blob: 1d4de287342f765b6ec85687d11278508c2dbb2c [file] [log] [blame]
Austin Schuhbb4aae72021-10-08 22:12:25 -07001#include "Eigen/Dense"
2#include "Eigen/Geometry"
3
Austin Schuhbb4aae72021-10-08 22:12:25 -07004#include "absl/strings/str_format.h"
Austin Schuhbb4aae72021-10-08 22:12:25 -07005#include "aos/events/logging/log_reader.h"
6#include "aos/events/shm_event_loop.h"
7#include "aos/init.h"
8#include "aos/network/team_number.h"
9#include "aos/time/time.h"
10#include "aos/util/file.h"
milind-ue53bf552021-12-11 14:42:00 -080011#include "ceres/ceres.h"
12#include "frc971/analysis/in_process_plotter.h"
Austin Schuhbb4aae72021-10-08 22:12:25 -070013#include "frc971/control_loops/drivetrain/improved_down_estimator.h"
milind-u8c72d532021-12-11 15:02:42 -080014#include "frc971/control_loops/quaternion_utils.h"
15#include "frc971/wpilib/imu_batch_generated.h"
16#include "y2020/vision/calibration_accumulator.h"
17#include "y2020/vision/charuco_lib.h"
Austin Schuhbb4aae72021-10-08 22:12:25 -070018#include "y2020/vision/sift/sift_generated.h"
19#include "y2020/vision/sift/sift_training_generated.h"
20#include "y2020/vision/tools/python_code/sift_training_data.h"
21#include "y2020/vision/vision_generated.h"
Austin Schuhbb4aae72021-10-08 22:12:25 -070022
23DEFINE_string(config, "config.json", "Path to the config file to use.");
24DEFINE_string(pi, "pi-7971-2", "Pi name to calibrate.");
Austin Schuhbb4aae72021-10-08 22:12:25 -070025
26namespace frc971 {
27namespace vision {
28namespace chrono = std::chrono;
29using aos::distributed_clock;
30using aos::monotonic_clock;
31
milind-ue53bf552021-12-11 14:42:00 -080032// The basic ideas here are taken from Kalibr.
33// (https://github.com/ethz-asl/kalibr), but adapted to work with AOS, and to be
34// simpler.
35//
36// Camera readings and IMU readings come in at different times, on different
37// time scales. Our first problem is to align them in time so we can actually
38// compute an error. This is done in the calibration accumulator code. The
39// kalibr paper uses splines, while this uses kalman filters to solve the same
40// interpolation problem so we can get the expected vs actual pose at the time
41// each image arrives.
42//
43// The cost function is then fed the computed angular and positional error for
44// each camera sample before the kalman filter update. Intuitively, the smaller
45// the corrections to the kalman filter each step, the better the estimate
46// should be.
47//
48// We don't actually implement the angular kalman filter because the IMU is so
49// good. We give the solver an initial position and bias, and let it solve from
50// there. This lets us represent drift that is linear in time, which should be
51// good enough for ~1 minute calibration.
52//
53// TODO(austin): Kalman smoother ala
54// https://stanford.edu/~boyd/papers/pdf/auto_ks.pdf should allow for better
55// parallelism, and since we aren't causal, will take that into account a lot
56// better.
57
58// This class takes the initial parameters and biases, and computes the error
59// between the measured and expected camera readings. When optimized, this
60// gives us a cost function to minimize.
61template <typename Scalar>
62class CeresPoseFilter : public CalibrationDataObserver {
Austin Schuhbb4aae72021-10-08 22:12:25 -070063 public:
milind-ue53bf552021-12-11 14:42:00 -080064 CeresPoseFilter(Eigen::Quaternion<Scalar> initial_orientation,
65 Eigen::Quaternion<Scalar> imu_to_camera,
66 Eigen::Matrix<Scalar, 3, 1> imu_bias)
milind-u8c72d532021-12-11 15:02:42 -080067 : accel_(Eigen::Matrix<double, 3, 1>::Zero()),
68 omega_(Eigen::Matrix<double, 3, 1>::Zero()),
milind-ue53bf552021-12-11 14:42:00 -080069 imu_bias_(imu_bias),
70 orientation_(initial_orientation),
71 x_hat_(Eigen::Matrix<Scalar, 6, 1>::Zero()),
72 p_(Eigen::Matrix<Scalar, 6, 6>::Zero()),
73 imu_to_camera_(imu_to_camera) {}
74
75 virtual void ObserveCameraUpdate(distributed_clock::time_point /*t*/,
76 Eigen::Vector3d /*board_to_camera_rotation*/,
77 Eigen::Quaternion<Scalar> /*imu_to_world*/) {
78 }
Austin Schuhbb4aae72021-10-08 22:12:25 -070079
Austin Schuhbb4aae72021-10-08 22:12:25 -070080 void UpdateCamera(distributed_clock::time_point t,
milind-u8c72d532021-12-11 15:02:42 -080081 std::pair<Eigen::Vector3d, Eigen::Vector3d> rt) override {
82 Integrate(t);
milind-ue53bf552021-12-11 14:42:00 -080083
84 Eigen::Quaternion<Scalar> board_to_camera(
85 frc971::controls::ToQuaternionFromRotationVector(rt.first)
86 .cast<Scalar>());
87
88 // This converts us from (facing the board),
89 // x right, y up, z towards us -> x right, y away, z up.
90 // Confirmed to be right.
91 Eigen::Quaternion<Scalar> board_to_world(
92 Eigen::AngleAxisd(0.5 * M_PI, Eigen::Vector3d::UnitX()).cast<Scalar>());
93
94 // Want world -> imu rotation.
95 // world <- board <- camera <- imu.
96 const Eigen::Quaternion<Scalar> imu_to_world =
97 board_to_world * board_to_camera.inverse() * imu_to_camera_;
98
99 const Eigen::Quaternion<Scalar> error(imu_to_world.inverse() *
100 orientation());
101
102 errors_.emplace_back(
103 Eigen::Matrix<Scalar, 3, 1>(error.x(), error.y(), error.z()));
104
105 ObserveCameraUpdate(t, rt.first, imu_to_world);
Austin Schuhbb4aae72021-10-08 22:12:25 -0700106 }
107
milind-ue53bf552021-12-11 14:42:00 -0800108 virtual void ObserveIMUUpdate(
109 distributed_clock::time_point /*t*/,
110 std::pair<Eigen::Vector3d, Eigen::Vector3d> /*wa*/) {}
111
Austin Schuhbb4aae72021-10-08 22:12:25 -0700112 void UpdateIMU(distributed_clock::time_point t,
milind-u8c72d532021-12-11 15:02:42 -0800113 std::pair<Eigen::Vector3d, Eigen::Vector3d> wa) override {
114 Integrate(t);
115 omega_ = wa.first;
116 accel_ = wa.second;
milind-ue53bf552021-12-11 14:42:00 -0800117
118 ObserveIMUUpdate(t, wa);
Austin Schuhbb4aae72021-10-08 22:12:25 -0700119 }
120
milind-ue53bf552021-12-11 14:42:00 -0800121 const Eigen::Quaternion<Scalar> &orientation() const { return orientation_; }
122
123 std::vector<Eigen::Matrix<Scalar, 3, 1> > errors_;
124
125 // Returns the angular errors for each camera sample.
126 size_t num_errors() const { return errors_.size(); }
127 Scalar errorx(size_t i) const { return errors_[i].x(); }
128 Scalar errory(size_t i) const { return errors_[i].y(); }
129 Scalar errorz(size_t i) const { return errors_[i].z(); }
130
Austin Schuhbb4aae72021-10-08 22:12:25 -0700131 private:
milind-ue53bf552021-12-11 14:42:00 -0800132 Eigen::Matrix<Scalar, 46, 1> Pack(Eigen::Quaternion<Scalar> q,
133 Eigen::Matrix<Scalar, 6, 1> x_hat,
134 Eigen::Matrix<Scalar, 6, 6> p) {
135 Eigen::Matrix<Scalar, 46, 1> result = Eigen::Matrix<Scalar, 46, 1>::Zero();
136 result.template block<4, 1>(0, 0) = q.coeffs();
137 result.template block<6, 1>(4, 0) = x_hat;
138 result.template block<36, 1>(10, 0) =
139 Eigen::Map<Eigen::Matrix<Scalar, 36, 1> >(p.data(), p.size());
140
141 return result;
142 }
143
144 std::tuple<Eigen::Quaternion<Scalar>, Eigen::Matrix<Scalar, 6, 1>,
145 Eigen::Matrix<Scalar, 6, 6> >
146 UnPack(Eigen::Matrix<Scalar, 46, 1> input) {
147 Eigen::Quaternion<Scalar> q(input.template block<4, 1>(0, 0));
148 Eigen::Matrix<Scalar, 6, 1> x_hat(input.template block<6, 1>(4, 0));
149 Eigen::Matrix<Scalar, 6, 6> p =
150 Eigen::Map<Eigen::Matrix<Scalar, 6, 6> >(input.data() + 10, 6, 6);
151 return std::make_tuple(q, x_hat, p);
152 }
153
154 Eigen::Matrix<Scalar, 46, 1> Derivitive(
155 const Eigen::Matrix<Scalar, 46, 1> &input) {
156 auto [q, x_hat, p] = UnPack(input);
157
158 Eigen::Quaternion<Scalar> omega_q;
159 omega_q.w() = Scalar(0.0);
160 omega_q.vec() = 0.5 * (omega_.cast<Scalar>() - imu_bias_);
161 Eigen::Matrix<Scalar, 4, 1> q_dot = (q * omega_q).coeffs();
162
163 Eigen::Matrix<Scalar, 6, 1> x_hat_dot = Eigen::Matrix<Scalar, 6, 1>::Zero();
164 x_hat_dot(0, 0) = x_hat(3, 0);
165 x_hat_dot(1, 0) = x_hat(4, 0);
166 x_hat_dot(2, 0) = x_hat(5, 0);
167 x_hat_dot.template block<3, 1>(3, 0) = accel_.cast<Scalar>();
168
169 Eigen::Matrix<Scalar, 6, 6> p_dot = Eigen::Matrix<Scalar, 6, 6>::Zero();
170
171 return Pack(Eigen::Quaternion<Scalar>(q_dot), x_hat_dot, p_dot);
172 }
173
174 virtual void ObserveIntegrated(distributed_clock::time_point /*t*/,
175 Eigen::Matrix<Scalar, 6, 1> /*x_hat*/,
176 Eigen::Quaternion<Scalar> /*orientation*/) {}
177
178 void Integrate(distributed_clock::time_point t) {
179 if (last_time_ != distributed_clock::min_time) {
180 Eigen::Matrix<Scalar, 46, 1> next = control_loops::RungeKutta(
181 [this](auto r) { return Derivitive(r); },
182 Pack(orientation_, x_hat_, p_),
183 aos::time::DurationInSeconds(t - last_time_));
184
185 std::tie(orientation_, x_hat_, p_) = UnPack(next);
186
187 // Normalize q so it doesn't drift.
188 orientation_.normalize();
189 }
190
191 last_time_ = t;
192 ObserveIntegrated(t, x_hat_, orientation_);
193 }
milind-u8c72d532021-12-11 15:02:42 -0800194
195 Eigen::Matrix<double, 3, 1> accel_;
196 Eigen::Matrix<double, 3, 1> omega_;
milind-ue53bf552021-12-11 14:42:00 -0800197 Eigen::Matrix<Scalar, 3, 1> imu_bias_;
milind-u8c72d532021-12-11 15:02:42 -0800198
milind-ue53bf552021-12-11 14:42:00 -0800199 Eigen::Quaternion<Scalar> orientation_;
200 Eigen::Matrix<Scalar, 6, 1> x_hat_;
201 Eigen::Matrix<Scalar, 6, 6> p_;
202 distributed_clock::time_point last_time_ = distributed_clock::min_time;
Austin Schuhbb4aae72021-10-08 22:12:25 -0700203
milind-ue53bf552021-12-11 14:42:00 -0800204 Eigen::Quaternion<Scalar> imu_to_camera_;
205
206 // States outside the KF:
207 // orientation quaternion
208 //
Austin Schuhbb4aae72021-10-08 22:12:25 -0700209 // States:
210 // xyz position
211 // xyz velocity
Austin Schuhbb4aae72021-10-08 22:12:25 -0700212 //
213 // Inputs
214 // xyz accel
215 // angular rates
216 //
217 // Measurement:
218 // xyz position
219 // orientation rotation vector
Austin Schuhbb4aae72021-10-08 22:12:25 -0700220};
221
milind-ue53bf552021-12-11 14:42:00 -0800222// Subclass of the filter above which has plotting. This keeps debug code and
223// actual code separate.
224class PoseFilter : public CeresPoseFilter<double> {
225 public:
226 PoseFilter(Eigen::Quaternion<double> initial_orientation,
227 Eigen::Quaternion<double> imu_to_camera,
228 Eigen::Matrix<double, 3, 1> imu_bias)
229 : CeresPoseFilter<double>(initial_orientation, imu_to_camera, imu_bias) {}
230
231 void Plot() {
232 std::vector<double> x;
233 std::vector<double> y;
234 std::vector<double> z;
235 for (const Eigen::Quaternion<double> &q : orientations_) {
236 Eigen::Matrix<double, 3, 1> rotation_vector =
237 frc971::controls::ToRotationVectorFromQuaternion(q);
238 x.emplace_back(rotation_vector(0, 0));
239 y.emplace_back(rotation_vector(1, 0));
240 z.emplace_back(rotation_vector(2, 0));
241 }
242 frc971::analysis::Plotter plotter;
243 plotter.AddFigure("position");
244 plotter.AddLine(times_, x, "x_hat(0)");
245 plotter.AddLine(times_, y, "x_hat(1)");
246 plotter.AddLine(times_, z, "x_hat(2)");
247 plotter.AddLine(ct, cx, "Camera x");
248 plotter.AddLine(ct, cy, "Camera y");
249 plotter.AddLine(ct, cz, "Camera z");
250 plotter.AddLine(ct, cerrx, "Camera error x");
251 plotter.AddLine(ct, cerry, "Camera error y");
252 plotter.AddLine(ct, cerrz, "Camera error z");
253 plotter.Publish();
254
255 plotter.AddFigure("error");
256 plotter.AddLine(times_, x, "x_hat(0)");
257 plotter.AddLine(times_, y, "x_hat(1)");
258 plotter.AddLine(times_, z, "x_hat(2)");
259 plotter.AddLine(ct, cerrx, "Camera error x");
260 plotter.AddLine(ct, cerry, "Camera error y");
261 plotter.AddLine(ct, cerrz, "Camera error z");
262 plotter.Publish();
263
264 plotter.AddFigure("imu");
265 plotter.AddLine(ct, world_gravity_x, "world_gravity(0)");
266 plotter.AddLine(ct, world_gravity_y, "world_gravity(1)");
267 plotter.AddLine(ct, world_gravity_z, "world_gravity(2)");
268 plotter.AddLine(imut, imu_x, "imu x");
269 plotter.AddLine(imut, imu_y, "imu y");
270 plotter.AddLine(imut, imu_z, "imu z");
271 plotter.Publish();
272
273 plotter.AddFigure("raw");
274 plotter.AddLine(imut, imu_x, "imu x");
275 plotter.AddLine(imut, imu_y, "imu y");
276 plotter.AddLine(imut, imu_z, "imu z");
277 plotter.AddLine(imut, imu_ratex, "omega x");
278 plotter.AddLine(imut, imu_ratey, "omega y");
279 plotter.AddLine(imut, imu_ratez, "omega z");
280 plotter.AddLine(ct, raw_cx, "Camera x");
281 plotter.AddLine(ct, raw_cy, "Camera y");
282 plotter.AddLine(ct, raw_cz, "Camera z");
283 plotter.Publish();
284
285 plotter.Spin();
286 }
287
288 void ObserveIntegrated(distributed_clock::time_point t,
289 Eigen::Matrix<double, 6, 1> x_hat,
290 Eigen::Quaternion<double> orientation) override {
291 times_.emplace_back(chrono::duration<double>(t.time_since_epoch()).count());
292 x_hats_.emplace_back(x_hat);
293 orientations_.emplace_back(orientation);
294 }
295
296 void ObserveIMUUpdate(
297 distributed_clock::time_point t,
298 std::pair<Eigen::Vector3d, Eigen::Vector3d> wa) override {
299 imut.emplace_back(chrono::duration<double>(t.time_since_epoch()).count());
300 imu_ratex.emplace_back(wa.first.x());
301 imu_ratey.emplace_back(wa.first.y());
302 imu_ratez.emplace_back(wa.first.z());
303 imu_x.emplace_back(wa.second.x());
304 imu_y.emplace_back(wa.second.y());
305 imu_z.emplace_back(wa.second.z());
306
307 last_accel_ = wa.second;
308 }
309
310 void ObserveCameraUpdate(distributed_clock::time_point t,
311 Eigen::Vector3d board_to_camera_rotation,
312 Eigen::Quaternion<double> imu_to_world) override {
313 raw_cx.emplace_back(board_to_camera_rotation(0, 0));
314 raw_cy.emplace_back(board_to_camera_rotation(1, 0));
315 raw_cz.emplace_back(board_to_camera_rotation(2, 0));
316
317 Eigen::Matrix<double, 3, 1> rotation_vector =
318 frc971::controls::ToRotationVectorFromQuaternion(imu_to_world);
319 ct.emplace_back(chrono::duration<double>(t.time_since_epoch()).count());
320
321 Eigen::Matrix<double, 3, 1> cerr =
322 frc971::controls::ToRotationVectorFromQuaternion(
323 imu_to_world.inverse() * orientation());
324
325 cx.emplace_back(rotation_vector(0, 0));
326 cy.emplace_back(rotation_vector(1, 0));
327 cz.emplace_back(rotation_vector(2, 0));
328
329 cerrx.emplace_back(cerr(0, 0));
330 cerry.emplace_back(cerr(1, 0));
331 cerrz.emplace_back(cerr(2, 0));
332
333 const Eigen::Vector3d world_gravity = imu_to_world * last_accel_;
334
335 world_gravity_x.emplace_back(world_gravity.x());
336 world_gravity_y.emplace_back(world_gravity.y());
337 world_gravity_z.emplace_back(world_gravity.z());
338 }
339
340 std::vector<double> ct;
341 std::vector<double> cx;
342 std::vector<double> cy;
343 std::vector<double> cz;
344 std::vector<double> raw_cx;
345 std::vector<double> raw_cy;
346 std::vector<double> raw_cz;
347 std::vector<double> cerrx;
348 std::vector<double> cerry;
349 std::vector<double> cerrz;
350
351 std::vector<double> world_gravity_x;
352 std::vector<double> world_gravity_y;
353 std::vector<double> world_gravity_z;
354 std::vector<double> imu_x;
355 std::vector<double> imu_y;
356 std::vector<double> imu_z;
357
358 std::vector<double> imut;
359 std::vector<double> imu_ratex;
360 std::vector<double> imu_ratey;
361 std::vector<double> imu_ratez;
362
363 std::vector<double> times_;
364 std::vector<Eigen::Matrix<double, 6, 1> > x_hats_;
365 std::vector<Eigen::Quaternion<double> > orientations_;
366
367 Eigen::Matrix<double, 3, 1> last_accel_ = Eigen::Matrix<double, 3, 1>::Zero();
368};
369
370// Adapter class from the KF above to a Ceres cost function.
371struct CostFunctor {
372 CostFunctor(CalibrationData *d) : data(d) {}
373
374 CalibrationData *data;
375
376 template <typename S>
377 bool operator()(const S *const q1, const S *const q2, const S *const v,
378 S *residual) const {
379 Eigen::Quaternion<S> initial_orientation(q1[3], q1[0], q1[1], q1[2]);
380 Eigen::Quaternion<S> mounting_orientation(q2[3], q2[0], q2[1], q2[2]);
381 Eigen::Matrix<S, 3, 1> imu_bias(v[0], v[1], v[2]);
382
383 CeresPoseFilter<S> filter(initial_orientation, mounting_orientation,
384 imu_bias);
385 data->ReviewData(&filter);
386
387 for (size_t i = 0; i < filter.num_errors(); ++i) {
388 residual[3 * i + 0] = filter.errorx(i);
389 residual[3 * i + 1] = filter.errory(i);
390 residual[3 * i + 2] = filter.errorz(i);
391 }
392
393 return true;
394 }
395};
396
Austin Schuhbb4aae72021-10-08 22:12:25 -0700397void Main(int argc, char **argv) {
398 CalibrationData data;
399
400 {
401 // Now, accumulate all the data into the data object.
402 aos::logger::LogReader reader(
403 aos::logger::SortParts(aos::logger::FindLogs(argc, argv)));
404
405 aos::SimulatedEventLoopFactory factory(reader.configuration());
406 reader.Register(&factory);
407
408 CHECK(aos::configuration::MultiNode(reader.configuration()));
409
410 // Find the nodes we care about.
411 const aos::Node *const roborio_node =
412 aos::configuration::GetNode(factory.configuration(), "roborio");
413
414 std::optional<uint16_t> pi_number = aos::network::ParsePiNumber(FLAGS_pi);
415 CHECK(pi_number);
416 LOG(INFO) << "Pi " << *pi_number;
417 const aos::Node *const pi_node = aos::configuration::GetNode(
418 factory.configuration(), absl::StrCat("pi", *pi_number));
419
420 LOG(INFO) << "roboRIO " << aos::FlatbufferToJson(roborio_node);
421 LOG(INFO) << "Pi " << aos::FlatbufferToJson(pi_node);
422
423 std::unique_ptr<aos::EventLoop> roborio_event_loop =
424 factory.MakeEventLoop("calibration", roborio_node);
425 std::unique_ptr<aos::EventLoop> pi_event_loop =
426 factory.MakeEventLoop("calibration", pi_node);
427
428 // Now, hook Calibration up to everything.
429 Calibration extractor(&factory, pi_event_loop.get(),
430 roborio_event_loop.get(), FLAGS_pi, &data);
431
432 factory.Run();
433
434 reader.Deregister();
435 }
436
437 LOG(INFO) << "Done with event_loop running";
438 // And now we have it, we can start processing it.
milind-u8c72d532021-12-11 15:02:42 -0800439
milind-ue53bf552021-12-11 14:42:00 -0800440 Eigen::Quaternion<double> nominal_initial_orientation(
441 frc971::controls::ToQuaternionFromRotationVector(
442 Eigen::Vector3d(0.0, 0.0, M_PI)));
443 Eigen::Quaternion<double> nominal_imu_to_camera(
444 Eigen::AngleAxisd(-0.5 * M_PI, Eigen::Vector3d::UnitX()));
445
446 Eigen::Quaternion<double> initial_orientation =
447 Eigen::Quaternion<double>::Identity();
448 Eigen::Quaternion<double> imu_to_camera =
449 Eigen::Quaternion<double>::Identity();
450 Eigen::Vector3d imu_bias = Eigen::Vector3d::Zero();
451
milind-u8c72d532021-12-11 15:02:42 -0800452 {
milind-ue53bf552021-12-11 14:42:00 -0800453 ceres::Problem problem;
454
455 ceres::EigenQuaternionParameterization *quaternion_local_parameterization =
456 new ceres::EigenQuaternionParameterization();
457 // Set up the only cost function (also known as residual). This uses
458 // auto-differentiation to obtain the derivative (jacobian).
459
460 ceres::CostFunction *cost_function =
461 new ceres::AutoDiffCostFunction<CostFunctor, ceres::DYNAMIC, 4, 4, 3>(
462 new CostFunctor(&data), data.camera_samples_size() * 3);
463 problem.AddResidualBlock(cost_function, nullptr,
464 initial_orientation.coeffs().data(),
465 imu_to_camera.coeffs().data(), imu_bias.data());
466 problem.SetParameterization(initial_orientation.coeffs().data(),
467 quaternion_local_parameterization);
468 problem.SetParameterization(imu_to_camera.coeffs().data(),
469 quaternion_local_parameterization);
470 for (int i = 0; i < 3; ++i) {
471 problem.SetParameterLowerBound(imu_bias.data(), i, -0.05);
472 problem.SetParameterUpperBound(imu_bias.data(), i, 0.05);
473 }
474
475 // Run the solver!
476 ceres::Solver::Options options;
477 options.minimizer_progress_to_stdout = true;
478 options.gradient_tolerance = 1e-12;
479 options.function_tolerance = 1e-16;
480 options.parameter_tolerance = 1e-12;
481 ceres::Solver::Summary summary;
482 Solve(options, &problem, &summary);
483 LOG(INFO) << summary.FullReport();
484
485 LOG(INFO) << "Nominal initial_orientation "
486 << nominal_initial_orientation.coeffs().transpose();
487 LOG(INFO) << "Nominal imu_to_camera "
488 << nominal_imu_to_camera.coeffs().transpose();
489
490 LOG(INFO) << "initial_orientation "
491 << initial_orientation.coeffs().transpose();
492 LOG(INFO) << "imu_to_camera " << imu_to_camera.coeffs().transpose();
493 LOG(INFO) << "imu_to_camera(rotation) "
494 << frc971::controls::ToRotationVectorFromQuaternion(imu_to_camera)
495 .transpose();
496 LOG(INFO) << "imu_to_camera delta "
497 << frc971::controls::ToRotationVectorFromQuaternion(
498 imu_to_camera * nominal_imu_to_camera.inverse())
499 .transpose();
500 LOG(INFO) << "imu_bias " << imu_bias.transpose();
501 }
502
503 {
504 PoseFilter filter(initial_orientation, imu_to_camera, imu_bias);
milind-u8c72d532021-12-11 15:02:42 -0800505 data.ReviewData(&filter);
506 }
Austin Schuhbb4aae72021-10-08 22:12:25 -0700507}
508
509} // namespace vision
510} // namespace frc971
511
512int main(int argc, char **argv) {
513 aos::InitGoogle(&argc, &argv);
514
515 frc971::vision::Main(argc, argv);
516}