blob: fecbfa06d81dab17872f8d07ad6db3aa95a0a7e6 [file] [log] [blame]
Austin Schuh8c794d52019-03-03 21:17:37 -08001/*
2 #
3 # File : pde_TschumperleDeriche2d.cpp
4 # ( C++ source file )
5 #
6 # Description : Implementation of the Tschumperle-Deriche's Regularization
7 # PDE, for 2D multivalued images, as described in the articles below.
8 # This file is a part of the CImg Library project.
9 # ( http://cimg.eu )
10 #
11 # (1) PDE-Based Regularization of Multivalued Images and Applications.
12 # (D. Tschumperle). PhD Thesis. University of Nice-Sophia Antipolis, December 2002.
13 # (2) Diffusion PDE's on Vector-valued Images : Local Approach and Geometric Viewpoint.
14 # (D. Tschumperle and R. Deriche). IEEE Signal Processing Magazine, October 2002.
15 # (3) Vector-Valued Image Regularization with PDE's : A Common Framework for Different Applications.
16 # (D. Tschumperle and R. Deriche). CVPR'2003, Computer Vision and Pattern Recognition,
17 # Madison, United States, June 2003.
18 #
19 # This code can be used to perform image restoration, inpainting, magnification or flow visualization.
20 #
21 # Copyright : David Tschumperle
22 # ( http://tschumperle.users.greyc.fr/ )
23 #
24 # License : CeCILL v2.0
25 # ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
26 #
27 # This software is governed by the CeCILL license under French law and
28 # abiding by the rules of distribution of free software. You can use,
29 # modify and/ or redistribute the software under the terms of the CeCILL
30 # license as circulated by CEA, CNRS and INRIA at the following URL
31 # "http://www.cecill.info".
32 #
33 # As a counterpart to the access to the source code and rights to copy,
34 # modify and redistribute granted by the license, users are provided only
35 # with a limited warranty and the software's author, the holder of the
36 # economic rights, and the successive licensors have only limited
37 # liability.
38 #
39 # In this respect, the user's attention is drawn to the risks associated
40 # with loading, using, modifying and/or developing or reproducing the
41 # software by the user in light of its specific status of free software,
42 # that may mean that it is complicated to manipulate, and that also
43 # therefore means that it is reserved for developers and experienced
44 # professionals having in-depth computer knowledge. Users are therefore
45 # encouraged to load and test the software's suitability as regards their
46 # requirements in conditions enabling the security of their systems and/or
47 # data to be ensured and, more generally, to use and operate it in the
48 # same conditions as regards security.
49 #
50 # The fact that you are presently reading this means that you have had
51 # knowledge of the CeCILL license and that you accept its terms.
52 #
53*/
54
55#include "CImg.h"
56using namespace cimg_library;
57#ifndef cimg_imagepath
58#define cimg_imagepath "img/"
59#endif
60#undef min
61#undef max
62
63// Main procedure
64//----------------
65int main(int argc,char **argv) {
66
67 // Read command line arguments
68 //-----------------------------
69 cimg_usage("Tschumperle-Deriche's flow for 2D Image Restoration, Inpainting, Magnification or Flow visualization");
70 const char *file_i = cimg_option("-i",cimg_imagepath "milla.bmp","Input image");
71 const char *file_m = cimg_option("-m",(char*)NULL,"Mask image (if Inpainting)");
72 const char *file_f = cimg_option("-f",(char*)NULL,"Flow image (if Flow visualization)");
73 const char *file_o = cimg_option("-o",(char*)NULL,"Output file");
74 const double zoom = cimg_option("-zoom",1.0,"Image magnification");
75
76 const unsigned int nb_iter = cimg_option("-iter",100000,"Number of iterations");
77 const double dt = cimg_option("-dt",20.0,"Adapting time step");
78 const double alpha = cimg_option("-alpha",0.0,"Gradient smoothing");
79 const double sigma = cimg_option("-sigma",0.5,"Structure tensor smoothing");
80 const float a1 = cimg_option("-a1",0.5f,"Diffusion limiter along minimal variations");
81 const float a2 = cimg_option("-a2",0.9f,"Diffusion limiter along maximal variations");
82 const double noiseg = cimg_option("-ng",0.0,"Add gauss noise before aplying the algorithm");
83 const double noiseu = cimg_option("-nu",0.0,"Add uniform noise before applying the algorithm");
84 const double noises = cimg_option("-ns",0.0,"Add salt&pepper noise before applying the algorithm");
85 const bool stflag = cimg_option("-stats",false,"Display image statistics at each iteration");
86 const unsigned int save = cimg_option("-save",0,"Iteration saving step");
87 const unsigned int visu = cimg_option("-visu",10,"Visualization step (0=no visualization)");
88 const unsigned int init = cimg_option("-init",3,"Inpainting initialization (0=black, 1=white, 2=noise, 3=unchanged)");
89 const unsigned int skip = cimg_option("-skip",1,"Step of image geometry computation");
90 bool view_t = cimg_option("-d",false,"View tensor directions (useful for debug)");
91 double xdt = 0;
92
93 // Variable initialization
94 //-------------------------
95 CImg<> img, flow;
96 CImg<int> mask;
97
98 if (file_i) {
99 img = CImg<>(file_i).resize(-100,-100,1,-100);
100 if (file_m) mask = CImg<unsigned char>(file_m).resize(img.width(),img.height(),1,1);
101 else if (zoom>1) {
102 mask = CImg<int>(img.width(),img.height(),1,1,-1).
103 resize((int)(img.width()*zoom),(int)(img.height()*zoom),1,1,4) + 1;
104 img.resize((int)(img.width()*zoom),(int)(img.height()*zoom),1,-100,3);
105 }
106 } else {
107 if (file_f) {
108 flow = CImg<>(file_f);
109 img = CImg<>((int)(flow.width()*zoom),(int)(flow.height()*zoom),1,1,0).noise(100,2);
110 flow.resize(img.width(),img.height(),1,2,3);
111 } else
112 throw CImgException("You need to specify at least one input image (option -i), or one flow image (option -f)");
113 }
114 img.noise(noiseg,0).noise(noiseu,1).noise(noises,2);
115 float initial_min, initial_max = img.max_min(initial_min);
116 if (mask && init!=3)
117 cimg_forXYC(img,x,y,k) if (mask(x,y))
118 img(x,y,k) = (float)((init?
119 (init==1?initial_max:((initial_max - initial_min)*cimg::rand())):
120 initial_min));
121
122 CImgDisplay disp;
123 if (visu) disp.assign(img,"Iterated Image");
124 CImg<> G(img.width(),img.height(),1,3,0), T(G), veloc(img), val(2), vec(2,2);
125
126 // PDE main iteration loop
127 //-------------------------
128 for (unsigned int iter = 0; iter<nb_iter &&
129 (!disp || (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC())); ++iter) {
130 std::printf("\riter %u , xdt = %g ",iter,xdt); std::fflush(stdout);
131 if (stflag) img.print();
132 if (disp && disp.is_keySPACE()) { view_t = !view_t; disp.set_key(); }
133
134 if (!(iter%skip)) {
135
136 // Compute the tensor field T, used to drive the diffusion
137 //---------------------------------------------------------
138
139 // When using PDE for flow visualization
140 if (flow) cimg_forXY(flow,x,y) {
141 const float
142 u = flow(x,y,0,0),
143 v = flow(x,y,0,1),
144 n = (float)std::sqrt((double)(u*u + v*v)),
145 nn = (n!=0)?n:1;
146 T(x,y,0) = u*u/nn;
147 T(x,y,1) = u*v/nn;
148 T(x,y,2) = v*v/nn;
149 } else {
150
151 // Compute structure tensor field G
152 CImgList<> grad = img.get_gradient();
153 if (alpha!=0) cimglist_for(grad,l) grad[l].blur((float)alpha);
154 G.fill(0);
155 cimg_forXYC(img,x,y,k) {
156 const float ix = grad[0](x,y,k), iy = grad[1](x,y,k);
157 G(x,y,0) += ix*ix;
158 G(x,y,1) += ix*iy;
159 G(x,y,2) += iy*iy;
160 }
161 if (sigma!=0) G.blur((float)sigma);
162
163 // When using PDE for image restoration, inpainting or zooming
164 T.fill(0);
165 if (!mask) cimg_forXY(G,x,y) {
166 G.get_tensor_at(x,y).symmetric_eigen(val,vec);
167 const float
168 l1 = (float)std::pow(1.0f + val[0] + val[1],-a1),
169 l2 = (float)std::pow(1.0f + val[0] + val[1],-a2),
170 ux = vec(1,0),
171 uy = vec(1,1);
172 T(x,y,0) = l1*ux*ux + l2*uy*uy;
173 T(x,y,1) = l1*ux*uy - l2*ux*uy;
174 T(x,y,2) = l1*uy*uy + l2*ux*ux;
175 }
176 else cimg_forXY(G,x,y) if (mask(x,y)) {
177 G.get_tensor_at(x,y).symmetric_eigen(val,vec);
178 const float
179 ux = vec(1,0),
180 uy = vec(1,1);
181 T(x,y,0) = ux*ux;
182 T(x,y,1) = ux*uy;
183 T(x,y,2) = uy*uy;
184 }
185 }
186 }
187
188 // Compute the PDE velocity and update the iterated image
189 //--------------------------------------------------------
190 CImg_3x3(I,float);
191 veloc.fill(0);
192 cimg_forC(img,k) cimg_for3x3(img,x,y,0,k,I,float) {
193 const float
194 a = T(x,y,0),
195 b = T(x,y,1),
196 c = T(x,y,2),
197 ixx = Inc + Ipc - 2*Icc,
198 iyy = Icn + Icp - 2*Icc,
199 ixy = 0.25f*(Ipp + Inn - Ipn - Inp);
200 veloc(x,y,k) = a*ixx + 2*b*ixy + c*iyy;
201 }
202 if (dt>0) {
203 float m, M = veloc.max_min(m);
204 xdt = dt/std::max(cimg::abs(m),cimg::abs(M));
205 } else xdt=-dt;
206 img+=veloc*xdt;
207 img.cut((float)initial_min,(float)initial_max);
208
209 // Display and save iterations
210 if (disp && !(iter%visu)) {
211 if (!view_t) img.display(disp);
212 else {
213 const unsigned char white[3] = {255,255,255};
214 CImg<unsigned char> visu = img.get_resize(disp.width(),disp.height()).normalize(0,255);
215 CImg<> isophotes(img.width(),img.height(),1,2,0);
216 cimg_forXY(img,x,y) if (!mask || mask(x,y)) {
217 T.get_tensor_at(x,y).symmetric_eigen(val,vec);
218 isophotes(x,y,0) = vec(0,0);
219 isophotes(x,y,1) = vec(0,1);
220 }
221 visu.draw_quiver(isophotes,white,0.5f,10,9,0).display(disp);
222 }
223 }
224 if (save && file_o && !(iter%save)) img.save(file_o,iter);
225 if (disp) disp.resize().display(img);
226 }
227
228 // Save result and exit.
229 if (file_o) img.save(file_o);
230 return 0;
231}