Austin Schuh | dace2a6 | 2020-08-18 10:56:48 -0700 | [diff] [blame^] | 1 | /* Factoring with Pollard's rho method. |
| 2 | |
| 3 | Copyright 1995, 1997-2003, 2005, 2009, 2012, 2015 Free Software |
| 4 | Foundation, Inc. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it under |
| 7 | the terms of the GNU General Public License as published by the Free Software |
| 8 | Foundation; either version 3 of the License, or (at your option) any later |
| 9 | version. |
| 10 | |
| 11 | This program is distributed in the hope that it will be useful, but WITHOUT ANY |
| 12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A |
| 13 | PARTICULAR PURPOSE. See the GNU General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License along with |
| 16 | this program. If not, see https://www.gnu.org/licenses/. */ |
| 17 | |
| 18 | |
| 19 | #include <stdlib.h> |
| 20 | #include <stdio.h> |
| 21 | #include <string.h> |
| 22 | #include <inttypes.h> |
| 23 | |
| 24 | #include "gmp.h" |
| 25 | |
| 26 | static unsigned char primes_diff[] = { |
| 27 | #define P(a,b,c) a, |
| 28 | #include "primes.h" |
| 29 | #undef P |
| 30 | }; |
| 31 | #define PRIMES_PTAB_ENTRIES (sizeof(primes_diff) / sizeof(primes_diff[0])) |
| 32 | |
| 33 | int flag_verbose = 0; |
| 34 | |
| 35 | /* Prove primality or run probabilistic tests. */ |
| 36 | int flag_prove_primality = 1; |
| 37 | |
| 38 | /* Number of Miller-Rabin tests to run when not proving primality. */ |
| 39 | #define MR_REPS 25 |
| 40 | |
| 41 | struct factors |
| 42 | { |
| 43 | mpz_t *p; |
| 44 | unsigned long *e; |
| 45 | long nfactors; |
| 46 | }; |
| 47 | |
| 48 | void factor (mpz_t, struct factors *); |
| 49 | |
| 50 | void |
| 51 | factor_init (struct factors *factors) |
| 52 | { |
| 53 | factors->p = malloc (1); |
| 54 | factors->e = malloc (1); |
| 55 | factors->nfactors = 0; |
| 56 | } |
| 57 | |
| 58 | void |
| 59 | factor_clear (struct factors *factors) |
| 60 | { |
| 61 | int i; |
| 62 | |
| 63 | for (i = 0; i < factors->nfactors; i++) |
| 64 | mpz_clear (factors->p[i]); |
| 65 | |
| 66 | free (factors->p); |
| 67 | free (factors->e); |
| 68 | } |
| 69 | |
| 70 | void |
| 71 | factor_insert (struct factors *factors, mpz_t prime) |
| 72 | { |
| 73 | long nfactors = factors->nfactors; |
| 74 | mpz_t *p = factors->p; |
| 75 | unsigned long *e = factors->e; |
| 76 | long i, j; |
| 77 | |
| 78 | /* Locate position for insert new or increment e. */ |
| 79 | for (i = nfactors - 1; i >= 0; i--) |
| 80 | { |
| 81 | if (mpz_cmp (p[i], prime) <= 0) |
| 82 | break; |
| 83 | } |
| 84 | |
| 85 | if (i < 0 || mpz_cmp (p[i], prime) != 0) |
| 86 | { |
| 87 | p = realloc (p, (nfactors + 1) * sizeof p[0]); |
| 88 | e = realloc (e, (nfactors + 1) * sizeof e[0]); |
| 89 | |
| 90 | mpz_init (p[nfactors]); |
| 91 | for (j = nfactors - 1; j > i; j--) |
| 92 | { |
| 93 | mpz_set (p[j + 1], p[j]); |
| 94 | e[j + 1] = e[j]; |
| 95 | } |
| 96 | mpz_set (p[i + 1], prime); |
| 97 | e[i + 1] = 1; |
| 98 | |
| 99 | factors->p = p; |
| 100 | factors->e = e; |
| 101 | factors->nfactors = nfactors + 1; |
| 102 | } |
| 103 | else |
| 104 | { |
| 105 | e[i] += 1; |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | void |
| 110 | factor_insert_ui (struct factors *factors, unsigned long prime) |
| 111 | { |
| 112 | mpz_t pz; |
| 113 | |
| 114 | mpz_init_set_ui (pz, prime); |
| 115 | factor_insert (factors, pz); |
| 116 | mpz_clear (pz); |
| 117 | } |
| 118 | |
| 119 | |
| 120 | void |
| 121 | factor_using_division (mpz_t t, struct factors *factors) |
| 122 | { |
| 123 | mpz_t q; |
| 124 | unsigned long int p; |
| 125 | int i; |
| 126 | |
| 127 | if (flag_verbose > 0) |
| 128 | { |
| 129 | printf ("[trial division] "); |
| 130 | } |
| 131 | |
| 132 | mpz_init (q); |
| 133 | |
| 134 | p = mpz_scan1 (t, 0); |
| 135 | mpz_fdiv_q_2exp (t, t, p); |
| 136 | while (p) |
| 137 | { |
| 138 | factor_insert_ui (factors, 2); |
| 139 | --p; |
| 140 | } |
| 141 | |
| 142 | p = 3; |
| 143 | for (i = 1; i <= PRIMES_PTAB_ENTRIES;) |
| 144 | { |
| 145 | if (! mpz_divisible_ui_p (t, p)) |
| 146 | { |
| 147 | p += primes_diff[i++]; |
| 148 | if (mpz_cmp_ui (t, p * p) < 0) |
| 149 | break; |
| 150 | } |
| 151 | else |
| 152 | { |
| 153 | mpz_tdiv_q_ui (t, t, p); |
| 154 | factor_insert_ui (factors, p); |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | mpz_clear (q); |
| 159 | } |
| 160 | |
| 161 | static int |
| 162 | mp_millerrabin (mpz_srcptr n, mpz_srcptr nm1, mpz_ptr x, mpz_ptr y, |
| 163 | mpz_srcptr q, unsigned long int k) |
| 164 | { |
| 165 | unsigned long int i; |
| 166 | |
| 167 | mpz_powm (y, x, q, n); |
| 168 | |
| 169 | if (mpz_cmp_ui (y, 1) == 0 || mpz_cmp (y, nm1) == 0) |
| 170 | return 1; |
| 171 | |
| 172 | for (i = 1; i < k; i++) |
| 173 | { |
| 174 | mpz_powm_ui (y, y, 2, n); |
| 175 | if (mpz_cmp (y, nm1) == 0) |
| 176 | return 1; |
| 177 | if (mpz_cmp_ui (y, 1) == 0) |
| 178 | return 0; |
| 179 | } |
| 180 | return 0; |
| 181 | } |
| 182 | |
| 183 | int |
| 184 | mp_prime_p (mpz_t n) |
| 185 | { |
| 186 | int k, r, is_prime; |
| 187 | mpz_t q, a, nm1, tmp; |
| 188 | struct factors factors; |
| 189 | |
| 190 | if (mpz_cmp_ui (n, 1) <= 0) |
| 191 | return 0; |
| 192 | |
| 193 | /* We have already casted out small primes. */ |
| 194 | if (mpz_cmp_ui (n, (long) FIRST_OMITTED_PRIME * FIRST_OMITTED_PRIME) < 0) |
| 195 | return 1; |
| 196 | |
| 197 | mpz_inits (q, a, nm1, tmp, NULL); |
| 198 | |
| 199 | /* Precomputation for Miller-Rabin. */ |
| 200 | mpz_sub_ui (nm1, n, 1); |
| 201 | |
| 202 | /* Find q and k, where q is odd and n = 1 + 2**k * q. */ |
| 203 | k = mpz_scan1 (nm1, 0); |
| 204 | mpz_tdiv_q_2exp (q, nm1, k); |
| 205 | |
| 206 | mpz_set_ui (a, 2); |
| 207 | |
| 208 | /* Perform a Miller-Rabin test, finds most composites quickly. */ |
| 209 | if (!mp_millerrabin (n, nm1, a, tmp, q, k)) |
| 210 | { |
| 211 | is_prime = 0; |
| 212 | goto ret2; |
| 213 | } |
| 214 | |
| 215 | if (flag_prove_primality) |
| 216 | { |
| 217 | /* Factor n-1 for Lucas. */ |
| 218 | mpz_set (tmp, nm1); |
| 219 | factor (tmp, &factors); |
| 220 | } |
| 221 | |
| 222 | /* Loop until Lucas proves our number prime, or Miller-Rabin proves our |
| 223 | number composite. */ |
| 224 | for (r = 0; r < PRIMES_PTAB_ENTRIES; r++) |
| 225 | { |
| 226 | int i; |
| 227 | |
| 228 | if (flag_prove_primality) |
| 229 | { |
| 230 | is_prime = 1; |
| 231 | for (i = 0; i < factors.nfactors && is_prime; i++) |
| 232 | { |
| 233 | mpz_divexact (tmp, nm1, factors.p[i]); |
| 234 | mpz_powm (tmp, a, tmp, n); |
| 235 | is_prime = mpz_cmp_ui (tmp, 1) != 0; |
| 236 | } |
| 237 | } |
| 238 | else |
| 239 | { |
| 240 | /* After enough Miller-Rabin runs, be content. */ |
| 241 | is_prime = (r == MR_REPS - 1); |
| 242 | } |
| 243 | |
| 244 | if (is_prime) |
| 245 | goto ret1; |
| 246 | |
| 247 | mpz_add_ui (a, a, primes_diff[r]); /* Establish new base. */ |
| 248 | |
| 249 | if (!mp_millerrabin (n, nm1, a, tmp, q, k)) |
| 250 | { |
| 251 | is_prime = 0; |
| 252 | goto ret1; |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | fprintf (stderr, "Lucas prime test failure. This should not happen\n"); |
| 257 | abort (); |
| 258 | |
| 259 | ret1: |
| 260 | if (flag_prove_primality) |
| 261 | factor_clear (&factors); |
| 262 | ret2: |
| 263 | mpz_clears (q, a, nm1, tmp, NULL); |
| 264 | |
| 265 | return is_prime; |
| 266 | } |
| 267 | |
| 268 | void |
| 269 | factor_using_pollard_rho (mpz_t n, unsigned long a, struct factors *factors) |
| 270 | { |
| 271 | mpz_t x, z, y, P; |
| 272 | mpz_t t, t2; |
| 273 | unsigned long long k, l, i; |
| 274 | |
| 275 | if (flag_verbose > 0) |
| 276 | { |
| 277 | printf ("[pollard-rho (%lu)] ", a); |
| 278 | } |
| 279 | |
| 280 | mpz_inits (t, t2, NULL); |
| 281 | mpz_init_set_si (y, 2); |
| 282 | mpz_init_set_si (x, 2); |
| 283 | mpz_init_set_si (z, 2); |
| 284 | mpz_init_set_ui (P, 1); |
| 285 | k = 1; |
| 286 | l = 1; |
| 287 | |
| 288 | while (mpz_cmp_ui (n, 1) != 0) |
| 289 | { |
| 290 | for (;;) |
| 291 | { |
| 292 | do |
| 293 | { |
| 294 | mpz_mul (t, x, x); |
| 295 | mpz_mod (x, t, n); |
| 296 | mpz_add_ui (x, x, a); |
| 297 | |
| 298 | mpz_sub (t, z, x); |
| 299 | mpz_mul (t2, P, t); |
| 300 | mpz_mod (P, t2, n); |
| 301 | |
| 302 | if (k % 32 == 1) |
| 303 | { |
| 304 | mpz_gcd (t, P, n); |
| 305 | if (mpz_cmp_ui (t, 1) != 0) |
| 306 | goto factor_found; |
| 307 | mpz_set (y, x); |
| 308 | } |
| 309 | } |
| 310 | while (--k != 0); |
| 311 | |
| 312 | mpz_set (z, x); |
| 313 | k = l; |
| 314 | l = 2 * l; |
| 315 | for (i = 0; i < k; i++) |
| 316 | { |
| 317 | mpz_mul (t, x, x); |
| 318 | mpz_mod (x, t, n); |
| 319 | mpz_add_ui (x, x, a); |
| 320 | } |
| 321 | mpz_set (y, x); |
| 322 | } |
| 323 | |
| 324 | factor_found: |
| 325 | do |
| 326 | { |
| 327 | mpz_mul (t, y, y); |
| 328 | mpz_mod (y, t, n); |
| 329 | mpz_add_ui (y, y, a); |
| 330 | |
| 331 | mpz_sub (t, z, y); |
| 332 | mpz_gcd (t, t, n); |
| 333 | } |
| 334 | while (mpz_cmp_ui (t, 1) == 0); |
| 335 | |
| 336 | mpz_divexact (n, n, t); /* divide by t, before t is overwritten */ |
| 337 | |
| 338 | if (!mp_prime_p (t)) |
| 339 | { |
| 340 | if (flag_verbose > 0) |
| 341 | { |
| 342 | printf ("[composite factor--restarting pollard-rho] "); |
| 343 | } |
| 344 | factor_using_pollard_rho (t, a + 1, factors); |
| 345 | } |
| 346 | else |
| 347 | { |
| 348 | factor_insert (factors, t); |
| 349 | } |
| 350 | |
| 351 | if (mp_prime_p (n)) |
| 352 | { |
| 353 | factor_insert (factors, n); |
| 354 | break; |
| 355 | } |
| 356 | |
| 357 | mpz_mod (x, x, n); |
| 358 | mpz_mod (z, z, n); |
| 359 | mpz_mod (y, y, n); |
| 360 | } |
| 361 | |
| 362 | mpz_clears (P, t2, t, z, x, y, NULL); |
| 363 | } |
| 364 | |
| 365 | void |
| 366 | factor (mpz_t t, struct factors *factors) |
| 367 | { |
| 368 | factor_init (factors); |
| 369 | |
| 370 | if (mpz_sgn (t) != 0) |
| 371 | { |
| 372 | factor_using_division (t, factors); |
| 373 | |
| 374 | if (mpz_cmp_ui (t, 1) != 0) |
| 375 | { |
| 376 | if (flag_verbose > 0) |
| 377 | { |
| 378 | printf ("[is number prime?] "); |
| 379 | } |
| 380 | if (mp_prime_p (t)) |
| 381 | factor_insert (factors, t); |
| 382 | else |
| 383 | factor_using_pollard_rho (t, 1, factors); |
| 384 | } |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | int |
| 389 | main (int argc, char *argv[]) |
| 390 | { |
| 391 | mpz_t t; |
| 392 | int i, j, k; |
| 393 | struct factors factors; |
| 394 | |
| 395 | while (argc > 1) |
| 396 | { |
| 397 | if (!strcmp (argv[1], "-v")) |
| 398 | flag_verbose = 1; |
| 399 | else if (!strcmp (argv[1], "-w")) |
| 400 | flag_prove_primality = 0; |
| 401 | else |
| 402 | break; |
| 403 | |
| 404 | argv++; |
| 405 | argc--; |
| 406 | } |
| 407 | |
| 408 | mpz_init (t); |
| 409 | if (argc > 1) |
| 410 | { |
| 411 | for (i = 1; i < argc; i++) |
| 412 | { |
| 413 | mpz_set_str (t, argv[i], 0); |
| 414 | |
| 415 | gmp_printf ("%Zd:", t); |
| 416 | factor (t, &factors); |
| 417 | |
| 418 | for (j = 0; j < factors.nfactors; j++) |
| 419 | for (k = 0; k < factors.e[j]; k++) |
| 420 | gmp_printf (" %Zd", factors.p[j]); |
| 421 | |
| 422 | puts (""); |
| 423 | factor_clear (&factors); |
| 424 | } |
| 425 | } |
| 426 | else |
| 427 | { |
| 428 | for (;;) |
| 429 | { |
| 430 | mpz_inp_str (t, stdin, 0); |
| 431 | if (feof (stdin)) |
| 432 | break; |
| 433 | |
| 434 | gmp_printf ("%Zd:", t); |
| 435 | factor (t, &factors); |
| 436 | |
| 437 | for (j = 0; j < factors.nfactors; j++) |
| 438 | for (k = 0; k < factors.e[j]; k++) |
| 439 | gmp_printf (" %Zd", factors.p[j]); |
| 440 | |
| 441 | puts (""); |
| 442 | factor_clear (&factors); |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | exit (0); |
| 447 | } |