Austin Schuh | bb1338c | 2024-06-15 19:31:16 -0700 | [diff] [blame] | 1 | /* mpz_stronglucas(n, t1, t2) -- An implementation of the strong Lucas |
| 2 | primality test on n, using parameters as suggested by the BPSW test. |
| 3 | |
| 4 | THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST |
| 5 | CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN |
| 6 | FUTURE GNU MP RELEASES. |
| 7 | |
| 8 | Copyright 2018 Free Software Foundation, Inc. |
| 9 | |
| 10 | Contributed by Marco Bodrato. |
| 11 | |
| 12 | This file is part of the GNU MP Library. |
| 13 | |
| 14 | The GNU MP Library is free software; you can redistribute it and/or modify |
| 15 | it under the terms of either: |
| 16 | |
| 17 | * the GNU Lesser General Public License as published by the Free |
| 18 | Software Foundation; either version 3 of the License, or (at your |
| 19 | option) any later version. |
| 20 | |
| 21 | or |
| 22 | |
| 23 | * the GNU General Public License as published by the Free Software |
| 24 | Foundation; either version 2 of the License, or (at your option) any |
| 25 | later version. |
| 26 | |
| 27 | or both in parallel, as here. |
| 28 | |
| 29 | The GNU MP Library is distributed in the hope that it will be useful, but |
| 30 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| 31 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 32 | for more details. |
| 33 | |
| 34 | You should have received copies of the GNU General Public License and the |
| 35 | GNU Lesser General Public License along with the GNU MP Library. If not, |
| 36 | see https://www.gnu.org/licenses/. */ |
| 37 | |
| 38 | #include "gmp-impl.h" |
| 39 | #include "longlong.h" |
| 40 | |
| 41 | /* Returns an approximation of the sqare root of x. |
| 42 | * It gives: |
| 43 | * limb_apprsqrt (x) ^ 2 <= x < (limb_apprsqrt (x)+1) ^ 2 |
| 44 | * or |
| 45 | * x <= limb_apprsqrt (x) ^ 2 <= x * 9/8 |
| 46 | */ |
| 47 | static mp_limb_t |
| 48 | limb_apprsqrt (mp_limb_t x) |
| 49 | { |
| 50 | int s; |
| 51 | |
| 52 | ASSERT (x > 2); |
| 53 | count_leading_zeros (s, x); |
| 54 | s = (GMP_LIMB_BITS - s) >> 1; |
| 55 | return ((CNST_LIMB(1) << s) + (x >> s)) >> 1; |
| 56 | } |
| 57 | |
| 58 | /* Performs strong Lucas' test on x, with parameters suggested */ |
| 59 | /* for the BPSW test. Qk and V are passed to recycle variables. */ |
| 60 | /* Requires GCD (x,6) = 1.*/ |
| 61 | int |
| 62 | mpz_stronglucas (mpz_srcptr x, mpz_ptr V, mpz_ptr Qk) |
| 63 | { |
| 64 | mp_bitcnt_t b0; |
| 65 | mpz_t n; |
| 66 | mp_limb_t D; /* The absolute value is stored. */ |
| 67 | long Q; |
| 68 | mpz_t T1, T2; |
| 69 | |
| 70 | /* Test on the absolute value. */ |
| 71 | mpz_roinit_n (n, PTR (x), ABSIZ (x)); |
| 72 | |
| 73 | ASSERT (mpz_odd_p (n)); |
| 74 | /* ASSERT (mpz_gcd_ui (NULL, n, 6) == 1); */ |
| 75 | #if GMP_NUMB_BITS % 16 == 0 |
| 76 | /* (2^12 - 1) | (2^{GMP_NUMB_BITS*3/4} - 1) */ |
| 77 | D = mpn_mod_34lsub1 (PTR (n), SIZ (n)); |
| 78 | /* (2^12 - 1) = 3^2 * 5 * 7 * 13 */ |
| 79 | ASSERT (D % 3 != 0 && D % 5 != 0 && D % 7 != 0); |
| 80 | if ((D % 5 & 2) != 0) |
| 81 | /* (5/n) = -1, iff n = 2 or 3 (mod 5) */ |
| 82 | /* D = 5; Q = -1 */ |
| 83 | return mpn_strongfibo (PTR (n), SIZ (n), PTR (V)); |
| 84 | else if (! POW2_P (D % 7)) |
| 85 | /* (-7/n) = -1, iff n = 3,5 or 6 (mod 7) */ |
| 86 | D = 7; /* Q = 2 */ |
| 87 | /* (9/n) = -1, never: 9 = 3^2 */ |
| 88 | else if (mpz_kronecker_ui (n, 11) == -1) |
| 89 | /* (-11/n) = (n/11) */ |
| 90 | D = 11; /* Q = 3 */ |
| 91 | else if ((((D % 13 - (D % 13 >> 3)) & 7) > 4) || |
| 92 | (((D % 13 - (D % 13 >> 3)) & 7) == 2)) |
| 93 | /* (13/n) = -1, iff n = 2,5,6,7,8 or 11 (mod 13) */ |
| 94 | D = 13; /* Q = -3 */ |
| 95 | else if (D % 3 == 2) |
| 96 | /* (-15/n) = (n/15) = (n/5)*(n/3) */ |
| 97 | /* Here, (n/5) = 1, and */ |
| 98 | /* (n/3) = -1, iff n = 2 (mod 3) */ |
| 99 | D = 15; /* Q = 4 */ |
| 100 | #if GMP_NUMB_BITS % 32 == 0 |
| 101 | /* (2^24 - 1) | (2^{GMP_NUMB_BITS*3/4} - 1) */ |
| 102 | /* (2^24 - 1) = (2^12 - 1) * 17 * 241 */ |
| 103 | else if (! POW2_P (D % 17) && ! POW2_P (17 - D % 17)) |
| 104 | D = 17; /* Q = -4 */ |
| 105 | #endif |
| 106 | #else |
| 107 | if (mpz_kronecker_ui (n, 5) == -1) |
| 108 | return mpn_strongfibo (PTR (n), SIZ (n), PTR (V)); |
| 109 | #endif |
| 110 | else |
| 111 | { |
| 112 | mp_limb_t tl; |
| 113 | mp_limb_t maxD; |
| 114 | int jac_bit1; |
| 115 | |
| 116 | if (UNLIKELY (mpz_perfect_square_p (n))) |
| 117 | return 0; /* A square is composite. */ |
| 118 | |
| 119 | /* Check Ds up to square root (in case, n is prime) |
| 120 | or avoid overflows */ |
| 121 | if (SIZ (n) == 1) |
| 122 | maxD = limb_apprsqrt (* PTR (n)); |
| 123 | else if (BITS_PER_ULONG >= GMP_NUMB_BITS && SIZ (n) == 2) |
| 124 | mpn_sqrtrem (&maxD, (mp_ptr) NULL, PTR (n), 2); |
| 125 | else |
| 126 | maxD = GMP_NUMB_MAX; |
| 127 | maxD = MIN (maxD, ULONG_MAX); |
| 128 | |
| 129 | D = GMP_NUMB_BITS % 16 == 0 ? (GMP_NUMB_BITS % 32 == 0 ? 17 : 15) : 5; |
| 130 | |
| 131 | /* Search a D such that (D/n) = -1 in the sequence 5,-7,9,-11,.. */ |
| 132 | /* For those Ds we have (D/n) = (n/|D|) */ |
| 133 | /* FIXME: Should we loop only on prime Ds? */ |
| 134 | /* The only interesting composite D is 15. */ |
| 135 | do |
| 136 | { |
| 137 | if (UNLIKELY (D >= maxD)) |
| 138 | return 1; |
| 139 | D += 2; |
| 140 | jac_bit1 = 0; |
| 141 | JACOBI_MOD_OR_MODEXACT_1_ODD (jac_bit1, tl, PTR (n), SIZ (n), D); |
| 142 | if (UNLIKELY (tl == 0)) |
| 143 | return 0; |
| 144 | } |
| 145 | while (mpn_jacobi_base (tl, D, jac_bit1) == 1); |
| 146 | } |
| 147 | |
| 148 | /* D= P^2 - 4Q; P = 1; Q = (1-D)/4 */ |
| 149 | Q = (D & 2) ? (D >> 2) + 1 : -(long) (D >> 2); |
| 150 | /* ASSERT (mpz_si_kronecker ((D & 2) ? NEG_CAST (long, D) : D, n) == -1); */ |
| 151 | |
| 152 | /* n-(D/n) = n+1 = d*2^{b0}, with d = (n>>b0) | 1 */ |
| 153 | b0 = mpz_scan0 (n, 0); |
| 154 | |
| 155 | mpz_init (T1); |
| 156 | mpz_init (T2); |
| 157 | |
| 158 | /* If Ud != 0 && Vd != 0 */ |
| 159 | if (mpz_lucas_mod (V, Qk, Q, b0, n, T1, T2) == 0) |
| 160 | if (LIKELY (--b0 != 0)) |
| 161 | do |
| 162 | { |
| 163 | /* V_{2k} <- V_k ^ 2 - 2Q^k */ |
| 164 | mpz_mul (T2, V, V); |
| 165 | mpz_submul_ui (T2, Qk, 2); |
| 166 | mpz_tdiv_r (V, T2, n); |
| 167 | if (SIZ (V) == 0 || UNLIKELY (--b0 == 0)) |
| 168 | break; |
| 169 | /* Q^{2k} = (Q^k)^2 */ |
| 170 | mpz_mul (T2, Qk, Qk); |
| 171 | mpz_tdiv_r (Qk, T2, n); |
| 172 | } while (1); |
| 173 | |
| 174 | mpz_clear (T1); |
| 175 | mpz_clear (T2); |
| 176 | |
| 177 | return (b0 != 0); |
| 178 | } |