blob: c9ded12345815624479454cf0806020ef3513de5 [file] [log] [blame]
Jasmine Zhoua3a541f2015-07-21 21:15:25 -07001#!/usr/bin/python
2
3import control_loop
4import controls
5import numpy
6import sys
7import matplotlib
8from matplotlib import pylab
9
10class Elevator(control_loop.ControlLoop):
11 def __init__(self, name="Elevator", mass=None):
12 super(Elevator, self).__init__(name)
13 # Stall Torque in N m
14 self.stall_torque = 2.402
15 # Stall Current in Amps
16 self.stall_current = 126.145
17 # Free Speed in RPM
18 self.free_speed = 5015.562
19 # Free Current in Amps
20 self.free_current = 1.170
21 # Mass of the Elevator
22 if mass is None:
23 self.mass = 5.0
24 else:
25 self.mass = mass
26
27 # Number of motors
28 self.num_motors = 2.0
29 # Resistance of the motor
30 self.resistance = 12.0 / self.stall_current
31 # Motor velocity constant
32 self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
33 (12.0 - self.resistance * self.free_current))
34 # Torque constant
35 self.Kt = (self.num_motors * self.stall_torque) / self.stall_current
36 # Gear ratio
37 self.G = 8
38 # Radius of pulley
39 self.r = 0.0254
40
41 # Control loop time step
42 self.dt = 0.005
43
44 # State is [position, velocity]
45 # Input is [Voltage]
46
47 C1 = self.Kt * self.G * self.G / (self.Kv * self.resistance * self.r * self.r * self.mass)
48 C2 = self.G * self.Kt / (self.resistance * self.r * self.mass)
49
50 self.A_continuous = numpy.matrix(
51 [[0, 1],
52 [0, -C1]])
53
54 # Start with the unmodified input
55 self.B_continuous = numpy.matrix(
56 [[0],
57 [C2]])
58
59 self.C = numpy.matrix([[1, 0]])
60 self.D = numpy.matrix([[0]])
61
62 self.A, self.B = self.ContinuousToDiscrete(
63 self.A_continuous, self.B_continuous, self.dt)
64
65 controlability = controls.ctrb(self.A, self.B);
66
67 q_pos = 0.015
68 q_vel = 0.5
69 self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0],
70 [0.0, (1.0 / (q_vel ** 2.0))]])
71
72 self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0))]])
73 self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
74
75 print 'K', self.K
76 print 'Poles are', numpy.linalg.eig(self.A - self.B * self.K)[0]
77
78 self.rpl = 0.30
79 self.ipl = 0.10
80 self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
81 self.rpl - 1j * self.ipl])
82
83 # print 'L is', self.L
84
85 q_pos = 0.05
86 q_vel = 2.65
87 self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0],
88 [0.0, (q_vel ** 2.0)]])
89
90 r_volts = 0.025
91 self.R = numpy.matrix([[(r_volts ** 2.0)]])
92
93 self.KalmanGain, self.Q_steady = controls.kalman(
94 A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
95
96 # print 'Kal', self.KalmanGain
97 self.L = self.A * self.KalmanGain
98 print 'KalL is', self.L
99
100 # The box formed by U_min and U_max must encompass all possible values,
101 # or else Austin's code gets angry.
102 self.U_max = numpy.matrix([[12.0]])
103 self.U_min = numpy.matrix([[-12.0]])
104
105 self.InitializeState()
106
107class IntegralElevator(Elevator):
108 def __init__(self, name="IntegralElevator", mass=None):
109 super(IntegralElevator, self).__init__(name=name, mass=mass)
110
111 self.A_continuous_unaugmented = self.A_continuous
112 self.B_continuous_unaugmented = self.B_continuous
113
114 self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
115 self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
116 self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
117
118 self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
119 self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
120
121 self.C_unaugmented = self.C
122 self.C = numpy.matrix(numpy.zeros((1, 3)))
123 self.C[0:1, 0:2] = self.C_unaugmented
124
125 self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, self.B_continuous, self.dt)
126
127 q_pos = 0.08
Austin Schuhd54e0c42015-09-13 08:15:55 +0000128 q_vel = 4.00
Jasmine Zhoua3a541f2015-07-21 21:15:25 -0700129 q_voltage = 6.0
130 self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0],
131 [0.0, (q_vel ** 2.0), 0.0],
132 [0.0, 0.0, (q_voltage ** 2.0)]])
133
134 r_pos = 0.05
135 self.R = numpy.matrix([[(r_pos ** 2.0)]])
136
137 self.KalmanGain, self.Q_steady = controls.kalman(
138 A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
139 self.L = self.A * self.KalmanGain
140
141 self.K_unaugmented = self.K
142 self.K = numpy.matrix(numpy.zeros((1, 3)))
143 self.K[0, 0:2] = self.K_unaugmented
144 self.K[0, 2] = 1
145
146 self.InitializeState()
147
148
149class ScenarioPlotter(object):
150 def __init__(self):
151 # Various lists for graphing things.
152 self.t = []
153 self.x = []
154 self.v = []
155 self.a = []
156 self.x_hat = []
157 self.u = []
158
159 def run_test(self, elevator, goal,
160 iterations=200, controller_elevator=None,
161 observer_elevator=None):
162 """Runs the Elevator plant with an initial condition and goal.
163
164 Args:
165 Elevator: elevator object to use.
166 initial_X: starting state.
167 goal: goal state.
168 iterations: Number of timesteps to run the model for.
169 controller_Elevator: elevator object to get K from, or None if we should
170 use Elevator.
171 observer_Elevator: elevator object to use for the observer, or None if we should
172 use the actual state.
173 """
174
175 if controller_elevator is None:
176 controller_elevator = elevator
177
178 vbat = 10.0
179 if self.t:
180 initial_t = self.t[-1] + elevator.dt
181 else:
182 initial_t = 0
183 for i in xrange(iterations):
184 X_hat = elevator.X
185 if observer_elevator is not None:
186 X_hat = observer_elevator.X_hat
187 self.x_hat.append(observer_elevator.X_hat[0, 0])
188 gravity_compensation = 9.8 * elevator.mass * elevator.r / elevator.G / elevator.Kt * elevator.resistance
189
190 U = controller_elevator.K * (goal - X_hat)
191 U[0, 0] = numpy.clip(U[0, 0], -vbat , vbat )
192 self.x.append(elevator.X[0, 0])
193 if self.v:
194 last_v = self.v[-1]
195 else:
196 last_v = 0
197 self.v.append(elevator.X[1, 0])
198 self.a.append((self.v[-1] - last_v) / elevator.dt)
199
200 if observer_elevator is not None:
201 observer_elevator.Y = elevator.Y
202 observer_elevator.CorrectObserver(U)
203
204 elevator.Update(U - gravity_compensation)
205
206 if observer_elevator is not None:
207 observer_elevator.PredictObserver(U)
208
209 self.t.append(initial_t + i * elevator.dt)
210 self.u.append(U[0, 0])
211# if numpy.abs((goal - X_hat)[0:2, 0]).sum() < .025:
212# print "Time: ", self.t[-1]
213# break
214
215 print "Time: ", self.t[-1]
216
217
218 def Plot(self):
219 pylab.subplot(3, 1, 1)
220 pylab.plot(self.t, self.x, label='x')
221 pylab.plot(self.t, self.x_hat, label='x_hat')
222 pylab.legend()
223
224 pylab.subplot(3, 1, 2)
225 pylab.plot(self.t, self.u, label='u')
226
227 pylab.subplot(3, 1, 3)
228 pylab.plot(self.t, self.a, label='a')
229
230 pylab.legend()
231 pylab.show()
232
233
234def main(argv):
235 loaded_mass = 7+4.0
236 #loaded_mass = 0
237 #observer_elevator = None
238
239 # Test moving the Elevator
240 initial_X = numpy.matrix([[0.0], [0.0]])
241 up_R = numpy.matrix([[0.4572], [0.0], [0.0]])
242 down_R = numpy.matrix([[0.0], [0.0], [0.0]])
243 totemass = 3.54
244 scenario_plotter = ScenarioPlotter()
245
246 elevator_controller = IntegralElevator(mass=4*totemass + loaded_mass)
247 observer_elevator = IntegralElevator(mass=4*totemass + loaded_mass)
248
249 for i in xrange(0, 7):
250 elevator = Elevator(mass=i*totemass + loaded_mass)
251 print 'Actual poles are', numpy.linalg.eig(elevator.A - elevator.B * elevator_controller.K[0, 0:2])[0]
252
253 elevator.X = initial_X
254 scenario_plotter.run_test(elevator, goal=up_R, controller_elevator=elevator_controller,
255 observer_elevator=observer_elevator, iterations=200)
256 scenario_plotter.run_test(elevator, goal=down_R, controller_elevator=elevator_controller,
257 observer_elevator=observer_elevator, iterations=200)
258
259 scenario_plotter.Plot()
260
261 # Write the generated constants out to a file.
Jasmine Zhoudde7a772015-09-11 23:08:52 -0700262 if len(argv) != 5:
263 print "Expected .h file name and .cc file name for the Elevator and integral elevator."
Jasmine Zhoua3a541f2015-07-21 21:15:25 -0700264 else:
Austin Schuhd54e0c42015-09-13 08:15:55 +0000265 design_mass = 4*totemass + loaded_mass
266 elevator = Elevator("Elevator", mass=design_mass)
Jasmine Zhoudde7a772015-09-11 23:08:52 -0700267 loop_writer = control_loop.ControlLoopWriter("Elevator", [elevator],
268 namespaces=['bot3', 'control_loops'])
Jasmine Zhoua3a541f2015-07-21 21:15:25 -0700269 if argv[1][-3:] == '.cc':
270 loop_writer.Write(argv[2], argv[1])
271 else:
272 loop_writer.Write(argv[1], argv[2])
273
Austin Schuhd54e0c42015-09-13 08:15:55 +0000274 integral_elevator = IntegralElevator("IntegralElevator", mass=design_mass)
Jasmine Zhoudde7a772015-09-11 23:08:52 -0700275 integral_loop_writer = control_loop.ControlLoopWriter("IntegralElevator", [integral_elevator],
276 namespaces=['bot3', 'control_loops'])
277 if argv[3][-3:] == '.cc':
278 integral_loop_writer.Write(argv[4], argv[3])
279 else:
280 integral_loop_writer.Write(argv[3], argv[4])
281
Jasmine Zhoua3a541f2015-07-21 21:15:25 -0700282if __name__ == '__main__':
283 sys.exit(main(sys.argv))