| /* mpz_stronglucas(n, t1, t2) -- An implementation of the strong Lucas |
| primality test on n, using parameters as suggested by the BPSW test. |
| |
| THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST |
| CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN |
| FUTURE GNU MP RELEASES. |
| |
| Copyright 2018 Free Software Foundation, Inc. |
| |
| Contributed by Marco Bodrato. |
| |
| This file is part of the GNU MP Library. |
| |
| The GNU MP Library is free software; you can redistribute it and/or modify |
| it under the terms of either: |
| |
| * the GNU Lesser General Public License as published by the Free |
| Software Foundation; either version 3 of the License, or (at your |
| option) any later version. |
| |
| or |
| |
| * the GNU General Public License as published by the Free Software |
| Foundation; either version 2 of the License, or (at your option) any |
| later version. |
| |
| or both in parallel, as here. |
| |
| The GNU MP Library is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received copies of the GNU General Public License and the |
| GNU Lesser General Public License along with the GNU MP Library. If not, |
| see https://www.gnu.org/licenses/. */ |
| |
| #include "gmp-impl.h" |
| #include "longlong.h" |
| |
| /* Returns an approximation of the sqare root of x. |
| * It gives: |
| * limb_apprsqrt (x) ^ 2 <= x < (limb_apprsqrt (x)+1) ^ 2 |
| * or |
| * x <= limb_apprsqrt (x) ^ 2 <= x * 9/8 |
| */ |
| static mp_limb_t |
| limb_apprsqrt (mp_limb_t x) |
| { |
| int s; |
| |
| ASSERT (x > 2); |
| count_leading_zeros (s, x); |
| s = (GMP_LIMB_BITS - s) >> 1; |
| return ((CNST_LIMB(1) << s) + (x >> s)) >> 1; |
| } |
| |
| /* Performs strong Lucas' test on x, with parameters suggested */ |
| /* for the BPSW test. Qk and V are passed to recycle variables. */ |
| /* Requires GCD (x,6) = 1.*/ |
| int |
| mpz_stronglucas (mpz_srcptr x, mpz_ptr V, mpz_ptr Qk) |
| { |
| mp_bitcnt_t b0; |
| mpz_t n; |
| mp_limb_t D; /* The absolute value is stored. */ |
| long Q; |
| mpz_t T1, T2; |
| |
| /* Test on the absolute value. */ |
| mpz_roinit_n (n, PTR (x), ABSIZ (x)); |
| |
| ASSERT (mpz_odd_p (n)); |
| /* ASSERT (mpz_gcd_ui (NULL, n, 6) == 1); */ |
| #if GMP_NUMB_BITS % 16 == 0 |
| /* (2^12 - 1) | (2^{GMP_NUMB_BITS*3/4} - 1) */ |
| D = mpn_mod_34lsub1 (PTR (n), SIZ (n)); |
| /* (2^12 - 1) = 3^2 * 5 * 7 * 13 */ |
| ASSERT (D % 3 != 0 && D % 5 != 0 && D % 7 != 0); |
| if ((D % 5 & 2) != 0) |
| /* (5/n) = -1, iff n = 2 or 3 (mod 5) */ |
| /* D = 5; Q = -1 */ |
| return mpn_strongfibo (PTR (n), SIZ (n), PTR (V)); |
| else if (! POW2_P (D % 7)) |
| /* (-7/n) = -1, iff n = 3,5 or 6 (mod 7) */ |
| D = 7; /* Q = 2 */ |
| /* (9/n) = -1, never: 9 = 3^2 */ |
| else if (mpz_kronecker_ui (n, 11) == -1) |
| /* (-11/n) = (n/11) */ |
| D = 11; /* Q = 3 */ |
| else if ((((D % 13 - (D % 13 >> 3)) & 7) > 4) || |
| (((D % 13 - (D % 13 >> 3)) & 7) == 2)) |
| /* (13/n) = -1, iff n = 2,5,6,7,8 or 11 (mod 13) */ |
| D = 13; /* Q = -3 */ |
| else if (D % 3 == 2) |
| /* (-15/n) = (n/15) = (n/5)*(n/3) */ |
| /* Here, (n/5) = 1, and */ |
| /* (n/3) = -1, iff n = 2 (mod 3) */ |
| D = 15; /* Q = 4 */ |
| #if GMP_NUMB_BITS % 32 == 0 |
| /* (2^24 - 1) | (2^{GMP_NUMB_BITS*3/4} - 1) */ |
| /* (2^24 - 1) = (2^12 - 1) * 17 * 241 */ |
| else if (! POW2_P (D % 17) && ! POW2_P (17 - D % 17)) |
| D = 17; /* Q = -4 */ |
| #endif |
| #else |
| if (mpz_kronecker_ui (n, 5) == -1) |
| return mpn_strongfibo (PTR (n), SIZ (n), PTR (V)); |
| #endif |
| else |
| { |
| mp_limb_t tl; |
| mp_limb_t maxD; |
| int jac_bit1; |
| |
| if (UNLIKELY (mpz_perfect_square_p (n))) |
| return 0; /* A square is composite. */ |
| |
| /* Check Ds up to square root (in case, n is prime) |
| or avoid overflows */ |
| if (SIZ (n) == 1) |
| maxD = limb_apprsqrt (* PTR (n)); |
| else if (BITS_PER_ULONG >= GMP_NUMB_BITS && SIZ (n) == 2) |
| mpn_sqrtrem (&maxD, (mp_ptr) NULL, PTR (n), 2); |
| else |
| maxD = GMP_NUMB_MAX; |
| maxD = MIN (maxD, ULONG_MAX); |
| |
| D = GMP_NUMB_BITS % 16 == 0 ? (GMP_NUMB_BITS % 32 == 0 ? 17 : 15) : 5; |
| |
| /* Search a D such that (D/n) = -1 in the sequence 5,-7,9,-11,.. */ |
| /* For those Ds we have (D/n) = (n/|D|) */ |
| /* FIXME: Should we loop only on prime Ds? */ |
| /* The only interesting composite D is 15. */ |
| do |
| { |
| if (UNLIKELY (D >= maxD)) |
| return 1; |
| D += 2; |
| jac_bit1 = 0; |
| JACOBI_MOD_OR_MODEXACT_1_ODD (jac_bit1, tl, PTR (n), SIZ (n), D); |
| if (UNLIKELY (tl == 0)) |
| return 0; |
| } |
| while (mpn_jacobi_base (tl, D, jac_bit1) == 1); |
| } |
| |
| /* D= P^2 - 4Q; P = 1; Q = (1-D)/4 */ |
| Q = (D & 2) ? (D >> 2) + 1 : -(long) (D >> 2); |
| /* ASSERT (mpz_si_kronecker ((D & 2) ? NEG_CAST (long, D) : D, n) == -1); */ |
| |
| /* n-(D/n) = n+1 = d*2^{b0}, with d = (n>>b0) | 1 */ |
| b0 = mpz_scan0 (n, 0); |
| |
| mpz_init (T1); |
| mpz_init (T2); |
| |
| /* If Ud != 0 && Vd != 0 */ |
| if (mpz_lucas_mod (V, Qk, Q, b0, n, T1, T2) == 0) |
| if (LIKELY (--b0 != 0)) |
| do |
| { |
| /* V_{2k} <- V_k ^ 2 - 2Q^k */ |
| mpz_mul (T2, V, V); |
| mpz_submul_ui (T2, Qk, 2); |
| mpz_tdiv_r (V, T2, n); |
| if (SIZ (V) == 0 || UNLIKELY (--b0 == 0)) |
| break; |
| /* Q^{2k} = (Q^k)^2 */ |
| mpz_mul (T2, Qk, Qk); |
| mpz_tdiv_r (Qk, T2, n); |
| } while (1); |
| |
| mpz_clear (T1); |
| mpz_clear (T2); |
| |
| return (b0 != 0); |
| } |