Squashed 'third_party/eigen/' changes from 61d72f6..cf794d3


Change-Id: I9b814151b01f49af6337a8605d0c42a3a1ed4c72
git-subtree-dir: third_party/eigen
git-subtree-split: cf794d3b741a6278df169e58461f8529f43bce5d
diff --git a/blas/f2c/chpmv.c b/blas/f2c/chpmv.c
new file mode 100644
index 0000000..65bab1c
--- /dev/null
+++ b/blas/f2c/chpmv.c
@@ -0,0 +1,438 @@
+/* chpmv.f -- translated by f2c (version 20100827).
+   You must link the resulting object file with libf2c:
+	on Microsoft Windows system, link with libf2c.lib;
+	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+	or, if you install libf2c.a in a standard place, with -lf2c -lm
+	-- in that order, at the end of the command line, as in
+		cc *.o -lf2c -lm
+	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+		http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int chpmv_(char *uplo, integer *n, complex *alpha, complex *
+	ap, complex *x, integer *incx, complex *beta, complex *y, integer *
+	incy, ftnlen uplo_len)
+{
+    /* System generated locals */
+    integer i__1, i__2, i__3, i__4, i__5;
+    real r__1;
+    complex q__1, q__2, q__3, q__4;
+
+    /* Builtin functions */
+    void r_cnjg(complex *, complex *);
+
+    /* Local variables */
+    integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
+    complex temp1, temp2;
+    extern logical lsame_(char *, char *, ftnlen, ftnlen);
+    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
+
+/*     .. Scalar Arguments .. */
+/*     .. */
+/*     .. Array Arguments .. */
+/*     .. */
+
+/*  Purpose */
+/*  ======= */
+
+/*  CHPMV  performs the matrix-vector operation */
+
+/*     y := alpha*A*x + beta*y, */
+
+/*  where alpha and beta are scalars, x and y are n element vectors and */
+/*  A is an n by n hermitian matrix, supplied in packed form. */
+
+/*  Arguments */
+/*  ========== */
+
+/*  UPLO   - CHARACTER*1. */
+/*           On entry, UPLO specifies whether the upper or lower */
+/*           triangular part of the matrix A is supplied in the packed */
+/*           array AP as follows: */
+
+/*              UPLO = 'U' or 'u'   The upper triangular part of A is */
+/*                                  supplied in AP. */
+
+/*              UPLO = 'L' or 'l'   The lower triangular part of A is */
+/*                                  supplied in AP. */
+
+/*           Unchanged on exit. */
+
+/*  N      - INTEGER. */
+/*           On entry, N specifies the order of the matrix A. */
+/*           N must be at least zero. */
+/*           Unchanged on exit. */
+
+/*  ALPHA  - COMPLEX         . */
+/*           On entry, ALPHA specifies the scalar alpha. */
+/*           Unchanged on exit. */
+
+/*  AP     - COMPLEX          array of DIMENSION at least */
+/*           ( ( n*( n + 1 ) )/2 ). */
+/*           Before entry with UPLO = 'U' or 'u', the array AP must */
+/*           contain the upper triangular part of the hermitian matrix */
+/*           packed sequentially, column by column, so that AP( 1 ) */
+/*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
+/*           and a( 2, 2 ) respectively, and so on. */
+/*           Before entry with UPLO = 'L' or 'l', the array AP must */
+/*           contain the lower triangular part of the hermitian matrix */
+/*           packed sequentially, column by column, so that AP( 1 ) */
+/*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
+/*           and a( 3, 1 ) respectively, and so on. */
+/*           Note that the imaginary parts of the diagonal elements need */
+/*           not be set and are assumed to be zero. */
+/*           Unchanged on exit. */
+
+/*  X      - COMPLEX          array of dimension at least */
+/*           ( 1 + ( n - 1 )*abs( INCX ) ). */
+/*           Before entry, the incremented array X must contain the n */
+/*           element vector x. */
+/*           Unchanged on exit. */
+
+/*  INCX   - INTEGER. */
+/*           On entry, INCX specifies the increment for the elements of */
+/*           X. INCX must not be zero. */
+/*           Unchanged on exit. */
+
+/*  BETA   - COMPLEX         . */
+/*           On entry, BETA specifies the scalar beta. When BETA is */
+/*           supplied as zero then Y need not be set on input. */
+/*           Unchanged on exit. */
+
+/*  Y      - COMPLEX          array of dimension at least */
+/*           ( 1 + ( n - 1 )*abs( INCY ) ). */
+/*           Before entry, the incremented array Y must contain the n */
+/*           element vector y. On exit, Y is overwritten by the updated */
+/*           vector y. */
+
+/*  INCY   - INTEGER. */
+/*           On entry, INCY specifies the increment for the elements of */
+/*           Y. INCY must not be zero. */
+/*           Unchanged on exit. */
+
+/*  Further Details */
+/*  =============== */
+
+/*  Level 2 Blas routine. */
+
+/*  -- Written on 22-October-1986. */
+/*     Jack Dongarra, Argonne National Lab. */
+/*     Jeremy Du Croz, Nag Central Office. */
+/*     Sven Hammarling, Nag Central Office. */
+/*     Richard Hanson, Sandia National Labs. */
+
+/*  ===================================================================== */
+
+/*     .. Parameters .. */
+/*     .. */
+/*     .. Local Scalars .. */
+/*     .. */
+/*     .. External Functions .. */
+/*     .. */
+/*     .. External Subroutines .. */
+/*     .. */
+/*     .. Intrinsic Functions .. */
+/*     .. */
+
+/*     Test the input parameters. */
+
+    /* Parameter adjustments */
+    --y;
+    --x;
+    --ap;
+
+    /* Function Body */
+    info = 0;
+    if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
+	    ftnlen)1, (ftnlen)1)) {
+	info = 1;
+    } else if (*n < 0) {
+	info = 2;
+    } else if (*incx == 0) {
+	info = 6;
+    } else if (*incy == 0) {
+	info = 9;
+    }
+    if (info != 0) {
+	xerbla_("CHPMV ", &info, (ftnlen)6);
+	return 0;
+    }
+
+/*     Quick return if possible. */
+
+    if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f && 
+                                                           beta->i == 0.f))) {
+	return 0;
+    }
+
+/*     Set up the start points in  X  and  Y. */
+
+    if (*incx > 0) {
+	kx = 1;
+    } else {
+	kx = 1 - (*n - 1) * *incx;
+    }
+    if (*incy > 0) {
+	ky = 1;
+    } else {
+	ky = 1 - (*n - 1) * *incy;
+    }
+
+/*     Start the operations. In this version the elements of the array AP */
+/*     are accessed sequentially with one pass through AP. */
+
+/*     First form  y := beta*y. */
+
+    if (beta->r != 1.f || beta->i != 0.f) {
+	if (*incy == 1) {
+	    if (beta->r == 0.f && beta->i == 0.f) {
+		i__1 = *n;
+		for (i__ = 1; i__ <= i__1; ++i__) {
+		    i__2 = i__;
+		    y[i__2].r = 0.f, y[i__2].i = 0.f;
+/* L10: */
+		}
+	    } else {
+		i__1 = *n;
+		for (i__ = 1; i__ <= i__1; ++i__) {
+		    i__2 = i__;
+		    i__3 = i__;
+		    q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, 
+			    q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+			    .r;
+		    y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+/* L20: */
+		}
+	    }
+	} else {
+	    iy = ky;
+	    if (beta->r == 0.f && beta->i == 0.f) {
+		i__1 = *n;
+		for (i__ = 1; i__ <= i__1; ++i__) {
+		    i__2 = iy;
+		    y[i__2].r = 0.f, y[i__2].i = 0.f;
+		    iy += *incy;
+/* L30: */
+		}
+	    } else {
+		i__1 = *n;
+		for (i__ = 1; i__ <= i__1; ++i__) {
+		    i__2 = iy;
+		    i__3 = iy;
+		    q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, 
+			    q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+			    .r;
+		    y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+		    iy += *incy;
+/* L40: */
+		}
+	    }
+	}
+    }
+    if (alpha->r == 0.f && alpha->i == 0.f) {
+	return 0;
+    }
+    kk = 1;
+    if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+
+/*        Form  y  when AP contains the upper triangle. */
+
+	if (*incx == 1 && *incy == 1) {
+	    i__1 = *n;
+	    for (j = 1; j <= i__1; ++j) {
+		i__2 = j;
+		q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
+			 alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+		temp1.r = q__1.r, temp1.i = q__1.i;
+		temp2.r = 0.f, temp2.i = 0.f;
+		k = kk;
+		i__2 = j - 1;
+		for (i__ = 1; i__ <= i__2; ++i__) {
+		    i__3 = i__;
+		    i__4 = i__;
+		    i__5 = k;
+		    q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, 
+			    q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
+			    .r;
+		    q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
+		    y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+		    r_cnjg(&q__3, &ap[k]);
+		    i__3 = i__;
+		    q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
+			     q__3.r * x[i__3].i + q__3.i * x[i__3].r;
+		    q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+		    temp2.r = q__1.r, temp2.i = q__1.i;
+		    ++k;
+/* L50: */
+		}
+		i__2 = j;
+		i__3 = j;
+		i__4 = kk + j - 1;
+		r__1 = ap[i__4].r;
+		q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
+		q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i;
+		q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = 
+			alpha->r * temp2.i + alpha->i * temp2.r;
+		q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
+		y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+		kk += j;
+/* L60: */
+	    }
+	} else {
+	    jx = kx;
+	    jy = ky;
+	    i__1 = *n;
+	    for (j = 1; j <= i__1; ++j) {
+		i__2 = jx;
+		q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
+			 alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+		temp1.r = q__1.r, temp1.i = q__1.i;
+		temp2.r = 0.f, temp2.i = 0.f;
+		ix = kx;
+		iy = ky;
+		i__2 = kk + j - 2;
+		for (k = kk; k <= i__2; ++k) {
+		    i__3 = iy;
+		    i__4 = iy;
+		    i__5 = k;
+		    q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, 
+			    q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
+			    .r;
+		    q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
+		    y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+		    r_cnjg(&q__3, &ap[k]);
+		    i__3 = ix;
+		    q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
+			     q__3.r * x[i__3].i + q__3.i * x[i__3].r;
+		    q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+		    temp2.r = q__1.r, temp2.i = q__1.i;
+		    ix += *incx;
+		    iy += *incy;
+/* L70: */
+		}
+		i__2 = jy;
+		i__3 = jy;
+		i__4 = kk + j - 1;
+		r__1 = ap[i__4].r;
+		q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
+		q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i;
+		q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = 
+			alpha->r * temp2.i + alpha->i * temp2.r;
+		q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
+		y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+		jx += *incx;
+		jy += *incy;
+		kk += j;
+/* L80: */
+	    }
+	}
+    } else {
+
+/*        Form  y  when AP contains the lower triangle. */
+
+	if (*incx == 1 && *incy == 1) {
+	    i__1 = *n;
+	    for (j = 1; j <= i__1; ++j) {
+		i__2 = j;
+		q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
+			 alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+		temp1.r = q__1.r, temp1.i = q__1.i;
+		temp2.r = 0.f, temp2.i = 0.f;
+		i__2 = j;
+		i__3 = j;
+		i__4 = kk;
+		r__1 = ap[i__4].r;
+		q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
+		q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
+		y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+		k = kk + 1;
+		i__2 = *n;
+		for (i__ = j + 1; i__ <= i__2; ++i__) {
+		    i__3 = i__;
+		    i__4 = i__;
+		    i__5 = k;
+		    q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, 
+			    q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
+			    .r;
+		    q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
+		    y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+		    r_cnjg(&q__3, &ap[k]);
+		    i__3 = i__;
+		    q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
+			     q__3.r * x[i__3].i + q__3.i * x[i__3].r;
+		    q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+		    temp2.r = q__1.r, temp2.i = q__1.i;
+		    ++k;
+/* L90: */
+		}
+		i__2 = j;
+		i__3 = j;
+		q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = 
+			alpha->r * temp2.i + alpha->i * temp2.r;
+		q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
+		y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+		kk += *n - j + 1;
+/* L100: */
+	    }
+	} else {
+	    jx = kx;
+	    jy = ky;
+	    i__1 = *n;
+	    for (j = 1; j <= i__1; ++j) {
+		i__2 = jx;
+		q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
+			 alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+		temp1.r = q__1.r, temp1.i = q__1.i;
+		temp2.r = 0.f, temp2.i = 0.f;
+		i__2 = jy;
+		i__3 = jy;
+		i__4 = kk;
+		r__1 = ap[i__4].r;
+		q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
+		q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
+		y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+		ix = jx;
+		iy = jy;
+		i__2 = kk + *n - j;
+		for (k = kk + 1; k <= i__2; ++k) {
+		    ix += *incx;
+		    iy += *incy;
+		    i__3 = iy;
+		    i__4 = iy;
+		    i__5 = k;
+		    q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, 
+			    q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
+			    .r;
+		    q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
+		    y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+		    r_cnjg(&q__3, &ap[k]);
+		    i__3 = ix;
+		    q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
+			     q__3.r * x[i__3].i + q__3.i * x[i__3].r;
+		    q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+		    temp2.r = q__1.r, temp2.i = q__1.i;
+/* L110: */
+		}
+		i__2 = jy;
+		i__3 = jy;
+		q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = 
+			alpha->r * temp2.i + alpha->i * temp2.r;
+		q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
+		y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+		jx += *incx;
+		jy += *incy;
+		kk += *n - j + 1;
+/* L120: */
+	    }
+	}
+    }
+
+    return 0;
+
+/*     End of CHPMV . */
+
+} /* chpmv_ */
+