Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1 | /* chpmv.f -- translated by f2c (version 20100827). |
| 2 | You must link the resulting object file with libf2c: |
| 3 | on Microsoft Windows system, link with libf2c.lib; |
| 4 | on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
| 5 | or, if you install libf2c.a in a standard place, with -lf2c -lm |
| 6 | -- in that order, at the end of the command line, as in |
| 7 | cc *.o -lf2c -lm |
| 8 | Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
| 9 | |
| 10 | http://www.netlib.org/f2c/libf2c.zip |
| 11 | */ |
| 12 | |
| 13 | #include "datatypes.h" |
| 14 | |
| 15 | /* Subroutine */ int chpmv_(char *uplo, integer *n, complex *alpha, complex * |
| 16 | ap, complex *x, integer *incx, complex *beta, complex *y, integer * |
| 17 | incy, ftnlen uplo_len) |
| 18 | { |
| 19 | /* System generated locals */ |
| 20 | integer i__1, i__2, i__3, i__4, i__5; |
| 21 | real r__1; |
| 22 | complex q__1, q__2, q__3, q__4; |
| 23 | |
| 24 | /* Builtin functions */ |
| 25 | void r_cnjg(complex *, complex *); |
| 26 | |
| 27 | /* Local variables */ |
| 28 | integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info; |
| 29 | complex temp1, temp2; |
| 30 | extern logical lsame_(char *, char *, ftnlen, ftnlen); |
| 31 | extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); |
| 32 | |
| 33 | /* .. Scalar Arguments .. */ |
| 34 | /* .. */ |
| 35 | /* .. Array Arguments .. */ |
| 36 | /* .. */ |
| 37 | |
| 38 | /* Purpose */ |
| 39 | /* ======= */ |
| 40 | |
| 41 | /* CHPMV performs the matrix-vector operation */ |
| 42 | |
| 43 | /* y := alpha*A*x + beta*y, */ |
| 44 | |
| 45 | /* where alpha and beta are scalars, x and y are n element vectors and */ |
| 46 | /* A is an n by n hermitian matrix, supplied in packed form. */ |
| 47 | |
| 48 | /* Arguments */ |
| 49 | /* ========== */ |
| 50 | |
| 51 | /* UPLO - CHARACTER*1. */ |
| 52 | /* On entry, UPLO specifies whether the upper or lower */ |
| 53 | /* triangular part of the matrix A is supplied in the packed */ |
| 54 | /* array AP as follows: */ |
| 55 | |
| 56 | /* UPLO = 'U' or 'u' The upper triangular part of A is */ |
| 57 | /* supplied in AP. */ |
| 58 | |
| 59 | /* UPLO = 'L' or 'l' The lower triangular part of A is */ |
| 60 | /* supplied in AP. */ |
| 61 | |
| 62 | /* Unchanged on exit. */ |
| 63 | |
| 64 | /* N - INTEGER. */ |
| 65 | /* On entry, N specifies the order of the matrix A. */ |
| 66 | /* N must be at least zero. */ |
| 67 | /* Unchanged on exit. */ |
| 68 | |
| 69 | /* ALPHA - COMPLEX . */ |
| 70 | /* On entry, ALPHA specifies the scalar alpha. */ |
| 71 | /* Unchanged on exit. */ |
| 72 | |
| 73 | /* AP - COMPLEX array of DIMENSION at least */ |
| 74 | /* ( ( n*( n + 1 ) )/2 ). */ |
| 75 | /* Before entry with UPLO = 'U' or 'u', the array AP must */ |
| 76 | /* contain the upper triangular part of the hermitian matrix */ |
| 77 | /* packed sequentially, column by column, so that AP( 1 ) */ |
| 78 | /* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */ |
| 79 | /* and a( 2, 2 ) respectively, and so on. */ |
| 80 | /* Before entry with UPLO = 'L' or 'l', the array AP must */ |
| 81 | /* contain the lower triangular part of the hermitian matrix */ |
| 82 | /* packed sequentially, column by column, so that AP( 1 ) */ |
| 83 | /* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */ |
| 84 | /* and a( 3, 1 ) respectively, and so on. */ |
| 85 | /* Note that the imaginary parts of the diagonal elements need */ |
| 86 | /* not be set and are assumed to be zero. */ |
| 87 | /* Unchanged on exit. */ |
| 88 | |
| 89 | /* X - COMPLEX array of dimension at least */ |
| 90 | /* ( 1 + ( n - 1 )*abs( INCX ) ). */ |
| 91 | /* Before entry, the incremented array X must contain the n */ |
| 92 | /* element vector x. */ |
| 93 | /* Unchanged on exit. */ |
| 94 | |
| 95 | /* INCX - INTEGER. */ |
| 96 | /* On entry, INCX specifies the increment for the elements of */ |
| 97 | /* X. INCX must not be zero. */ |
| 98 | /* Unchanged on exit. */ |
| 99 | |
| 100 | /* BETA - COMPLEX . */ |
| 101 | /* On entry, BETA specifies the scalar beta. When BETA is */ |
| 102 | /* supplied as zero then Y need not be set on input. */ |
| 103 | /* Unchanged on exit. */ |
| 104 | |
| 105 | /* Y - COMPLEX array of dimension at least */ |
| 106 | /* ( 1 + ( n - 1 )*abs( INCY ) ). */ |
| 107 | /* Before entry, the incremented array Y must contain the n */ |
| 108 | /* element vector y. On exit, Y is overwritten by the updated */ |
| 109 | /* vector y. */ |
| 110 | |
| 111 | /* INCY - INTEGER. */ |
| 112 | /* On entry, INCY specifies the increment for the elements of */ |
| 113 | /* Y. INCY must not be zero. */ |
| 114 | /* Unchanged on exit. */ |
| 115 | |
| 116 | /* Further Details */ |
| 117 | /* =============== */ |
| 118 | |
| 119 | /* Level 2 Blas routine. */ |
| 120 | |
| 121 | /* -- Written on 22-October-1986. */ |
| 122 | /* Jack Dongarra, Argonne National Lab. */ |
| 123 | /* Jeremy Du Croz, Nag Central Office. */ |
| 124 | /* Sven Hammarling, Nag Central Office. */ |
| 125 | /* Richard Hanson, Sandia National Labs. */ |
| 126 | |
| 127 | /* ===================================================================== */ |
| 128 | |
| 129 | /* .. Parameters .. */ |
| 130 | /* .. */ |
| 131 | /* .. Local Scalars .. */ |
| 132 | /* .. */ |
| 133 | /* .. External Functions .. */ |
| 134 | /* .. */ |
| 135 | /* .. External Subroutines .. */ |
| 136 | /* .. */ |
| 137 | /* .. Intrinsic Functions .. */ |
| 138 | /* .. */ |
| 139 | |
| 140 | /* Test the input parameters. */ |
| 141 | |
| 142 | /* Parameter adjustments */ |
| 143 | --y; |
| 144 | --x; |
| 145 | --ap; |
| 146 | |
| 147 | /* Function Body */ |
| 148 | info = 0; |
| 149 | if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", ( |
| 150 | ftnlen)1, (ftnlen)1)) { |
| 151 | info = 1; |
| 152 | } else if (*n < 0) { |
| 153 | info = 2; |
| 154 | } else if (*incx == 0) { |
| 155 | info = 6; |
| 156 | } else if (*incy == 0) { |
| 157 | info = 9; |
| 158 | } |
| 159 | if (info != 0) { |
| 160 | xerbla_("CHPMV ", &info, (ftnlen)6); |
| 161 | return 0; |
| 162 | } |
| 163 | |
| 164 | /* Quick return if possible. */ |
| 165 | |
| 166 | if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f && |
| 167 | beta->i == 0.f))) { |
| 168 | return 0; |
| 169 | } |
| 170 | |
| 171 | /* Set up the start points in X and Y. */ |
| 172 | |
| 173 | if (*incx > 0) { |
| 174 | kx = 1; |
| 175 | } else { |
| 176 | kx = 1 - (*n - 1) * *incx; |
| 177 | } |
| 178 | if (*incy > 0) { |
| 179 | ky = 1; |
| 180 | } else { |
| 181 | ky = 1 - (*n - 1) * *incy; |
| 182 | } |
| 183 | |
| 184 | /* Start the operations. In this version the elements of the array AP */ |
| 185 | /* are accessed sequentially with one pass through AP. */ |
| 186 | |
| 187 | /* First form y := beta*y. */ |
| 188 | |
| 189 | if (beta->r != 1.f || beta->i != 0.f) { |
| 190 | if (*incy == 1) { |
| 191 | if (beta->r == 0.f && beta->i == 0.f) { |
| 192 | i__1 = *n; |
| 193 | for (i__ = 1; i__ <= i__1; ++i__) { |
| 194 | i__2 = i__; |
| 195 | y[i__2].r = 0.f, y[i__2].i = 0.f; |
| 196 | /* L10: */ |
| 197 | } |
| 198 | } else { |
| 199 | i__1 = *n; |
| 200 | for (i__ = 1; i__ <= i__1; ++i__) { |
| 201 | i__2 = i__; |
| 202 | i__3 = i__; |
| 203 | q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, |
| 204 | q__1.i = beta->r * y[i__3].i + beta->i * y[i__3] |
| 205 | .r; |
| 206 | y[i__2].r = q__1.r, y[i__2].i = q__1.i; |
| 207 | /* L20: */ |
| 208 | } |
| 209 | } |
| 210 | } else { |
| 211 | iy = ky; |
| 212 | if (beta->r == 0.f && beta->i == 0.f) { |
| 213 | i__1 = *n; |
| 214 | for (i__ = 1; i__ <= i__1; ++i__) { |
| 215 | i__2 = iy; |
| 216 | y[i__2].r = 0.f, y[i__2].i = 0.f; |
| 217 | iy += *incy; |
| 218 | /* L30: */ |
| 219 | } |
| 220 | } else { |
| 221 | i__1 = *n; |
| 222 | for (i__ = 1; i__ <= i__1; ++i__) { |
| 223 | i__2 = iy; |
| 224 | i__3 = iy; |
| 225 | q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, |
| 226 | q__1.i = beta->r * y[i__3].i + beta->i * y[i__3] |
| 227 | .r; |
| 228 | y[i__2].r = q__1.r, y[i__2].i = q__1.i; |
| 229 | iy += *incy; |
| 230 | /* L40: */ |
| 231 | } |
| 232 | } |
| 233 | } |
| 234 | } |
| 235 | if (alpha->r == 0.f && alpha->i == 0.f) { |
| 236 | return 0; |
| 237 | } |
| 238 | kk = 1; |
| 239 | if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) { |
| 240 | |
| 241 | /* Form y when AP contains the upper triangle. */ |
| 242 | |
| 243 | if (*incx == 1 && *incy == 1) { |
| 244 | i__1 = *n; |
| 245 | for (j = 1; j <= i__1; ++j) { |
| 246 | i__2 = j; |
| 247 | q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = |
| 248 | alpha->r * x[i__2].i + alpha->i * x[i__2].r; |
| 249 | temp1.r = q__1.r, temp1.i = q__1.i; |
| 250 | temp2.r = 0.f, temp2.i = 0.f; |
| 251 | k = kk; |
| 252 | i__2 = j - 1; |
| 253 | for (i__ = 1; i__ <= i__2; ++i__) { |
| 254 | i__3 = i__; |
| 255 | i__4 = i__; |
| 256 | i__5 = k; |
| 257 | q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, |
| 258 | q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] |
| 259 | .r; |
| 260 | q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; |
| 261 | y[i__3].r = q__1.r, y[i__3].i = q__1.i; |
| 262 | r_cnjg(&q__3, &ap[k]); |
| 263 | i__3 = i__; |
| 264 | q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = |
| 265 | q__3.r * x[i__3].i + q__3.i * x[i__3].r; |
| 266 | q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; |
| 267 | temp2.r = q__1.r, temp2.i = q__1.i; |
| 268 | ++k; |
| 269 | /* L50: */ |
| 270 | } |
| 271 | i__2 = j; |
| 272 | i__3 = j; |
| 273 | i__4 = kk + j - 1; |
| 274 | r__1 = ap[i__4].r; |
| 275 | q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i; |
| 276 | q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i; |
| 277 | q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = |
| 278 | alpha->r * temp2.i + alpha->i * temp2.r; |
| 279 | q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i; |
| 280 | y[i__2].r = q__1.r, y[i__2].i = q__1.i; |
| 281 | kk += j; |
| 282 | /* L60: */ |
| 283 | } |
| 284 | } else { |
| 285 | jx = kx; |
| 286 | jy = ky; |
| 287 | i__1 = *n; |
| 288 | for (j = 1; j <= i__1; ++j) { |
| 289 | i__2 = jx; |
| 290 | q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = |
| 291 | alpha->r * x[i__2].i + alpha->i * x[i__2].r; |
| 292 | temp1.r = q__1.r, temp1.i = q__1.i; |
| 293 | temp2.r = 0.f, temp2.i = 0.f; |
| 294 | ix = kx; |
| 295 | iy = ky; |
| 296 | i__2 = kk + j - 2; |
| 297 | for (k = kk; k <= i__2; ++k) { |
| 298 | i__3 = iy; |
| 299 | i__4 = iy; |
| 300 | i__5 = k; |
| 301 | q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, |
| 302 | q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] |
| 303 | .r; |
| 304 | q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; |
| 305 | y[i__3].r = q__1.r, y[i__3].i = q__1.i; |
| 306 | r_cnjg(&q__3, &ap[k]); |
| 307 | i__3 = ix; |
| 308 | q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = |
| 309 | q__3.r * x[i__3].i + q__3.i * x[i__3].r; |
| 310 | q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; |
| 311 | temp2.r = q__1.r, temp2.i = q__1.i; |
| 312 | ix += *incx; |
| 313 | iy += *incy; |
| 314 | /* L70: */ |
| 315 | } |
| 316 | i__2 = jy; |
| 317 | i__3 = jy; |
| 318 | i__4 = kk + j - 1; |
| 319 | r__1 = ap[i__4].r; |
| 320 | q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i; |
| 321 | q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i; |
| 322 | q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = |
| 323 | alpha->r * temp2.i + alpha->i * temp2.r; |
| 324 | q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i; |
| 325 | y[i__2].r = q__1.r, y[i__2].i = q__1.i; |
| 326 | jx += *incx; |
| 327 | jy += *incy; |
| 328 | kk += j; |
| 329 | /* L80: */ |
| 330 | } |
| 331 | } |
| 332 | } else { |
| 333 | |
| 334 | /* Form y when AP contains the lower triangle. */ |
| 335 | |
| 336 | if (*incx == 1 && *incy == 1) { |
| 337 | i__1 = *n; |
| 338 | for (j = 1; j <= i__1; ++j) { |
| 339 | i__2 = j; |
| 340 | q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = |
| 341 | alpha->r * x[i__2].i + alpha->i * x[i__2].r; |
| 342 | temp1.r = q__1.r, temp1.i = q__1.i; |
| 343 | temp2.r = 0.f, temp2.i = 0.f; |
| 344 | i__2 = j; |
| 345 | i__3 = j; |
| 346 | i__4 = kk; |
| 347 | r__1 = ap[i__4].r; |
| 348 | q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i; |
| 349 | q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; |
| 350 | y[i__2].r = q__1.r, y[i__2].i = q__1.i; |
| 351 | k = kk + 1; |
| 352 | i__2 = *n; |
| 353 | for (i__ = j + 1; i__ <= i__2; ++i__) { |
| 354 | i__3 = i__; |
| 355 | i__4 = i__; |
| 356 | i__5 = k; |
| 357 | q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, |
| 358 | q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] |
| 359 | .r; |
| 360 | q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; |
| 361 | y[i__3].r = q__1.r, y[i__3].i = q__1.i; |
| 362 | r_cnjg(&q__3, &ap[k]); |
| 363 | i__3 = i__; |
| 364 | q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = |
| 365 | q__3.r * x[i__3].i + q__3.i * x[i__3].r; |
| 366 | q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; |
| 367 | temp2.r = q__1.r, temp2.i = q__1.i; |
| 368 | ++k; |
| 369 | /* L90: */ |
| 370 | } |
| 371 | i__2 = j; |
| 372 | i__3 = j; |
| 373 | q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = |
| 374 | alpha->r * temp2.i + alpha->i * temp2.r; |
| 375 | q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; |
| 376 | y[i__2].r = q__1.r, y[i__2].i = q__1.i; |
| 377 | kk += *n - j + 1; |
| 378 | /* L100: */ |
| 379 | } |
| 380 | } else { |
| 381 | jx = kx; |
| 382 | jy = ky; |
| 383 | i__1 = *n; |
| 384 | for (j = 1; j <= i__1; ++j) { |
| 385 | i__2 = jx; |
| 386 | q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = |
| 387 | alpha->r * x[i__2].i + alpha->i * x[i__2].r; |
| 388 | temp1.r = q__1.r, temp1.i = q__1.i; |
| 389 | temp2.r = 0.f, temp2.i = 0.f; |
| 390 | i__2 = jy; |
| 391 | i__3 = jy; |
| 392 | i__4 = kk; |
| 393 | r__1 = ap[i__4].r; |
| 394 | q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i; |
| 395 | q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; |
| 396 | y[i__2].r = q__1.r, y[i__2].i = q__1.i; |
| 397 | ix = jx; |
| 398 | iy = jy; |
| 399 | i__2 = kk + *n - j; |
| 400 | for (k = kk + 1; k <= i__2; ++k) { |
| 401 | ix += *incx; |
| 402 | iy += *incy; |
| 403 | i__3 = iy; |
| 404 | i__4 = iy; |
| 405 | i__5 = k; |
| 406 | q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, |
| 407 | q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] |
| 408 | .r; |
| 409 | q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; |
| 410 | y[i__3].r = q__1.r, y[i__3].i = q__1.i; |
| 411 | r_cnjg(&q__3, &ap[k]); |
| 412 | i__3 = ix; |
| 413 | q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = |
| 414 | q__3.r * x[i__3].i + q__3.i * x[i__3].r; |
| 415 | q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; |
| 416 | temp2.r = q__1.r, temp2.i = q__1.i; |
| 417 | /* L110: */ |
| 418 | } |
| 419 | i__2 = jy; |
| 420 | i__3 = jy; |
| 421 | q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = |
| 422 | alpha->r * temp2.i + alpha->i * temp2.r; |
| 423 | q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; |
| 424 | y[i__2].r = q__1.r, y[i__2].i = q__1.i; |
| 425 | jx += *incx; |
| 426 | jy += *incy; |
| 427 | kk += *n - j + 1; |
| 428 | /* L120: */ |
| 429 | } |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | return 0; |
| 434 | |
| 435 | /* End of CHPMV . */ |
| 436 | |
| 437 | } /* chpmv_ */ |
| 438 | |