but lower than we can extend |
| // with the elevator and the arm. |
| REGION_LOWER_LEFT = 1 << 9, |
| // Request is invalid, but don't know where it is out of range. |
| REGION_UNKNOWN = 1 << 10, |
| } Region; |
| |
| class KinematicResult { |
| public: |
| // The elevator height result from an inverse kinematic. |
| double elevator_height; |
| // The arm angle result from an inverse kinematic. |
| double arm_angle; |
| // Resulting velocity of the elevator given x,y velocities. |
| double elevator_velocity; |
| // Resulting velocity of the arm given x,y velocities. |
| double arm_velocity; |
| // The fridge height value from a forward kinematic. |
| double fridge_h; |
| // The fridge x value from a forward kinematic. |
| double fridge_x; |
| // Resulting velocity of the fridge height given arm and elevator |
| // velocities. |
| double fridge_h_velocity; |
| // Resulting velocity of the fridge x given arm and elevator velocities. |
| double fridge_x_velocity; |
| }; |
| |
| // If we use the default constructor we wil just always not be able to move. |
| ElevatorArmKinematics() |
| : length_arm_(1.0), |
| elevator_max_(0.0), |
| elevator_min_(0.0), |
| upper_angle_limit_(0.0), |
| lower_angle_limit_(0.0) {} |
| |
| ElevatorArmKinematics(double length_arm, double height_max, double height_min, |
| double angle_max, double angle_min) |
| : length_arm_(length_arm), |
| elevator_max_(height_max), |
| elevator_min_(height_min), |
| upper_angle_limit_(angle_max), |
| lower_angle_limit_(angle_min), |
| geometry_(frc971::constants::GetValues().clawGeometry) {} |
| |
| ~ElevatorArmKinematics() {} |
| |
| // Limit a number to the speed of light. The loops should handle this a lot |
| // better than overflow. |
| void LimitLightSpeed(double* num) { |
| if (*num > 299792458.0) { |
| *num = 299792458.0; |
| } |
| if (*num < -299792458.0) { |
| *num = -299792458.0; |
| } |
| if (!::std::isfinite(*num)) { |
| *num = 0.0; |
| } |
| } |
| |
| // Calculates the arm angle in radians and the elevator height in meters for |
| // a desired Fridge grabber height and x location. x is positive going |
| // toward the front of the robot. |
| // h is positive going up. x=0 and h=0 is the location of the top fridge |
| // grabber when the elevator is at 0 height and the arm angle is 0 (vertical). |
| // Both the x and h values are given in meters. |
| // Returns the region of the request. |
| // Result is: |
| // the angle of the arm in radians |
| // the height of the elevator in meters |
| // the resulting x |
| // and the resulting h |
| // If an impossible location is requested, the arm angle and elevator height |
| // returned are the closest possible for the requested fridge grabber height. |
| // If the requested height is above the max possible height, the angle |
| // will be 0 and the height will be the max possible height of the elevator. |
| int InverseKinematic(double request_x, double request_h, |
| double request_x_velocity, double request_y_velocity, |
| KinematicResult* result) { |
| int valid_or_invalid = REGION_VALID; |
| |
| double square_arm = length_arm_ * length_arm_; |
| double term = ::std::sqrt(square_arm - request_x * request_x); |
| |
| // Check to see if the x location can be satisfied. If the requested x |
| // location |
| // is further out than the arm can go, it is not possible for any elevator |
| // location. |
| if (request_x > length_arm_) { |
| result->arm_angle = -M_PI * 0.5; |
| valid_or_invalid |= REGION_RIGHT; |
| } else if (request_x < -length_arm_) { |
| result->arm_angle = M_PI * 0.5; |
| valid_or_invalid |= REGION_LEFT; |
| } else { |
| result->arm_angle = ::std::asin(-request_x / length_arm_); |
| result->arm_velocity = (-1.0 / term) * request_x_velocity; |
| LimitLightSpeed(&result->arm_velocity); |
| } |
| |
| result->elevator_height = |
| request_h + length_arm_ * (1.0 - ::std::cos(result->arm_angle)); |
| result->elevator_velocity = |
| (request_x / (square_arm * term)) * request_x_velocity + |
| request_y_velocity; |
| LimitLightSpeed(&result->elevator_velocity); |
| |
| // Check to see if the requested elevator height is possible |
| if (request_h > elevator_max_) { |
| // The elevator cannot go high enough with any arm angle to satisfy this |
| // request. So position the elevator at the top and the arm angle set to |
| // vertical. |
| result->elevator_height = elevator_max_; |
| result->arm_angle = 0.0; |
| if (request_x >= 0) { |
| valid_or_invalid |= REGION_UPPER_RIGHT; |
| } else { |
| valid_or_invalid |= REGION_UPPER_LEFT; |
| } |
| } else if (request_h < -length_arm_ + elevator_min_) { |
| // The elevator cannot go low enough with any arm angle to satisfy this |
| // request. So position the elevator at the bottom and the arm angle to |
| // satisfy the x request The elevator will move up as the grabber moves to |
| // the center of the robot when in this part of the motion space. |
| result->elevator_height = elevator_min_; |
| if (request_x >= 0) { |
| valid_or_invalid |= REGION_LOWER_RIGHT; |
| } else { |
| valid_or_invalid |= REGION_LOWER_LEFT; |
| } |
| } else if (result->elevator_height > elevator_max_) { |
| // Impossibly high request. So get as close to the x request with the |
| // elevator at the top of its range. |
| result->elevator_height = elevator_max_; |
| if (request_x >= 0) { |
| result->arm_angle = |
| -::std::acos((length_arm_ + request_h - elevator_max_) / |
| length_arm_); |
| valid_or_invalid |= REGION_INSIDE_UPPER_RIGHT; |
| } else { |
| result->arm_angle = ::std::acos( |
| (length_arm_ + request_h - elevator_max_) / length_arm_); |
| valid_or_invalid |= REGION_INSIDE_UPPER_LEFT; |
| } |
| } else if (result->elevator_height < elevator_min_) { |
| // Impossibly low request. So satisfy the x request with the elevator |
| // at the bottom of its range. |
| // The elevator will move up as the grabber moves to the center of the |
| // robot |
| // when in this part of the motion space. |
| result->elevator_height = elevator_min_; |
| if (request_x >= 0) { |
| valid_or_invalid |= REGION_INSIDE_LOWER_RIGHT; |
| } else { |
| valid_or_invalid |= REGION_INSIDE_LOWER_LEFT; |
| } |
| } |
| |
| // if we are not in a valid region we will zero the velocity for now |
| if (valid_or_invalid != REGION_VALID) { |
| result->arm_velocity = 0.0; |
| result->elevator_velocity = 0.0; |
| } |
| |
| if (ForwardKinematic(result->elevator_height, result->arm_angle, |
| result->elevator_velocity, result->arm_velocity, |
| result) == REGION_UNKNOWN) { |
| return REGION_UNKNOWN; |
| } |
| return valid_or_invalid; |
| } |
| |
| // Takes an elevator height and arm angle and projects these to the resulting |
| // fridge height and x offset. Returns REGION_UNKNOWN if the values are |
| // outside |
| // limits. This will result in the height/angle being bounded and the |
| // resulting position will be returned. |
| Region ForwardKinematic(double elevator_height, double arm_angle, |
| double elevator_velocity, double arm_velocity, |
| KinematicResult* result) { |
| result->elevator_height = elevator_height; |
| result->arm_angle = arm_angle; |
| |
| Region valid = REGION_VALID; |
| if (elevator_height < elevator_min_) { |
| LOG(WARNING, "elevator %.2f limited at %.2f\n", result->elevator_height, |
| elevator_min_); |
| result->elevator_height = elevator_min_; |
| valid = REGION_UNKNOWN; |
| } |
| if (elevator_height > elevator_max_) { |
| LOG(WARNING, "elevator %.2f limited at %.2f\n", result->elevator_height, |
| elevator_max_); |
| result->elevator_height = elevator_max_; |
| valid = REGION_UNKNOWN; |
| } |
| if (arm_angle < lower_angle_limit_) { |
| LOG(WARNING, "arm %.2f limited at %.2f\n", result->arm_angle, |
| lower_angle_limit_); |
| result->arm_angle = lower_angle_limit_; |
| valid = REGION_UNKNOWN; |
| } |
| if (arm_angle > upper_angle_limit_) { |
| result->arm_angle = upper_angle_limit_; |
| LOG(WARNING, "arm %.2f limited at %.2f\n", result->arm_angle, |
| upper_angle_limit_); |
| valid = REGION_UNKNOWN; |
| } |
| // Compute the fridge grabber height and x location using the computed |
| // elevator height and arm angle. |
| result->fridge_h = result->elevator_height + |
| (::std::cos(result->arm_angle) - 1.0) * length_arm_; |
| result->fridge_x = -::std::sin(result->arm_angle) * length_arm_; |
| // velocity based on joacobian |
| result->fridge_x_velocity = |
| -length_arm_ * ::std::cos(result->arm_angle) * arm_velocity; |
| LimitLightSpeed(&result->fridge_x_velocity); |
| result->fridge_h_velocity = |
| -length_arm_ * ::std::sin(result->arm_angle) * arm_velocity + |
| elevator_velocity; |
| LimitLightSpeed(&result->fridge_h_velocity); |
| return valid; |
| } |
| |
| // Same as ForwardKinematic but without any checking. |
| Eigen::Vector2d ForwardKinematicNoChecking(double elevator_height, |
| double arm_angle) { |
| // Compute the fridge grabber height and x location using the computed |
| // elevator height and arm angle. |
| Eigen::Vector2d grabber_location; |
| grabber_location.y() = |
| elevator_height + (::std::cos(arm_angle) - 1.0) * length_arm_; |
| grabber_location.x() = -::std::sin(arm_angle) * length_arm_; |
| return grabber_location; |
| } |
| |
| // 2 dimensional version of cross product |
| double Cross(Eigen::Vector2d a, Eigen::Vector2d b) { |
| double crossProduct = a.x() * b.y() - a.y() * b.x(); |
| return crossProduct; |
| } |
| |
| // Tell whether or not it is safe to move the grabber to a position. |
| // Returns true if the current move is safe. |
| // If it returns false then a safe_claw_angle that is greater than zero is |
| // acceptable otherwise if safe_claw_angle is less than zero there will be no |
| // valid solution. |
| bool GrabberArmIntersectionCheck(double elevator_height, double arm_angle, |
| double claw_angle, double* safe_claw_angle) { |
| Eigen::Vector2d grabber_location = |
| ForwardKinematicNoChecking(elevator_height, arm_angle); |
| if (grabber_location.x() < geometry_.grabber_always_safe_x_max || |
| grabber_location.y() > geometry_.grabber_always_safe_h_min) { |
| *safe_claw_angle = claw_angle; |
| return true; |
| } |
| Eigen::Vector2d grabber_bottom_end; |
| Eigen::Vector2d claw_i_unit_direction(::std::cos(claw_angle), |
| sin(claw_angle)); |
| Eigen::Vector2d claw_j_unit_direction(-::std::sin(claw_angle), |
| cos(claw_angle)); |
| |
| // Vector from the center of the arm rotation axis to front bottom |
| // corner of the grabber. |
| Eigen::Vector2d grabber_end_location_from_arm_axis( |
| geometry_.grabber_half_length, -geometry_.grabber_delta_y); |
| |
| // Bottom front corner of the grabber. This is what will usually hit the |
| // claw first. |
| grabber_bottom_end = grabber_location + grabber_end_location_from_arm_axis; |
| |
| // Location of the claw horizontal axis of rotation relative to the |
| // arm axis of rotation with the elevator at 0 and the arm angle of 0 |
| // The horizontal axis is the up and down motion axis. |
| Eigen::Vector2d claw_updown_axis(geometry_.grabber_arm_horz_separation, |
| -geometry_.grabber_arm_vert_separation); |
| |
| // This point is used to make a cross product with the bottom end of the |
| // grabber |
| // The result of the cross product tells if the parts intersect or not. |
| Eigen::Vector2d claw_top_ref_point = |
| claw_updown_axis + geometry_.claw_top_thickness * claw_j_unit_direction; |
| |
| Eigen::Vector2d claw_top_ref_point_to_grabber_bottom_end = |
| grabber_bottom_end - claw_top_ref_point; |
| double claw_grabber_check = |
| Cross(claw_i_unit_direction, claw_top_ref_point_to_grabber_bottom_end); |
| |
| // Now set the safe claw angle. |
| if (claw_grabber_check > 0.0) { |
| *safe_claw_angle = claw_angle; |
| return true; |
| } else if (grabber_bottom_end.y() < |
| claw_updown_axis.y() + |
| geometry_.claw_top_thickness) { // grabber is too close |
| *safe_claw_angle = -1.0; |
| return false; |
| } else { |
| // To find the safe angle for the claw, draw a line between the claw |
| // rotation axis and the lower front corner of the grabber. The angle of |
| // this line is used with the angle between the edge of the claw and the |
| // center line of the claw to determine the angle of the claw. |
| Eigen::Vector2d claw_axis_to_grabber_bottom_end = |
| grabber_bottom_end - claw_updown_axis; |
| double hypot = claw_axis_to_grabber_bottom_end.norm(); |
| double angleDiff = ::std::asin(geometry_.claw_top_thickness / hypot); |
| *safe_claw_angle = ::std::atan2(claw_axis_to_grabber_bottom_end.y(), |
| claw_axis_to_grabber_bottom_end.x()) - |
| angleDiff; |
| return false; |
| } |
| } |
| |
| double get_elevator_min() { return elevator_min_; } |
| |
| double get_elevator_max() { return elevator_max_; } |
| |
| double get_upper_angle_limit() { return upper_angle_limit_; } |
| |
| double get_lower_angle_limit() { return lower_angle_limit_; } |
| |
| private: |
| // length of the arm |
| double length_arm_; |
| // max height the elevator can go. |
| double elevator_max_; |
| // min height the elevator can go. |
| double elevator_min_; |
| // arm angle upper limit |
| double upper_angle_limit_; |
| // arm angle lower limit |
| double lower_angle_limit_; |
| // Geometry of the arm + fridge |
| frc971::constants::Values::ClawGeometry geometry_; |
| }; |
| |
| } // namespace util |
| } // namespace aos |
| |
| #endif // Y2015_UTIL_KINEMATICS_H_ |