Add libgmp 6.2.0 to third_party

Don't build it yet.  That will come in the next review.

Change-Id: Idf3266558165e5ab45f4a41c98cc8c838c8244d5
diff --git a/third_party/gmp/demos/factorize.c b/third_party/gmp/demos/factorize.c
new file mode 100644
index 0000000..91e6455
--- /dev/null
+++ b/third_party/gmp/demos/factorize.c
@@ -0,0 +1,447 @@
+/* Factoring with Pollard's rho method.
+
+Copyright 1995, 1997-2003, 2005, 2009, 2012, 2015 Free Software
+Foundation, Inc.
+
+This program is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free Software
+Foundation; either version 3 of the License, or (at your option) any later
+version.
+
+This program is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+PARTICULAR PURPOSE.  See the GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License along with
+this program.  If not, see https://www.gnu.org/licenses/.  */
+
+
+#include <stdlib.h>
+#include <stdio.h>
+#include <string.h>
+#include <inttypes.h>
+
+#include "gmp.h"
+
+static unsigned char primes_diff[] = {
+#define P(a,b,c) a,
+#include "primes.h"
+#undef P
+};
+#define PRIMES_PTAB_ENTRIES (sizeof(primes_diff) / sizeof(primes_diff[0]))
+
+int flag_verbose = 0;
+
+/* Prove primality or run probabilistic tests.  */
+int flag_prove_primality = 1;
+
+/* Number of Miller-Rabin tests to run when not proving primality. */
+#define MR_REPS 25
+
+struct factors
+{
+  mpz_t         *p;
+  unsigned long *e;
+  long nfactors;
+};
+
+void factor (mpz_t, struct factors *);
+
+void
+factor_init (struct factors *factors)
+{
+  factors->p = malloc (1);
+  factors->e = malloc (1);
+  factors->nfactors = 0;
+}
+
+void
+factor_clear (struct factors *factors)
+{
+  int i;
+
+  for (i = 0; i < factors->nfactors; i++)
+    mpz_clear (factors->p[i]);
+
+  free (factors->p);
+  free (factors->e);
+}
+
+void
+factor_insert (struct factors *factors, mpz_t prime)
+{
+  long    nfactors  = factors->nfactors;
+  mpz_t         *p  = factors->p;
+  unsigned long *e  = factors->e;
+  long i, j;
+
+  /* Locate position for insert new or increment e.  */
+  for (i = nfactors - 1; i >= 0; i--)
+    {
+      if (mpz_cmp (p[i], prime) <= 0)
+	break;
+    }
+
+  if (i < 0 || mpz_cmp (p[i], prime) != 0)
+    {
+      p = realloc (p, (nfactors + 1) * sizeof p[0]);
+      e = realloc (e, (nfactors + 1) * sizeof e[0]);
+
+      mpz_init (p[nfactors]);
+      for (j = nfactors - 1; j > i; j--)
+	{
+	  mpz_set (p[j + 1], p[j]);
+	  e[j + 1] = e[j];
+	}
+      mpz_set (p[i + 1], prime);
+      e[i + 1] = 1;
+
+      factors->p = p;
+      factors->e = e;
+      factors->nfactors = nfactors + 1;
+    }
+  else
+    {
+      e[i] += 1;
+    }
+}
+
+void
+factor_insert_ui (struct factors *factors, unsigned long prime)
+{
+  mpz_t pz;
+
+  mpz_init_set_ui (pz, prime);
+  factor_insert (factors, pz);
+  mpz_clear (pz);
+}
+
+
+void
+factor_using_division (mpz_t t, struct factors *factors)
+{
+  mpz_t q;
+  unsigned long int p;
+  int i;
+
+  if (flag_verbose > 0)
+    {
+      printf ("[trial division] ");
+    }
+
+  mpz_init (q);
+
+  p = mpz_scan1 (t, 0);
+  mpz_fdiv_q_2exp (t, t, p);
+  while (p)
+    {
+      factor_insert_ui (factors, 2);
+      --p;
+    }
+
+  p = 3;
+  for (i = 1; i <= PRIMES_PTAB_ENTRIES;)
+    {
+      if (! mpz_divisible_ui_p (t, p))
+	{
+	  p += primes_diff[i++];
+	  if (mpz_cmp_ui (t, p * p) < 0)
+	    break;
+	}
+      else
+	{
+	  mpz_tdiv_q_ui (t, t, p);
+	  factor_insert_ui (factors, p);
+	}
+    }
+
+  mpz_clear (q);
+}
+
+static int
+mp_millerrabin (mpz_srcptr n, mpz_srcptr nm1, mpz_ptr x, mpz_ptr y,
+		mpz_srcptr q, unsigned long int k)
+{
+  unsigned long int i;
+
+  mpz_powm (y, x, q, n);
+
+  if (mpz_cmp_ui (y, 1) == 0 || mpz_cmp (y, nm1) == 0)
+    return 1;
+
+  for (i = 1; i < k; i++)
+    {
+      mpz_powm_ui (y, y, 2, n);
+      if (mpz_cmp (y, nm1) == 0)
+	return 1;
+      if (mpz_cmp_ui (y, 1) == 0)
+	return 0;
+    }
+  return 0;
+}
+
+int
+mp_prime_p (mpz_t n)
+{
+  int k, r, is_prime;
+  mpz_t q, a, nm1, tmp;
+  struct factors factors;
+
+  if (mpz_cmp_ui (n, 1) <= 0)
+    return 0;
+
+  /* We have already casted out small primes. */
+  if (mpz_cmp_ui (n, (long) FIRST_OMITTED_PRIME * FIRST_OMITTED_PRIME) < 0)
+    return 1;
+
+  mpz_inits (q, a, nm1, tmp, NULL);
+
+  /* Precomputation for Miller-Rabin.  */
+  mpz_sub_ui (nm1, n, 1);
+
+  /* Find q and k, where q is odd and n = 1 + 2**k * q.  */
+  k = mpz_scan1 (nm1, 0);
+  mpz_tdiv_q_2exp (q, nm1, k);
+
+  mpz_set_ui (a, 2);
+
+  /* Perform a Miller-Rabin test, finds most composites quickly.  */
+  if (!mp_millerrabin (n, nm1, a, tmp, q, k))
+    {
+      is_prime = 0;
+      goto ret2;
+    }
+
+  if (flag_prove_primality)
+    {
+      /* Factor n-1 for Lucas.  */
+      mpz_set (tmp, nm1);
+      factor (tmp, &factors);
+    }
+
+  /* Loop until Lucas proves our number prime, or Miller-Rabin proves our
+     number composite.  */
+  for (r = 0; r < PRIMES_PTAB_ENTRIES; r++)
+    {
+      int i;
+
+      if (flag_prove_primality)
+	{
+	  is_prime = 1;
+	  for (i = 0; i < factors.nfactors && is_prime; i++)
+	    {
+	      mpz_divexact (tmp, nm1, factors.p[i]);
+	      mpz_powm (tmp, a, tmp, n);
+	      is_prime = mpz_cmp_ui (tmp, 1) != 0;
+	    }
+	}
+      else
+	{
+	  /* After enough Miller-Rabin runs, be content. */
+	  is_prime = (r == MR_REPS - 1);
+	}
+
+      if (is_prime)
+	goto ret1;
+
+      mpz_add_ui (a, a, primes_diff[r]);	/* Establish new base.  */
+
+      if (!mp_millerrabin (n, nm1, a, tmp, q, k))
+	{
+	  is_prime = 0;
+	  goto ret1;
+	}
+    }
+
+  fprintf (stderr, "Lucas prime test failure.  This should not happen\n");
+  abort ();
+
+ ret1:
+  if (flag_prove_primality)
+    factor_clear (&factors);
+ ret2:
+  mpz_clears (q, a, nm1, tmp, NULL);
+
+  return is_prime;
+}
+
+void
+factor_using_pollard_rho (mpz_t n, unsigned long a, struct factors *factors)
+{
+  mpz_t x, z, y, P;
+  mpz_t t, t2;
+  unsigned long long k, l, i;
+
+  if (flag_verbose > 0)
+    {
+      printf ("[pollard-rho (%lu)] ", a);
+    }
+
+  mpz_inits (t, t2, NULL);
+  mpz_init_set_si (y, 2);
+  mpz_init_set_si (x, 2);
+  mpz_init_set_si (z, 2);
+  mpz_init_set_ui (P, 1);
+  k = 1;
+  l = 1;
+
+  while (mpz_cmp_ui (n, 1) != 0)
+    {
+      for (;;)
+	{
+	  do
+	    {
+	      mpz_mul (t, x, x);
+	      mpz_mod (x, t, n);
+	      mpz_add_ui (x, x, a);
+
+	      mpz_sub (t, z, x);
+	      mpz_mul (t2, P, t);
+	      mpz_mod (P, t2, n);
+
+	      if (k % 32 == 1)
+		{
+		  mpz_gcd (t, P, n);
+		  if (mpz_cmp_ui (t, 1) != 0)
+		    goto factor_found;
+		  mpz_set (y, x);
+		}
+	    }
+	  while (--k != 0);
+
+	  mpz_set (z, x);
+	  k = l;
+	  l = 2 * l;
+	  for (i = 0; i < k; i++)
+	    {
+	      mpz_mul (t, x, x);
+	      mpz_mod (x, t, n);
+	      mpz_add_ui (x, x, a);
+	    }
+	  mpz_set (y, x);
+	}
+
+    factor_found:
+      do
+	{
+	  mpz_mul (t, y, y);
+	  mpz_mod (y, t, n);
+	  mpz_add_ui (y, y, a);
+
+	  mpz_sub (t, z, y);
+	  mpz_gcd (t, t, n);
+	}
+      while (mpz_cmp_ui (t, 1) == 0);
+
+      mpz_divexact (n, n, t);	/* divide by t, before t is overwritten */
+
+      if (!mp_prime_p (t))
+	{
+	  if (flag_verbose > 0)
+	    {
+	      printf ("[composite factor--restarting pollard-rho] ");
+	    }
+	  factor_using_pollard_rho (t, a + 1, factors);
+	}
+      else
+	{
+	  factor_insert (factors, t);
+	}
+
+      if (mp_prime_p (n))
+	{
+	  factor_insert (factors, n);
+	  break;
+	}
+
+      mpz_mod (x, x, n);
+      mpz_mod (z, z, n);
+      mpz_mod (y, y, n);
+    }
+
+  mpz_clears (P, t2, t, z, x, y, NULL);
+}
+
+void
+factor (mpz_t t, struct factors *factors)
+{
+  factor_init (factors);
+
+  if (mpz_sgn (t) != 0)
+    {
+      factor_using_division (t, factors);
+
+      if (mpz_cmp_ui (t, 1) != 0)
+	{
+	  if (flag_verbose > 0)
+	    {
+	      printf ("[is number prime?] ");
+	    }
+	  if (mp_prime_p (t))
+	    factor_insert (factors, t);
+	  else
+	    factor_using_pollard_rho (t, 1, factors);
+	}
+    }
+}
+
+int
+main (int argc, char *argv[])
+{
+  mpz_t t;
+  int i, j, k;
+  struct factors factors;
+
+  while (argc > 1)
+    {
+      if (!strcmp (argv[1], "-v"))
+	flag_verbose = 1;
+      else if (!strcmp (argv[1], "-w"))
+	flag_prove_primality = 0;
+      else
+	break;
+
+      argv++;
+      argc--;
+    }
+
+  mpz_init (t);
+  if (argc > 1)
+    {
+      for (i = 1; i < argc; i++)
+	{
+	  mpz_set_str (t, argv[i], 0);
+
+	  gmp_printf ("%Zd:", t);
+	  factor (t, &factors);
+
+	  for (j = 0; j < factors.nfactors; j++)
+	    for (k = 0; k < factors.e[j]; k++)
+	      gmp_printf (" %Zd", factors.p[j]);
+
+	  puts ("");
+	  factor_clear (&factors);
+	}
+    }
+  else
+    {
+      for (;;)
+	{
+	  mpz_inp_str (t, stdin, 0);
+	  if (feof (stdin))
+	    break;
+
+	  gmp_printf ("%Zd:", t);
+	  factor (t, &factors);
+
+	  for (j = 0; j < factors.nfactors; j++)
+	    for (k = 0; k < factors.e[j]; k++)
+	      gmp_printf (" %Zd", factors.p[j]);
+
+	  puts ("");
+	  factor_clear (&factors);
+	}
+    }
+
+  exit (0);
+}