| #include "Eigen/Dense" |
| #include "Eigen/Geometry" |
| |
| #include "absl/strings/str_format.h" |
| #include "aos/events/logging/log_reader.h" |
| #include "aos/events/shm_event_loop.h" |
| #include "aos/init.h" |
| #include "aos/network/team_number.h" |
| #include "aos/time/time.h" |
| #include "aos/util/file.h" |
| #include "ceres/ceres.h" |
| #include "frc971/analysis/in_process_plotter.h" |
| #include "frc971/control_loops/drivetrain/improved_down_estimator.h" |
| #include "frc971/control_loops/quaternion_utils.h" |
| #include "frc971/wpilib/imu_batch_generated.h" |
| #include "y2020/vision/calibration_accumulator.h" |
| #include "y2020/vision/charuco_lib.h" |
| #include "y2020/vision/sift/sift_generated.h" |
| #include "y2020/vision/sift/sift_training_generated.h" |
| #include "y2020/vision/tools/python_code/sift_training_data.h" |
| #include "y2020/vision/vision_generated.h" |
| |
| DEFINE_string(config, "config.json", "Path to the config file to use."); |
| DEFINE_string(pi, "pi-7971-2", "Pi name to calibrate."); |
| |
| namespace frc971 { |
| namespace vision { |
| namespace chrono = std::chrono; |
| using aos::distributed_clock; |
| using aos::monotonic_clock; |
| |
| // The basic ideas here are taken from Kalibr. |
| // (https://github.com/ethz-asl/kalibr), but adapted to work with AOS, and to be |
| // simpler. |
| // |
| // Camera readings and IMU readings come in at different times, on different |
| // time scales. Our first problem is to align them in time so we can actually |
| // compute an error. This is done in the calibration accumulator code. The |
| // kalibr paper uses splines, while this uses kalman filters to solve the same |
| // interpolation problem so we can get the expected vs actual pose at the time |
| // each image arrives. |
| // |
| // The cost function is then fed the computed angular and positional error for |
| // each camera sample before the kalman filter update. Intuitively, the smaller |
| // the corrections to the kalman filter each step, the better the estimate |
| // should be. |
| // |
| // We don't actually implement the angular kalman filter because the IMU is so |
| // good. We give the solver an initial position and bias, and let it solve from |
| // there. This lets us represent drift that is linear in time, which should be |
| // good enough for ~1 minute calibration. |
| // |
| // TODO(austin): Kalman smoother ala |
| // https://stanford.edu/~boyd/papers/pdf/auto_ks.pdf should allow for better |
| // parallelism, and since we aren't causal, will take that into account a lot |
| // better. |
| |
| // This class takes the initial parameters and biases, and computes the error |
| // between the measured and expected camera readings. When optimized, this |
| // gives us a cost function to minimize. |
| template <typename Scalar> |
| class CeresPoseFilter : public CalibrationDataObserver { |
| public: |
| CeresPoseFilter(Eigen::Quaternion<Scalar> initial_orientation, |
| Eigen::Quaternion<Scalar> imu_to_camera, |
| Eigen::Matrix<Scalar, 3, 1> imu_bias) |
| : accel_(Eigen::Matrix<double, 3, 1>::Zero()), |
| omega_(Eigen::Matrix<double, 3, 1>::Zero()), |
| imu_bias_(imu_bias), |
| orientation_(initial_orientation), |
| x_hat_(Eigen::Matrix<Scalar, 6, 1>::Zero()), |
| p_(Eigen::Matrix<Scalar, 6, 6>::Zero()), |
| imu_to_camera_(imu_to_camera) {} |
| |
| virtual void ObserveCameraUpdate(distributed_clock::time_point /*t*/, |
| Eigen::Vector3d /*board_to_camera_rotation*/, |
| Eigen::Quaternion<Scalar> /*imu_to_world*/) { |
| } |
| |
| void UpdateCamera(distributed_clock::time_point t, |
| std::pair<Eigen::Vector3d, Eigen::Vector3d> rt) override { |
| Integrate(t); |
| |
| Eigen::Quaternion<Scalar> board_to_camera( |
| frc971::controls::ToQuaternionFromRotationVector(rt.first) |
| .cast<Scalar>()); |
| |
| // This converts us from (facing the board), |
| // x right, y up, z towards us -> x right, y away, z up. |
| // Confirmed to be right. |
| Eigen::Quaternion<Scalar> board_to_world( |
| Eigen::AngleAxisd(0.5 * M_PI, Eigen::Vector3d::UnitX()).cast<Scalar>()); |
| |
| // Want world -> imu rotation. |
| // world <- board <- camera <- imu. |
| const Eigen::Quaternion<Scalar> imu_to_world = |
| board_to_world * board_to_camera.inverse() * imu_to_camera_; |
| |
| const Eigen::Quaternion<Scalar> error(imu_to_world.inverse() * |
| orientation()); |
| |
| errors_.emplace_back( |
| Eigen::Matrix<Scalar, 3, 1>(error.x(), error.y(), error.z())); |
| |
| ObserveCameraUpdate(t, rt.first, imu_to_world); |
| } |
| |
| virtual void ObserveIMUUpdate( |
| distributed_clock::time_point /*t*/, |
| std::pair<Eigen::Vector3d, Eigen::Vector3d> /*wa*/) {} |
| |
| void UpdateIMU(distributed_clock::time_point t, |
| std::pair<Eigen::Vector3d, Eigen::Vector3d> wa) override { |
| Integrate(t); |
| omega_ = wa.first; |
| accel_ = wa.second; |
| |
| ObserveIMUUpdate(t, wa); |
| } |
| |
| const Eigen::Quaternion<Scalar> &orientation() const { return orientation_; } |
| |
| std::vector<Eigen::Matrix<Scalar, 3, 1> > errors_; |
| |
| // Returns the angular errors for each camera sample. |
| size_t num_errors() const { return errors_.size(); } |
| Scalar errorx(size_t i) const { return errors_[i].x(); } |
| Scalar errory(size_t i) const { return errors_[i].y(); } |
| Scalar errorz(size_t i) const { return errors_[i].z(); } |
| |
| private: |
| Eigen::Matrix<Scalar, 46, 1> Pack(Eigen::Quaternion<Scalar> q, |
| Eigen::Matrix<Scalar, 6, 1> x_hat, |
| Eigen::Matrix<Scalar, 6, 6> p) { |
| Eigen::Matrix<Scalar, 46, 1> result = Eigen::Matrix<Scalar, 46, 1>::Zero(); |
| result.template block<4, 1>(0, 0) = q.coeffs(); |
| result.template block<6, 1>(4, 0) = x_hat; |
| result.template block<36, 1>(10, 0) = |
| Eigen::Map<Eigen::Matrix<Scalar, 36, 1> >(p.data(), p.size()); |
| |
| return result; |
| } |
| |
| std::tuple<Eigen::Quaternion<Scalar>, Eigen::Matrix<Scalar, 6, 1>, |
| Eigen::Matrix<Scalar, 6, 6> > |
| UnPack(Eigen::Matrix<Scalar, 46, 1> input) { |
| Eigen::Quaternion<Scalar> q(input.template block<4, 1>(0, 0)); |
| Eigen::Matrix<Scalar, 6, 1> x_hat(input.template block<6, 1>(4, 0)); |
| Eigen::Matrix<Scalar, 6, 6> p = |
| Eigen::Map<Eigen::Matrix<Scalar, 6, 6> >(input.data() + 10, 6, 6); |
| return std::make_tuple(q, x_hat, p); |
| } |
| |
| Eigen::Matrix<Scalar, 46, 1> Derivitive( |
| const Eigen::Matrix<Scalar, 46, 1> &input) { |
| auto [q, x_hat, p] = UnPack(input); |
| |
| Eigen::Quaternion<Scalar> omega_q; |
| omega_q.w() = Scalar(0.0); |
| omega_q.vec() = 0.5 * (omega_.cast<Scalar>() - imu_bias_); |
| Eigen::Matrix<Scalar, 4, 1> q_dot = (q * omega_q).coeffs(); |
| |
| Eigen::Matrix<Scalar, 6, 1> x_hat_dot = Eigen::Matrix<Scalar, 6, 1>::Zero(); |
| x_hat_dot(0, 0) = x_hat(3, 0); |
| x_hat_dot(1, 0) = x_hat(4, 0); |
| x_hat_dot(2, 0) = x_hat(5, 0); |
| x_hat_dot.template block<3, 1>(3, 0) = accel_.cast<Scalar>(); |
| |
| Eigen::Matrix<Scalar, 6, 6> p_dot = Eigen::Matrix<Scalar, 6, 6>::Zero(); |
| |
| return Pack(Eigen::Quaternion<Scalar>(q_dot), x_hat_dot, p_dot); |
| } |
| |
| virtual void ObserveIntegrated(distributed_clock::time_point /*t*/, |
| Eigen::Matrix<Scalar, 6, 1> /*x_hat*/, |
| Eigen::Quaternion<Scalar> /*orientation*/) {} |
| |
| void Integrate(distributed_clock::time_point t) { |
| if (last_time_ != distributed_clock::min_time) { |
| Eigen::Matrix<Scalar, 46, 1> next = control_loops::RungeKutta( |
| [this](auto r) { return Derivitive(r); }, |
| Pack(orientation_, x_hat_, p_), |
| aos::time::DurationInSeconds(t - last_time_)); |
| |
| std::tie(orientation_, x_hat_, p_) = UnPack(next); |
| |
| // Normalize q so it doesn't drift. |
| orientation_.normalize(); |
| } |
| |
| last_time_ = t; |
| ObserveIntegrated(t, x_hat_, orientation_); |
| } |
| |
| Eigen::Matrix<double, 3, 1> accel_; |
| Eigen::Matrix<double, 3, 1> omega_; |
| Eigen::Matrix<Scalar, 3, 1> imu_bias_; |
| |
| Eigen::Quaternion<Scalar> orientation_; |
| Eigen::Matrix<Scalar, 6, 1> x_hat_; |
| Eigen::Matrix<Scalar, 6, 6> p_; |
| distributed_clock::time_point last_time_ = distributed_clock::min_time; |
| |
| Eigen::Quaternion<Scalar> imu_to_camera_; |
| |
| // States outside the KF: |
| // orientation quaternion |
| // |
| // States: |
| // xyz position |
| // xyz velocity |
| // |
| // Inputs |
| // xyz accel |
| // angular rates |
| // |
| // Measurement: |
| // xyz position |
| // orientation rotation vector |
| }; |
| |
| // Subclass of the filter above which has plotting. This keeps debug code and |
| // actual code separate. |
| class PoseFilter : public CeresPoseFilter<double> { |
| public: |
| PoseFilter(Eigen::Quaternion<double> initial_orientation, |
| Eigen::Quaternion<double> imu_to_camera, |
| Eigen::Matrix<double, 3, 1> imu_bias) |
| : CeresPoseFilter<double>(initial_orientation, imu_to_camera, imu_bias) {} |
| |
| void Plot() { |
| std::vector<double> x; |
| std::vector<double> y; |
| std::vector<double> z; |
| for (const Eigen::Quaternion<double> &q : orientations_) { |
| Eigen::Matrix<double, 3, 1> rotation_vector = |
| frc971::controls::ToRotationVectorFromQuaternion(q); |
| x.emplace_back(rotation_vector(0, 0)); |
| y.emplace_back(rotation_vector(1, 0)); |
| z.emplace_back(rotation_vector(2, 0)); |
| } |
| frc971::analysis::Plotter plotter; |
| plotter.AddFigure("position"); |
| plotter.AddLine(times_, x, "x_hat(0)"); |
| plotter.AddLine(times_, y, "x_hat(1)"); |
| plotter.AddLine(times_, z, "x_hat(2)"); |
| plotter.AddLine(ct, cx, "Camera x"); |
| plotter.AddLine(ct, cy, "Camera y"); |
| plotter.AddLine(ct, cz, "Camera z"); |
| plotter.AddLine(ct, cerrx, "Camera error x"); |
| plotter.AddLine(ct, cerry, "Camera error y"); |
| plotter.AddLine(ct, cerrz, "Camera error z"); |
| plotter.Publish(); |
| |
| plotter.AddFigure("error"); |
| plotter.AddLine(times_, x, "x_hat(0)"); |
| plotter.AddLine(times_, y, "x_hat(1)"); |
| plotter.AddLine(times_, z, "x_hat(2)"); |
| plotter.AddLine(ct, cerrx, "Camera error x"); |
| plotter.AddLine(ct, cerry, "Camera error y"); |
| plotter.AddLine(ct, cerrz, "Camera error z"); |
| plotter.Publish(); |
| |
| plotter.AddFigure("imu"); |
| plotter.AddLine(ct, world_gravity_x, "world_gravity(0)"); |
| plotter.AddLine(ct, world_gravity_y, "world_gravity(1)"); |
| plotter.AddLine(ct, world_gravity_z, "world_gravity(2)"); |
| plotter.AddLine(imut, imu_x, "imu x"); |
| plotter.AddLine(imut, imu_y, "imu y"); |
| plotter.AddLine(imut, imu_z, "imu z"); |
| plotter.Publish(); |
| |
| plotter.AddFigure("raw"); |
| plotter.AddLine(imut, imu_x, "imu x"); |
| plotter.AddLine(imut, imu_y, "imu y"); |
| plotter.AddLine(imut, imu_z, "imu z"); |
| plotter.AddLine(imut, imu_ratex, "omega x"); |
| plotter.AddLine(imut, imu_ratey, "omega y"); |
| plotter.AddLine(imut, imu_ratez, "omega z"); |
| plotter.AddLine(ct, raw_cx, "Camera x"); |
| plotter.AddLine(ct, raw_cy, "Camera y"); |
| plotter.AddLine(ct, raw_cz, "Camera z"); |
| plotter.Publish(); |
| |
| plotter.Spin(); |
| } |
| |
| void ObserveIntegrated(distributed_clock::time_point t, |
| Eigen::Matrix<double, 6, 1> x_hat, |
| Eigen::Quaternion<double> orientation) override { |
| times_.emplace_back(chrono::duration<double>(t.time_since_epoch()).count()); |
| x_hats_.emplace_back(x_hat); |
| orientations_.emplace_back(orientation); |
| } |
| |
| void ObserveIMUUpdate( |
| distributed_clock::time_point t, |
| std::pair<Eigen::Vector3d, Eigen::Vector3d> wa) override { |
| imut.emplace_back(chrono::duration<double>(t.time_since_epoch()).count()); |
| imu_ratex.emplace_back(wa.first.x()); |
| imu_ratey.emplace_back(wa.first.y()); |
| imu_ratez.emplace_back(wa.first.z()); |
| imu_x.emplace_back(wa.second.x()); |
| imu_y.emplace_back(wa.second.y()); |
| imu_z.emplace_back(wa.second.z()); |
| |
| last_accel_ = wa.second; |
| } |
| |
| void ObserveCameraUpdate(distributed_clock::time_point t, |
| Eigen::Vector3d board_to_camera_rotation, |
| Eigen::Quaternion<double> imu_to_world) override { |
| raw_cx.emplace_back(board_to_camera_rotation(0, 0)); |
| raw_cy.emplace_back(board_to_camera_rotation(1, 0)); |
| raw_cz.emplace_back(board_to_camera_rotation(2, 0)); |
| |
| Eigen::Matrix<double, 3, 1> rotation_vector = |
| frc971::controls::ToRotationVectorFromQuaternion(imu_to_world); |
| ct.emplace_back(chrono::duration<double>(t.time_since_epoch()).count()); |
| |
| Eigen::Matrix<double, 3, 1> cerr = |
| frc971::controls::ToRotationVectorFromQuaternion( |
| imu_to_world.inverse() * orientation()); |
| |
| cx.emplace_back(rotation_vector(0, 0)); |
| cy.emplace_back(rotation_vector(1, 0)); |
| cz.emplace_back(rotation_vector(2, 0)); |
| |
| cerrx.emplace_back(cerr(0, 0)); |
| cerry.emplace_back(cerr(1, 0)); |
| cerrz.emplace_back(cerr(2, 0)); |
| |
| const Eigen::Vector3d world_gravity = imu_to_world * last_accel_; |
| |
| world_gravity_x.emplace_back(world_gravity.x()); |
| world_gravity_y.emplace_back(world_gravity.y()); |
| world_gravity_z.emplace_back(world_gravity.z()); |
| } |
| |
| std::vector<double> ct; |
| std::vector<double> cx; |
| std::vector<double> cy; |
| std::vector<double> cz; |
| std::vector<double> raw_cx; |
| std::vector<double> raw_cy; |
| std::vector<double> raw_cz; |
| std::vector<double> cerrx; |
| std::vector<double> cerry; |
| std::vector<double> cerrz; |
| |
| std::vector<double> world_gravity_x; |
| std::vector<double> world_gravity_y; |
| std::vector<double> world_gravity_z; |
| std::vector<double> imu_x; |
| std::vector<double> imu_y; |
| std::vector<double> imu_z; |
| |
| std::vector<double> imut; |
| std::vector<double> imu_ratex; |
| std::vector<double> imu_ratey; |
| std::vector<double> imu_ratez; |
| |
| std::vector<double> times_; |
| std::vector<Eigen::Matrix<double, 6, 1> > x_hats_; |
| std::vector<Eigen::Quaternion<double> > orientations_; |
| |
| Eigen::Matrix<double, 3, 1> last_accel_ = Eigen::Matrix<double, 3, 1>::Zero(); |
| }; |
| |
| // Adapter class from the KF above to a Ceres cost function. |
| struct CostFunctor { |
| CostFunctor(CalibrationData *d) : data(d) {} |
| |
| CalibrationData *data; |
| |
| template <typename S> |
| bool operator()(const S *const q1, const S *const q2, const S *const v, |
| S *residual) const { |
| Eigen::Quaternion<S> initial_orientation(q1[3], q1[0], q1[1], q1[2]); |
| Eigen::Quaternion<S> mounting_orientation(q2[3], q2[0], q2[1], q2[2]); |
| Eigen::Matrix<S, 3, 1> imu_bias(v[0], v[1], v[2]); |
| |
| CeresPoseFilter<S> filter(initial_orientation, mounting_orientation, |
| imu_bias); |
| data->ReviewData(&filter); |
| |
| for (size_t i = 0; i < filter.num_errors(); ++i) { |
| residual[3 * i + 0] = filter.errorx(i); |
| residual[3 * i + 1] = filter.errory(i); |
| residual[3 * i + 2] = filter.errorz(i); |
| } |
| |
| return true; |
| } |
| }; |
| |
| void Main(int argc, char **argv) { |
| CalibrationData data; |
| |
| { |
| // Now, accumulate all the data into the data object. |
| aos::logger::LogReader reader( |
| aos::logger::SortParts(aos::logger::FindLogs(argc, argv))); |
| |
| aos::SimulatedEventLoopFactory factory(reader.configuration()); |
| reader.Register(&factory); |
| |
| CHECK(aos::configuration::MultiNode(reader.configuration())); |
| |
| // Find the nodes we care about. |
| const aos::Node *const roborio_node = |
| aos::configuration::GetNode(factory.configuration(), "roborio"); |
| |
| std::optional<uint16_t> pi_number = aos::network::ParsePiNumber(FLAGS_pi); |
| CHECK(pi_number); |
| LOG(INFO) << "Pi " << *pi_number; |
| const aos::Node *const pi_node = aos::configuration::GetNode( |
| factory.configuration(), absl::StrCat("pi", *pi_number)); |
| |
| LOG(INFO) << "roboRIO " << aos::FlatbufferToJson(roborio_node); |
| LOG(INFO) << "Pi " << aos::FlatbufferToJson(pi_node); |
| |
| std::unique_ptr<aos::EventLoop> roborio_event_loop = |
| factory.MakeEventLoop("calibration", roborio_node); |
| std::unique_ptr<aos::EventLoop> pi_event_loop = |
| factory.MakeEventLoop("calibration", pi_node); |
| |
| // Now, hook Calibration up to everything. |
| Calibration extractor(&factory, pi_event_loop.get(), |
| roborio_event_loop.get(), FLAGS_pi, &data); |
| |
| factory.Run(); |
| |
| reader.Deregister(); |
| } |
| |
| LOG(INFO) << "Done with event_loop running"; |
| // And now we have it, we can start processing it. |
| |
| Eigen::Quaternion<double> nominal_initial_orientation( |
| frc971::controls::ToQuaternionFromRotationVector( |
| Eigen::Vector3d(0.0, 0.0, M_PI))); |
| Eigen::Quaternion<double> nominal_imu_to_camera( |
| Eigen::AngleAxisd(-0.5 * M_PI, Eigen::Vector3d::UnitX())); |
| |
| Eigen::Quaternion<double> initial_orientation = |
| Eigen::Quaternion<double>::Identity(); |
| Eigen::Quaternion<double> imu_to_camera = |
| Eigen::Quaternion<double>::Identity(); |
| Eigen::Vector3d imu_bias = Eigen::Vector3d::Zero(); |
| |
| { |
| ceres::Problem problem; |
| |
| ceres::EigenQuaternionParameterization *quaternion_local_parameterization = |
| new ceres::EigenQuaternionParameterization(); |
| // Set up the only cost function (also known as residual). This uses |
| // auto-differentiation to obtain the derivative (jacobian). |
| |
| ceres::CostFunction *cost_function = |
| new ceres::AutoDiffCostFunction<CostFunctor, ceres::DYNAMIC, 4, 4, 3>( |
| new CostFunctor(&data), data.camera_samples_size() * 3); |
| problem.AddResidualBlock(cost_function, nullptr, |
| initial_orientation.coeffs().data(), |
| imu_to_camera.coeffs().data(), imu_bias.data()); |
| problem.SetParameterization(initial_orientation.coeffs().data(), |
| quaternion_local_parameterization); |
| problem.SetParameterization(imu_to_camera.coeffs().data(), |
| quaternion_local_parameterization); |
| for (int i = 0; i < 3; ++i) { |
| problem.SetParameterLowerBound(imu_bias.data(), i, -0.05); |
| problem.SetParameterUpperBound(imu_bias.data(), i, 0.05); |
| } |
| |
| // Run the solver! |
| ceres::Solver::Options options; |
| options.minimizer_progress_to_stdout = true; |
| options.gradient_tolerance = 1e-12; |
| options.function_tolerance = 1e-16; |
| options.parameter_tolerance = 1e-12; |
| ceres::Solver::Summary summary; |
| Solve(options, &problem, &summary); |
| LOG(INFO) << summary.FullReport(); |
| |
| LOG(INFO) << "Nominal initial_orientation " |
| << nominal_initial_orientation.coeffs().transpose(); |
| LOG(INFO) << "Nominal imu_to_camera " |
| << nominal_imu_to_camera.coeffs().transpose(); |
| |
| LOG(INFO) << "initial_orientation " |
| << initial_orientation.coeffs().transpose(); |
| LOG(INFO) << "imu_to_camera " << imu_to_camera.coeffs().transpose(); |
| LOG(INFO) << "imu_to_camera(rotation) " |
| << frc971::controls::ToRotationVectorFromQuaternion(imu_to_camera) |
| .transpose(); |
| LOG(INFO) << "imu_to_camera delta " |
| << frc971::controls::ToRotationVectorFromQuaternion( |
| imu_to_camera * nominal_imu_to_camera.inverse()) |
| .transpose(); |
| LOG(INFO) << "imu_bias " << imu_bias.transpose(); |
| } |
| |
| { |
| PoseFilter filter(initial_orientation, imu_to_camera, imu_bias); |
| data.ReviewData(&filter); |
| } |
| } |
| |
| } // namespace vision |
| } // namespace frc971 |
| |
| int main(int argc, char **argv) { |
| aos::InitGoogle(&argc, &argv); |
| |
| frc971::vision::Main(argc, argv); |
| } |