| /* |
| # |
| # File : pde_TschumperleDeriche2d.cpp |
| # ( C++ source file ) |
| # |
| # Description : Implementation of the Tschumperle-Deriche's Regularization |
| # PDE, for 2D multivalued images, as described in the articles below. |
| # This file is a part of the CImg Library project. |
| # ( http://cimg.eu ) |
| # |
| # (1) PDE-Based Regularization of Multivalued Images and Applications. |
| # (D. Tschumperle). PhD Thesis. University of Nice-Sophia Antipolis, December 2002. |
| # (2) Diffusion PDE's on Vector-valued Images : Local Approach and Geometric Viewpoint. |
| # (D. Tschumperle and R. Deriche). IEEE Signal Processing Magazine, October 2002. |
| # (3) Vector-Valued Image Regularization with PDE's : A Common Framework for Different Applications. |
| # (D. Tschumperle and R. Deriche). CVPR'2003, Computer Vision and Pattern Recognition, |
| # Madison, United States, June 2003. |
| # |
| # This code can be used to perform image restoration, inpainting, magnification or flow visualization. |
| # |
| # Copyright : David Tschumperle |
| # ( http://tschumperle.users.greyc.fr/ ) |
| # |
| # License : CeCILL v2.0 |
| # ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html ) |
| # |
| # This software is governed by the CeCILL license under French law and |
| # abiding by the rules of distribution of free software. You can use, |
| # modify and/ or redistribute the software under the terms of the CeCILL |
| # license as circulated by CEA, CNRS and INRIA at the following URL |
| # "http://www.cecill.info". |
| # |
| # As a counterpart to the access to the source code and rights to copy, |
| # modify and redistribute granted by the license, users are provided only |
| # with a limited warranty and the software's author, the holder of the |
| # economic rights, and the successive licensors have only limited |
| # liability. |
| # |
| # In this respect, the user's attention is drawn to the risks associated |
| # with loading, using, modifying and/or developing or reproducing the |
| # software by the user in light of its specific status of free software, |
| # that may mean that it is complicated to manipulate, and that also |
| # therefore means that it is reserved for developers and experienced |
| # professionals having in-depth computer knowledge. Users are therefore |
| # encouraged to load and test the software's suitability as regards their |
| # requirements in conditions enabling the security of their systems and/or |
| # data to be ensured and, more generally, to use and operate it in the |
| # same conditions as regards security. |
| # |
| # The fact that you are presently reading this means that you have had |
| # knowledge of the CeCILL license and that you accept its terms. |
| # |
| */ |
| |
| #include "CImg.h" |
| using namespace cimg_library; |
| #ifndef cimg_imagepath |
| #define cimg_imagepath "img/" |
| #endif |
| #undef min |
| #undef max |
| |
| // Main procedure |
| //---------------- |
| int main(int argc,char **argv) { |
| |
| // Read command line arguments |
| //----------------------------- |
| cimg_usage("Tschumperle-Deriche's flow for 2D Image Restoration, Inpainting, Magnification or Flow visualization"); |
| const char *file_i = cimg_option("-i",cimg_imagepath "milla.bmp","Input image"); |
| const char *file_m = cimg_option("-m",(char*)NULL,"Mask image (if Inpainting)"); |
| const char *file_f = cimg_option("-f",(char*)NULL,"Flow image (if Flow visualization)"); |
| const char *file_o = cimg_option("-o",(char*)NULL,"Output file"); |
| const double zoom = cimg_option("-zoom",1.0,"Image magnification"); |
| |
| const unsigned int nb_iter = cimg_option("-iter",100000,"Number of iterations"); |
| const double dt = cimg_option("-dt",20.0,"Adapting time step"); |
| const double alpha = cimg_option("-alpha",0.0,"Gradient smoothing"); |
| const double sigma = cimg_option("-sigma",0.5,"Structure tensor smoothing"); |
| const float a1 = cimg_option("-a1",0.5f,"Diffusion limiter along minimal variations"); |
| const float a2 = cimg_option("-a2",0.9f,"Diffusion limiter along maximal variations"); |
| const double noiseg = cimg_option("-ng",0.0,"Add gauss noise before aplying the algorithm"); |
| const double noiseu = cimg_option("-nu",0.0,"Add uniform noise before applying the algorithm"); |
| const double noises = cimg_option("-ns",0.0,"Add salt&pepper noise before applying the algorithm"); |
| const bool stflag = cimg_option("-stats",false,"Display image statistics at each iteration"); |
| const unsigned int save = cimg_option("-save",0,"Iteration saving step"); |
| const unsigned int visu = cimg_option("-visu",10,"Visualization step (0=no visualization)"); |
| const unsigned int init = cimg_option("-init",3,"Inpainting initialization (0=black, 1=white, 2=noise, 3=unchanged)"); |
| const unsigned int skip = cimg_option("-skip",1,"Step of image geometry computation"); |
| bool view_t = cimg_option("-d",false,"View tensor directions (useful for debug)"); |
| double xdt = 0; |
| |
| // Variable initialization |
| //------------------------- |
| CImg<> img, flow; |
| CImg<int> mask; |
| |
| if (file_i) { |
| img = CImg<>(file_i).resize(-100,-100,1,-100); |
| if (file_m) mask = CImg<unsigned char>(file_m).resize(img.width(),img.height(),1,1); |
| else if (zoom>1) { |
| mask = CImg<int>(img.width(),img.height(),1,1,-1). |
| resize((int)(img.width()*zoom),(int)(img.height()*zoom),1,1,4) + 1; |
| img.resize((int)(img.width()*zoom),(int)(img.height()*zoom),1,-100,3); |
| } |
| } else { |
| if (file_f) { |
| flow = CImg<>(file_f); |
| img = CImg<>((int)(flow.width()*zoom),(int)(flow.height()*zoom),1,1,0).noise(100,2); |
| flow.resize(img.width(),img.height(),1,2,3); |
| } else |
| throw CImgException("You need to specify at least one input image (option -i), or one flow image (option -f)"); |
| } |
| img.noise(noiseg,0).noise(noiseu,1).noise(noises,2); |
| float initial_min, initial_max = img.max_min(initial_min); |
| if (mask && init!=3) |
| cimg_forXYC(img,x,y,k) if (mask(x,y)) |
| img(x,y,k) = (float)((init? |
| (init==1?initial_max:((initial_max - initial_min)*cimg::rand())): |
| initial_min)); |
| |
| CImgDisplay disp; |
| if (visu) disp.assign(img,"Iterated Image"); |
| CImg<> G(img.width(),img.height(),1,3,0), T(G), veloc(img), val(2), vec(2,2); |
| |
| // PDE main iteration loop |
| //------------------------- |
| for (unsigned int iter = 0; iter<nb_iter && |
| (!disp || (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC())); ++iter) { |
| std::printf("\riter %u , xdt = %g ",iter,xdt); std::fflush(stdout); |
| if (stflag) img.print(); |
| if (disp && disp.is_keySPACE()) { view_t = !view_t; disp.set_key(); } |
| |
| if (!(iter%skip)) { |
| |
| // Compute the tensor field T, used to drive the diffusion |
| //--------------------------------------------------------- |
| |
| // When using PDE for flow visualization |
| if (flow) cimg_forXY(flow,x,y) { |
| const float |
| u = flow(x,y,0,0), |
| v = flow(x,y,0,1), |
| n = (float)std::sqrt((double)(u*u + v*v)), |
| nn = (n!=0)?n:1; |
| T(x,y,0) = u*u/nn; |
| T(x,y,1) = u*v/nn; |
| T(x,y,2) = v*v/nn; |
| } else { |
| |
| // Compute structure tensor field G |
| CImgList<> grad = img.get_gradient(); |
| if (alpha!=0) cimglist_for(grad,l) grad[l].blur((float)alpha); |
| G.fill(0); |
| cimg_forXYC(img,x,y,k) { |
| const float ix = grad[0](x,y,k), iy = grad[1](x,y,k); |
| G(x,y,0) += ix*ix; |
| G(x,y,1) += ix*iy; |
| G(x,y,2) += iy*iy; |
| } |
| if (sigma!=0) G.blur((float)sigma); |
| |
| // When using PDE for image restoration, inpainting or zooming |
| T.fill(0); |
| if (!mask) cimg_forXY(G,x,y) { |
| G.get_tensor_at(x,y).symmetric_eigen(val,vec); |
| const float |
| l1 = (float)std::pow(1.0f + val[0] + val[1],-a1), |
| l2 = (float)std::pow(1.0f + val[0] + val[1],-a2), |
| ux = vec(1,0), |
| uy = vec(1,1); |
| T(x,y,0) = l1*ux*ux + l2*uy*uy; |
| T(x,y,1) = l1*ux*uy - l2*ux*uy; |
| T(x,y,2) = l1*uy*uy + l2*ux*ux; |
| } |
| else cimg_forXY(G,x,y) if (mask(x,y)) { |
| G.get_tensor_at(x,y).symmetric_eigen(val,vec); |
| const float |
| ux = vec(1,0), |
| uy = vec(1,1); |
| T(x,y,0) = ux*ux; |
| T(x,y,1) = ux*uy; |
| T(x,y,2) = uy*uy; |
| } |
| } |
| } |
| |
| // Compute the PDE velocity and update the iterated image |
| //-------------------------------------------------------- |
| CImg_3x3(I,float); |
| veloc.fill(0); |
| cimg_forC(img,k) cimg_for3x3(img,x,y,0,k,I,float) { |
| const float |
| a = T(x,y,0), |
| b = T(x,y,1), |
| c = T(x,y,2), |
| ixx = Inc + Ipc - 2*Icc, |
| iyy = Icn + Icp - 2*Icc, |
| ixy = 0.25f*(Ipp + Inn - Ipn - Inp); |
| veloc(x,y,k) = a*ixx + 2*b*ixy + c*iyy; |
| } |
| if (dt>0) { |
| float m, M = veloc.max_min(m); |
| xdt = dt/std::max(cimg::abs(m),cimg::abs(M)); |
| } else xdt=-dt; |
| img+=veloc*xdt; |
| img.cut((float)initial_min,(float)initial_max); |
| |
| // Display and save iterations |
| if (disp && !(iter%visu)) { |
| if (!view_t) img.display(disp); |
| else { |
| const unsigned char white[3] = {255,255,255}; |
| CImg<unsigned char> visu = img.get_resize(disp.width(),disp.height()).normalize(0,255); |
| CImg<> isophotes(img.width(),img.height(),1,2,0); |
| cimg_forXY(img,x,y) if (!mask || mask(x,y)) { |
| T.get_tensor_at(x,y).symmetric_eigen(val,vec); |
| isophotes(x,y,0) = vec(0,0); |
| isophotes(x,y,1) = vec(0,1); |
| } |
| visu.draw_quiver(isophotes,white,0.5f,10,9,0).display(disp); |
| } |
| } |
| if (save && file_o && !(iter%save)) img.save(file_o,iter); |
| if (disp) disp.resize().display(img); |
| } |
| |
| // Save result and exit. |
| if (file_o) img.save(file_o); |
| return 0; |
| } |