Jasmine Zhou | a3a541f | 2015-07-21 21:15:25 -0700 | [diff] [blame] | 1 | #!/usr/bin/python |
| 2 | |
| 3 | import control_loop |
| 4 | import controls |
| 5 | import numpy |
| 6 | import sys |
| 7 | import matplotlib |
| 8 | from matplotlib import pylab |
| 9 | |
| 10 | class Elevator(control_loop.ControlLoop): |
| 11 | def __init__(self, name="Elevator", mass=None): |
| 12 | super(Elevator, self).__init__(name) |
| 13 | # Stall Torque in N m |
| 14 | self.stall_torque = 2.402 |
| 15 | # Stall Current in Amps |
| 16 | self.stall_current = 126.145 |
| 17 | # Free Speed in RPM |
| 18 | self.free_speed = 5015.562 |
| 19 | # Free Current in Amps |
| 20 | self.free_current = 1.170 |
| 21 | # Mass of the Elevator |
| 22 | if mass is None: |
| 23 | self.mass = 5.0 |
| 24 | else: |
| 25 | self.mass = mass |
| 26 | |
| 27 | # Number of motors |
| 28 | self.num_motors = 2.0 |
| 29 | # Resistance of the motor |
| 30 | self.resistance = 12.0 / self.stall_current |
| 31 | # Motor velocity constant |
| 32 | self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) / |
| 33 | (12.0 - self.resistance * self.free_current)) |
| 34 | # Torque constant |
| 35 | self.Kt = (self.num_motors * self.stall_torque) / self.stall_current |
| 36 | # Gear ratio |
| 37 | self.G = 8 |
| 38 | # Radius of pulley |
| 39 | self.r = 0.0254 |
| 40 | |
| 41 | # Control loop time step |
| 42 | self.dt = 0.005 |
| 43 | |
| 44 | # State is [position, velocity] |
| 45 | # Input is [Voltage] |
| 46 | |
| 47 | C1 = self.Kt * self.G * self.G / (self.Kv * self.resistance * self.r * self.r * self.mass) |
| 48 | C2 = self.G * self.Kt / (self.resistance * self.r * self.mass) |
| 49 | |
| 50 | self.A_continuous = numpy.matrix( |
| 51 | [[0, 1], |
| 52 | [0, -C1]]) |
| 53 | |
| 54 | # Start with the unmodified input |
| 55 | self.B_continuous = numpy.matrix( |
| 56 | [[0], |
| 57 | [C2]]) |
| 58 | |
| 59 | self.C = numpy.matrix([[1, 0]]) |
| 60 | self.D = numpy.matrix([[0]]) |
| 61 | |
| 62 | self.A, self.B = self.ContinuousToDiscrete( |
| 63 | self.A_continuous, self.B_continuous, self.dt) |
| 64 | |
| 65 | controlability = controls.ctrb(self.A, self.B); |
| 66 | |
| 67 | q_pos = 0.015 |
| 68 | q_vel = 0.5 |
| 69 | self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0], |
| 70 | [0.0, (1.0 / (q_vel ** 2.0))]]) |
| 71 | |
| 72 | self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0))]]) |
| 73 | self.K = controls.dlqr(self.A, self.B, self.Q, self.R) |
| 74 | |
| 75 | print 'K', self.K |
| 76 | print 'Poles are', numpy.linalg.eig(self.A - self.B * self.K)[0] |
| 77 | |
| 78 | self.rpl = 0.30 |
| 79 | self.ipl = 0.10 |
| 80 | self.PlaceObserverPoles([self.rpl + 1j * self.ipl, |
| 81 | self.rpl - 1j * self.ipl]) |
| 82 | |
| 83 | # print 'L is', self.L |
| 84 | |
| 85 | q_pos = 0.05 |
| 86 | q_vel = 2.65 |
| 87 | self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0], |
| 88 | [0.0, (q_vel ** 2.0)]]) |
| 89 | |
| 90 | r_volts = 0.025 |
| 91 | self.R = numpy.matrix([[(r_volts ** 2.0)]]) |
| 92 | |
| 93 | self.KalmanGain, self.Q_steady = controls.kalman( |
| 94 | A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R) |
| 95 | |
| 96 | # print 'Kal', self.KalmanGain |
| 97 | self.L = self.A * self.KalmanGain |
| 98 | print 'KalL is', self.L |
| 99 | |
| 100 | # The box formed by U_min and U_max must encompass all possible values, |
| 101 | # or else Austin's code gets angry. |
| 102 | self.U_max = numpy.matrix([[12.0]]) |
| 103 | self.U_min = numpy.matrix([[-12.0]]) |
| 104 | |
| 105 | self.InitializeState() |
| 106 | |
| 107 | class IntegralElevator(Elevator): |
| 108 | def __init__(self, name="IntegralElevator", mass=None): |
| 109 | super(IntegralElevator, self).__init__(name=name, mass=mass) |
| 110 | |
| 111 | self.A_continuous_unaugmented = self.A_continuous |
| 112 | self.B_continuous_unaugmented = self.B_continuous |
| 113 | |
| 114 | self.A_continuous = numpy.matrix(numpy.zeros((3, 3))) |
| 115 | self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented |
| 116 | self.A_continuous[0:2, 2] = self.B_continuous_unaugmented |
| 117 | |
| 118 | self.B_continuous = numpy.matrix(numpy.zeros((3, 1))) |
| 119 | self.B_continuous[0:2, 0] = self.B_continuous_unaugmented |
| 120 | |
| 121 | self.C_unaugmented = self.C |
| 122 | self.C = numpy.matrix(numpy.zeros((1, 3))) |
| 123 | self.C[0:1, 0:2] = self.C_unaugmented |
| 124 | |
| 125 | self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, self.B_continuous, self.dt) |
| 126 | |
| 127 | q_pos = 0.08 |
| 128 | q_vel = 0.40 |
| 129 | q_voltage = 6.0 |
| 130 | self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0], |
| 131 | [0.0, (q_vel ** 2.0), 0.0], |
| 132 | [0.0, 0.0, (q_voltage ** 2.0)]]) |
| 133 | |
| 134 | r_pos = 0.05 |
| 135 | self.R = numpy.matrix([[(r_pos ** 2.0)]]) |
| 136 | |
| 137 | self.KalmanGain, self.Q_steady = controls.kalman( |
| 138 | A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R) |
| 139 | self.L = self.A * self.KalmanGain |
| 140 | |
| 141 | self.K_unaugmented = self.K |
| 142 | self.K = numpy.matrix(numpy.zeros((1, 3))) |
| 143 | self.K[0, 0:2] = self.K_unaugmented |
| 144 | self.K[0, 2] = 1 |
| 145 | |
| 146 | self.InitializeState() |
| 147 | |
| 148 | |
| 149 | class ScenarioPlotter(object): |
| 150 | def __init__(self): |
| 151 | # Various lists for graphing things. |
| 152 | self.t = [] |
| 153 | self.x = [] |
| 154 | self.v = [] |
| 155 | self.a = [] |
| 156 | self.x_hat = [] |
| 157 | self.u = [] |
| 158 | |
| 159 | def run_test(self, elevator, goal, |
| 160 | iterations=200, controller_elevator=None, |
| 161 | observer_elevator=None): |
| 162 | """Runs the Elevator plant with an initial condition and goal. |
| 163 | |
| 164 | Args: |
| 165 | Elevator: elevator object to use. |
| 166 | initial_X: starting state. |
| 167 | goal: goal state. |
| 168 | iterations: Number of timesteps to run the model for. |
| 169 | controller_Elevator: elevator object to get K from, or None if we should |
| 170 | use Elevator. |
| 171 | observer_Elevator: elevator object to use for the observer, or None if we should |
| 172 | use the actual state. |
| 173 | """ |
| 174 | |
| 175 | if controller_elevator is None: |
| 176 | controller_elevator = elevator |
| 177 | |
| 178 | vbat = 10.0 |
| 179 | if self.t: |
| 180 | initial_t = self.t[-1] + elevator.dt |
| 181 | else: |
| 182 | initial_t = 0 |
| 183 | for i in xrange(iterations): |
| 184 | X_hat = elevator.X |
| 185 | if observer_elevator is not None: |
| 186 | X_hat = observer_elevator.X_hat |
| 187 | self.x_hat.append(observer_elevator.X_hat[0, 0]) |
| 188 | gravity_compensation = 9.8 * elevator.mass * elevator.r / elevator.G / elevator.Kt * elevator.resistance |
| 189 | |
| 190 | U = controller_elevator.K * (goal - X_hat) |
| 191 | U[0, 0] = numpy.clip(U[0, 0], -vbat , vbat ) |
| 192 | self.x.append(elevator.X[0, 0]) |
| 193 | if self.v: |
| 194 | last_v = self.v[-1] |
| 195 | else: |
| 196 | last_v = 0 |
| 197 | self.v.append(elevator.X[1, 0]) |
| 198 | self.a.append((self.v[-1] - last_v) / elevator.dt) |
| 199 | |
| 200 | if observer_elevator is not None: |
| 201 | observer_elevator.Y = elevator.Y |
| 202 | observer_elevator.CorrectObserver(U) |
| 203 | |
| 204 | elevator.Update(U - gravity_compensation) |
| 205 | |
| 206 | if observer_elevator is not None: |
| 207 | observer_elevator.PredictObserver(U) |
| 208 | |
| 209 | self.t.append(initial_t + i * elevator.dt) |
| 210 | self.u.append(U[0, 0]) |
| 211 | # if numpy.abs((goal - X_hat)[0:2, 0]).sum() < .025: |
| 212 | # print "Time: ", self.t[-1] |
| 213 | # break |
| 214 | |
| 215 | print "Time: ", self.t[-1] |
| 216 | |
| 217 | |
| 218 | def Plot(self): |
| 219 | pylab.subplot(3, 1, 1) |
| 220 | pylab.plot(self.t, self.x, label='x') |
| 221 | pylab.plot(self.t, self.x_hat, label='x_hat') |
| 222 | pylab.legend() |
| 223 | |
| 224 | pylab.subplot(3, 1, 2) |
| 225 | pylab.plot(self.t, self.u, label='u') |
| 226 | |
| 227 | pylab.subplot(3, 1, 3) |
| 228 | pylab.plot(self.t, self.a, label='a') |
| 229 | |
| 230 | pylab.legend() |
| 231 | pylab.show() |
| 232 | |
| 233 | |
| 234 | def main(argv): |
| 235 | loaded_mass = 7+4.0 |
| 236 | #loaded_mass = 0 |
| 237 | #observer_elevator = None |
| 238 | |
| 239 | # Test moving the Elevator |
| 240 | initial_X = numpy.matrix([[0.0], [0.0]]) |
| 241 | up_R = numpy.matrix([[0.4572], [0.0], [0.0]]) |
| 242 | down_R = numpy.matrix([[0.0], [0.0], [0.0]]) |
| 243 | totemass = 3.54 |
| 244 | scenario_plotter = ScenarioPlotter() |
| 245 | |
| 246 | elevator_controller = IntegralElevator(mass=4*totemass + loaded_mass) |
| 247 | observer_elevator = IntegralElevator(mass=4*totemass + loaded_mass) |
| 248 | |
| 249 | for i in xrange(0, 7): |
| 250 | elevator = Elevator(mass=i*totemass + loaded_mass) |
| 251 | print 'Actual poles are', numpy.linalg.eig(elevator.A - elevator.B * elevator_controller.K[0, 0:2])[0] |
| 252 | |
| 253 | elevator.X = initial_X |
| 254 | scenario_plotter.run_test(elevator, goal=up_R, controller_elevator=elevator_controller, |
| 255 | observer_elevator=observer_elevator, iterations=200) |
| 256 | scenario_plotter.run_test(elevator, goal=down_R, controller_elevator=elevator_controller, |
| 257 | observer_elevator=observer_elevator, iterations=200) |
| 258 | |
| 259 | scenario_plotter.Plot() |
| 260 | |
| 261 | # Write the generated constants out to a file. |
Jasmine Zhou | dde7a77 | 2015-09-11 23:08:52 -0700 | [diff] [blame^] | 262 | if len(argv) != 5: |
| 263 | print "Expected .h file name and .cc file name for the Elevator and integral elevator." |
Jasmine Zhou | a3a541f | 2015-07-21 21:15:25 -0700 | [diff] [blame] | 264 | else: |
| 265 | elevator = Elevator("Elevator") |
Jasmine Zhou | dde7a77 | 2015-09-11 23:08:52 -0700 | [diff] [blame^] | 266 | loop_writer = control_loop.ControlLoopWriter("Elevator", [elevator], |
| 267 | namespaces=['bot3', 'control_loops']) |
Jasmine Zhou | a3a541f | 2015-07-21 21:15:25 -0700 | [diff] [blame] | 268 | if argv[1][-3:] == '.cc': |
| 269 | loop_writer.Write(argv[2], argv[1]) |
| 270 | else: |
| 271 | loop_writer.Write(argv[1], argv[2]) |
| 272 | |
Jasmine Zhou | dde7a77 | 2015-09-11 23:08:52 -0700 | [diff] [blame^] | 273 | integral_elevator = IntegralElevator("IntegralElevator") |
| 274 | integral_loop_writer = control_loop.ControlLoopWriter("IntegralElevator", [integral_elevator], |
| 275 | namespaces=['bot3', 'control_loops']) |
| 276 | if argv[3][-3:] == '.cc': |
| 277 | integral_loop_writer.Write(argv[4], argv[3]) |
| 278 | else: |
| 279 | integral_loop_writer.Write(argv[3], argv[4]) |
| 280 | |
Jasmine Zhou | a3a541f | 2015-07-21 21:15:25 -0700 | [diff] [blame] | 281 | if __name__ == '__main__': |
| 282 | sys.exit(main(sys.argv)) |