Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_SPECIAL_FUNCTIONS_H |
| 11 | #define EIGEN_SPECIAL_FUNCTIONS_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | namespace internal { |
| 15 | |
| 16 | // Parts of this code are based on the Cephes Math Library. |
| 17 | // |
| 18 | // Cephes Math Library Release 2.8: June, 2000 |
| 19 | // Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier |
| 20 | // |
| 21 | // Permission has been kindly provided by the original author |
| 22 | // to incorporate the Cephes software into the Eigen codebase: |
| 23 | // |
| 24 | // From: Stephen Moshier |
| 25 | // To: Eugene Brevdo |
| 26 | // Subject: Re: Permission to wrap several cephes functions in Eigen |
| 27 | // |
| 28 | // Hello Eugene, |
| 29 | // |
| 30 | // Thank you for writing. |
| 31 | // |
| 32 | // If your licensing is similar to BSD, the formal way that has been |
| 33 | // handled is simply to add a statement to the effect that you are incorporating |
| 34 | // the Cephes software by permission of the author. |
| 35 | // |
| 36 | // Good luck with your project, |
| 37 | // Steve |
| 38 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 39 | |
| 40 | /**************************************************************************** |
| 41 | * Implementation of lgamma, requires C++11/C99 * |
| 42 | ****************************************************************************/ |
| 43 | |
| 44 | template <typename Scalar> |
| 45 | struct lgamma_impl { |
| 46 | EIGEN_DEVICE_FUNC |
| 47 | static EIGEN_STRONG_INLINE Scalar run(const Scalar) { |
| 48 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 49 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 50 | return Scalar(0); |
| 51 | } |
| 52 | }; |
| 53 | |
| 54 | template <typename Scalar> |
| 55 | struct lgamma_retval { |
| 56 | typedef Scalar type; |
| 57 | }; |
| 58 | |
| 59 | #if EIGEN_HAS_C99_MATH |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 60 | // Since glibc 2.19 |
| 61 | #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 19) || __GLIBC__>2) \ |
| 62 | && (defined(_DEFAULT_SOURCE) || defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) |
| 63 | #define EIGEN_HAS_LGAMMA_R |
| 64 | #endif |
| 65 | |
| 66 | // Glibc versions before 2.19 |
| 67 | #if defined(__GLIBC__) && ((__GLIBC__==2 && __GLIBC_MINOR__ < 19) || __GLIBC__<2) \ |
| 68 | && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) |
| 69 | #define EIGEN_HAS_LGAMMA_R |
| 70 | #endif |
| 71 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 72 | template <> |
| 73 | struct lgamma_impl<float> { |
| 74 | EIGEN_DEVICE_FUNC |
| 75 | static EIGEN_STRONG_INLINE float run(float x) { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 76 | #if !defined(EIGEN_GPU_COMPILE_PHASE) && defined (EIGEN_HAS_LGAMMA_R) && !defined(__APPLE__) |
| 77 | int dummy; |
| 78 | return ::lgammaf_r(x, &dummy); |
| 79 | #elif defined(SYCL_DEVICE_ONLY) |
| 80 | return cl::sycl::lgamma(x); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 81 | #else |
| 82 | return ::lgammaf(x); |
| 83 | #endif |
| 84 | } |
| 85 | }; |
| 86 | |
| 87 | template <> |
| 88 | struct lgamma_impl<double> { |
| 89 | EIGEN_DEVICE_FUNC |
| 90 | static EIGEN_STRONG_INLINE double run(double x) { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 91 | #if !defined(EIGEN_GPU_COMPILE_PHASE) && defined(EIGEN_HAS_LGAMMA_R) && !defined(__APPLE__) |
| 92 | int dummy; |
| 93 | return ::lgamma_r(x, &dummy); |
| 94 | #elif defined(SYCL_DEVICE_ONLY) |
| 95 | return cl::sycl::lgamma(x); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 96 | #else |
| 97 | return ::lgamma(x); |
| 98 | #endif |
| 99 | } |
| 100 | }; |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 101 | |
| 102 | #undef EIGEN_HAS_LGAMMA_R |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 103 | #endif |
| 104 | |
| 105 | /**************************************************************************** |
| 106 | * Implementation of digamma (psi), based on Cephes * |
| 107 | ****************************************************************************/ |
| 108 | |
| 109 | template <typename Scalar> |
| 110 | struct digamma_retval { |
| 111 | typedef Scalar type; |
| 112 | }; |
| 113 | |
| 114 | /* |
| 115 | * |
| 116 | * Polynomial evaluation helper for the Psi (digamma) function. |
| 117 | * |
| 118 | * digamma_impl_maybe_poly::run(s) evaluates the asymptotic Psi expansion for |
| 119 | * input Scalar s, assuming s is above 10.0. |
| 120 | * |
| 121 | * If s is above a certain threshold for the given Scalar type, zero |
| 122 | * is returned. Otherwise the polynomial is evaluated with enough |
| 123 | * coefficients for results matching Scalar machine precision. |
| 124 | * |
| 125 | * |
| 126 | */ |
| 127 | template <typename Scalar> |
| 128 | struct digamma_impl_maybe_poly { |
| 129 | EIGEN_DEVICE_FUNC |
| 130 | static EIGEN_STRONG_INLINE Scalar run(const Scalar) { |
| 131 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 132 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 133 | return Scalar(0); |
| 134 | } |
| 135 | }; |
| 136 | |
| 137 | |
| 138 | template <> |
| 139 | struct digamma_impl_maybe_poly<float> { |
| 140 | EIGEN_DEVICE_FUNC |
| 141 | static EIGEN_STRONG_INLINE float run(const float s) { |
| 142 | const float A[] = { |
| 143 | -4.16666666666666666667E-3f, |
| 144 | 3.96825396825396825397E-3f, |
| 145 | -8.33333333333333333333E-3f, |
| 146 | 8.33333333333333333333E-2f |
| 147 | }; |
| 148 | |
| 149 | float z; |
| 150 | if (s < 1.0e8f) { |
| 151 | z = 1.0f / (s * s); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 152 | return z * internal::ppolevl<float, 3>::run(z, A); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 153 | } else return 0.0f; |
| 154 | } |
| 155 | }; |
| 156 | |
| 157 | template <> |
| 158 | struct digamma_impl_maybe_poly<double> { |
| 159 | EIGEN_DEVICE_FUNC |
| 160 | static EIGEN_STRONG_INLINE double run(const double s) { |
| 161 | const double A[] = { |
| 162 | 8.33333333333333333333E-2, |
| 163 | -2.10927960927960927961E-2, |
| 164 | 7.57575757575757575758E-3, |
| 165 | -4.16666666666666666667E-3, |
| 166 | 3.96825396825396825397E-3, |
| 167 | -8.33333333333333333333E-3, |
| 168 | 8.33333333333333333333E-2 |
| 169 | }; |
| 170 | |
| 171 | double z; |
| 172 | if (s < 1.0e17) { |
| 173 | z = 1.0 / (s * s); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 174 | return z * internal::ppolevl<double, 6>::run(z, A); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 175 | } |
| 176 | else return 0.0; |
| 177 | } |
| 178 | }; |
| 179 | |
| 180 | template <typename Scalar> |
| 181 | struct digamma_impl { |
| 182 | EIGEN_DEVICE_FUNC |
| 183 | static Scalar run(Scalar x) { |
| 184 | /* |
| 185 | * |
| 186 | * Psi (digamma) function (modified for Eigen) |
| 187 | * |
| 188 | * |
| 189 | * SYNOPSIS: |
| 190 | * |
| 191 | * double x, y, psi(); |
| 192 | * |
| 193 | * y = psi( x ); |
| 194 | * |
| 195 | * |
| 196 | * DESCRIPTION: |
| 197 | * |
| 198 | * d - |
| 199 | * psi(x) = -- ln | (x) |
| 200 | * dx |
| 201 | * |
| 202 | * is the logarithmic derivative of the gamma function. |
| 203 | * For integer x, |
| 204 | * n-1 |
| 205 | * - |
| 206 | * psi(n) = -EUL + > 1/k. |
| 207 | * - |
| 208 | * k=1 |
| 209 | * |
| 210 | * If x is negative, it is transformed to a positive argument by the |
| 211 | * reflection formula psi(1-x) = psi(x) + pi cot(pi x). |
| 212 | * For general positive x, the argument is made greater than 10 |
| 213 | * using the recurrence psi(x+1) = psi(x) + 1/x. |
| 214 | * Then the following asymptotic expansion is applied: |
| 215 | * |
| 216 | * inf. B |
| 217 | * - 2k |
| 218 | * psi(x) = log(x) - 1/2x - > ------- |
| 219 | * - 2k |
| 220 | * k=1 2k x |
| 221 | * |
| 222 | * where the B2k are Bernoulli numbers. |
| 223 | * |
| 224 | * ACCURACY (float): |
| 225 | * Relative error (except absolute when |psi| < 1): |
| 226 | * arithmetic domain # trials peak rms |
| 227 | * IEEE 0,30 30000 1.3e-15 1.4e-16 |
| 228 | * IEEE -30,0 40000 1.5e-15 2.2e-16 |
| 229 | * |
| 230 | * ACCURACY (double): |
| 231 | * Absolute error, relative when |psi| > 1 : |
| 232 | * arithmetic domain # trials peak rms |
| 233 | * IEEE -33,0 30000 8.2e-7 1.2e-7 |
| 234 | * IEEE 0,33 100000 7.3e-7 7.7e-8 |
| 235 | * |
| 236 | * ERROR MESSAGES: |
| 237 | * message condition value returned |
| 238 | * psi singularity x integer <=0 INFINITY |
| 239 | */ |
| 240 | |
| 241 | Scalar p, q, nz, s, w, y; |
| 242 | bool negative = false; |
| 243 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 244 | const Scalar nan = NumTraits<Scalar>::quiet_NaN(); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 245 | const Scalar m_pi = Scalar(EIGEN_PI); |
| 246 | |
| 247 | const Scalar zero = Scalar(0); |
| 248 | const Scalar one = Scalar(1); |
| 249 | const Scalar half = Scalar(0.5); |
| 250 | nz = zero; |
| 251 | |
| 252 | if (x <= zero) { |
| 253 | negative = true; |
| 254 | q = x; |
| 255 | p = numext::floor(q); |
| 256 | if (p == q) { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 257 | return nan; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 258 | } |
| 259 | /* Remove the zeros of tan(m_pi x) |
| 260 | * by subtracting the nearest integer from x |
| 261 | */ |
| 262 | nz = q - p; |
| 263 | if (nz != half) { |
| 264 | if (nz > half) { |
| 265 | p += one; |
| 266 | nz = q - p; |
| 267 | } |
| 268 | nz = m_pi / numext::tan(m_pi * nz); |
| 269 | } |
| 270 | else { |
| 271 | nz = zero; |
| 272 | } |
| 273 | x = one - x; |
| 274 | } |
| 275 | |
| 276 | /* use the recurrence psi(x+1) = psi(x) + 1/x. */ |
| 277 | s = x; |
| 278 | w = zero; |
| 279 | while (s < Scalar(10)) { |
| 280 | w += one / s; |
| 281 | s += one; |
| 282 | } |
| 283 | |
| 284 | y = digamma_impl_maybe_poly<Scalar>::run(s); |
| 285 | |
| 286 | y = numext::log(s) - (half / s) - y - w; |
| 287 | |
| 288 | return (negative) ? y - nz : y; |
| 289 | } |
| 290 | }; |
| 291 | |
| 292 | /**************************************************************************** |
| 293 | * Implementation of erf, requires C++11/C99 * |
| 294 | ****************************************************************************/ |
| 295 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 296 | /** \internal \returns the error function of \a a (coeff-wise) |
| 297 | Doesn't do anything fancy, just a 13/8-degree rational interpolant which |
| 298 | is accurate up to a couple of ulp in the range [-4, 4], outside of which |
| 299 | fl(erf(x)) = +/-1. |
| 300 | |
| 301 | This implementation works on both scalars and Ts. |
| 302 | */ |
| 303 | template <typename T> |
| 304 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T generic_fast_erf_float(const T& a_x) { |
| 305 | // Clamp the inputs to the range [-4, 4] since anything outside |
| 306 | // this range is +/-1.0f in single-precision. |
| 307 | const T plus_4 = pset1<T>(4.f); |
| 308 | const T minus_4 = pset1<T>(-4.f); |
| 309 | const T x = pmax(pmin(a_x, plus_4), minus_4); |
| 310 | // The monomial coefficients of the numerator polynomial (odd). |
| 311 | const T alpha_1 = pset1<T>(-1.60960333262415e-02f); |
| 312 | const T alpha_3 = pset1<T>(-2.95459980854025e-03f); |
| 313 | const T alpha_5 = pset1<T>(-7.34990630326855e-04f); |
| 314 | const T alpha_7 = pset1<T>(-5.69250639462346e-05f); |
| 315 | const T alpha_9 = pset1<T>(-2.10102402082508e-06f); |
| 316 | const T alpha_11 = pset1<T>(2.77068142495902e-08f); |
| 317 | const T alpha_13 = pset1<T>(-2.72614225801306e-10f); |
| 318 | |
| 319 | // The monomial coefficients of the denominator polynomial (even). |
| 320 | const T beta_0 = pset1<T>(-1.42647390514189e-02f); |
| 321 | const T beta_2 = pset1<T>(-7.37332916720468e-03f); |
| 322 | const T beta_4 = pset1<T>(-1.68282697438203e-03f); |
| 323 | const T beta_6 = pset1<T>(-2.13374055278905e-04f); |
| 324 | const T beta_8 = pset1<T>(-1.45660718464996e-05f); |
| 325 | |
| 326 | // Since the polynomials are odd/even, we need x^2. |
| 327 | const T x2 = pmul(x, x); |
| 328 | |
| 329 | // Evaluate the numerator polynomial p. |
| 330 | T p = pmadd(x2, alpha_13, alpha_11); |
| 331 | p = pmadd(x2, p, alpha_9); |
| 332 | p = pmadd(x2, p, alpha_7); |
| 333 | p = pmadd(x2, p, alpha_5); |
| 334 | p = pmadd(x2, p, alpha_3); |
| 335 | p = pmadd(x2, p, alpha_1); |
| 336 | p = pmul(x, p); |
| 337 | |
| 338 | // Evaluate the denominator polynomial p. |
| 339 | T q = pmadd(x2, beta_8, beta_6); |
| 340 | q = pmadd(x2, q, beta_4); |
| 341 | q = pmadd(x2, q, beta_2); |
| 342 | q = pmadd(x2, q, beta_0); |
| 343 | |
| 344 | // Divide the numerator by the denominator. |
| 345 | return pdiv(p, q); |
| 346 | } |
| 347 | |
| 348 | template <typename T> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 349 | struct erf_impl { |
| 350 | EIGEN_DEVICE_FUNC |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 351 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 352 | return generic_fast_erf_float(x); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 353 | } |
| 354 | }; |
| 355 | |
| 356 | template <typename Scalar> |
| 357 | struct erf_retval { |
| 358 | typedef Scalar type; |
| 359 | }; |
| 360 | |
| 361 | #if EIGEN_HAS_C99_MATH |
| 362 | template <> |
| 363 | struct erf_impl<float> { |
| 364 | EIGEN_DEVICE_FUNC |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 365 | static EIGEN_STRONG_INLINE float run(float x) { |
| 366 | #if defined(SYCL_DEVICE_ONLY) |
| 367 | return cl::sycl::erf(x); |
| 368 | #else |
| 369 | return generic_fast_erf_float(x); |
| 370 | #endif |
| 371 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 372 | }; |
| 373 | |
| 374 | template <> |
| 375 | struct erf_impl<double> { |
| 376 | EIGEN_DEVICE_FUNC |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 377 | static EIGEN_STRONG_INLINE double run(double x) { |
| 378 | #if defined(SYCL_DEVICE_ONLY) |
| 379 | return cl::sycl::erf(x); |
| 380 | #else |
| 381 | return ::erf(x); |
| 382 | #endif |
| 383 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 384 | }; |
| 385 | #endif // EIGEN_HAS_C99_MATH |
| 386 | |
| 387 | /*************************************************************************** |
| 388 | * Implementation of erfc, requires C++11/C99 * |
| 389 | ****************************************************************************/ |
| 390 | |
| 391 | template <typename Scalar> |
| 392 | struct erfc_impl { |
| 393 | EIGEN_DEVICE_FUNC |
| 394 | static EIGEN_STRONG_INLINE Scalar run(const Scalar) { |
| 395 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 396 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 397 | return Scalar(0); |
| 398 | } |
| 399 | }; |
| 400 | |
| 401 | template <typename Scalar> |
| 402 | struct erfc_retval { |
| 403 | typedef Scalar type; |
| 404 | }; |
| 405 | |
| 406 | #if EIGEN_HAS_C99_MATH |
| 407 | template <> |
| 408 | struct erfc_impl<float> { |
| 409 | EIGEN_DEVICE_FUNC |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 410 | static EIGEN_STRONG_INLINE float run(const float x) { |
| 411 | #if defined(SYCL_DEVICE_ONLY) |
| 412 | return cl::sycl::erfc(x); |
| 413 | #else |
| 414 | return ::erfcf(x); |
| 415 | #endif |
| 416 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 417 | }; |
| 418 | |
| 419 | template <> |
| 420 | struct erfc_impl<double> { |
| 421 | EIGEN_DEVICE_FUNC |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 422 | static EIGEN_STRONG_INLINE double run(const double x) { |
| 423 | #if defined(SYCL_DEVICE_ONLY) |
| 424 | return cl::sycl::erfc(x); |
| 425 | #else |
| 426 | return ::erfc(x); |
| 427 | #endif |
| 428 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 429 | }; |
| 430 | #endif // EIGEN_HAS_C99_MATH |
| 431 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 432 | |
| 433 | /*************************************************************************** |
| 434 | * Implementation of ndtri. * |
| 435 | ****************************************************************************/ |
| 436 | |
| 437 | /* Inverse of Normal distribution function (modified for Eigen). |
| 438 | * |
| 439 | * |
| 440 | * SYNOPSIS: |
| 441 | * |
| 442 | * double x, y, ndtri(); |
| 443 | * |
| 444 | * x = ndtri( y ); |
| 445 | * |
| 446 | * |
| 447 | * |
| 448 | * DESCRIPTION: |
| 449 | * |
| 450 | * Returns the argument, x, for which the area under the |
| 451 | * Gaussian probability density function (integrated from |
| 452 | * minus infinity to x) is equal to y. |
| 453 | * |
| 454 | * |
| 455 | * For small arguments 0 < y < exp(-2), the program computes |
| 456 | * z = sqrt( -2.0 * log(y) ); then the approximation is |
| 457 | * x = z - log(z)/z - (1/z) P(1/z) / Q(1/z). |
| 458 | * There are two rational functions P/Q, one for 0 < y < exp(-32) |
| 459 | * and the other for y up to exp(-2). For larger arguments, |
| 460 | * w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)). |
| 461 | * |
| 462 | * |
| 463 | * ACCURACY: |
| 464 | * |
| 465 | * Relative error: |
| 466 | * arithmetic domain # trials peak rms |
| 467 | * DEC 0.125, 1 5500 9.5e-17 2.1e-17 |
| 468 | * DEC 6e-39, 0.135 3500 5.7e-17 1.3e-17 |
| 469 | * IEEE 0.125, 1 20000 7.2e-16 1.3e-16 |
| 470 | * IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17 |
| 471 | * |
| 472 | * |
| 473 | * ERROR MESSAGES: |
| 474 | * |
| 475 | * message condition value returned |
| 476 | * ndtri domain x <= 0 -MAXNUM |
| 477 | * ndtri domain x >= 1 MAXNUM |
| 478 | * |
| 479 | */ |
| 480 | /* |
| 481 | Cephes Math Library Release 2.2: June, 1992 |
| 482 | Copyright 1985, 1987, 1992 by Stephen L. Moshier |
| 483 | Direct inquiries to 30 Frost Street, Cambridge, MA 02140 |
| 484 | */ |
| 485 | |
| 486 | |
| 487 | // TODO: Add a cheaper approximation for float. |
| 488 | |
| 489 | |
| 490 | template<typename T> |
| 491 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T flipsign( |
| 492 | const T& should_flipsign, const T& x) { |
| 493 | typedef typename unpacket_traits<T>::type Scalar; |
| 494 | const T sign_mask = pset1<T>(Scalar(-0.0)); |
| 495 | T sign_bit = pand<T>(should_flipsign, sign_mask); |
| 496 | return pxor<T>(sign_bit, x); |
| 497 | } |
| 498 | |
| 499 | template<> |
| 500 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double flipsign<double>( |
| 501 | const double& should_flipsign, const double& x) { |
| 502 | return should_flipsign == 0 ? x : -x; |
| 503 | } |
| 504 | |
| 505 | template<> |
| 506 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float flipsign<float>( |
| 507 | const float& should_flipsign, const float& x) { |
| 508 | return should_flipsign == 0 ? x : -x; |
| 509 | } |
| 510 | |
| 511 | // We split this computation in to two so that in the scalar path |
| 512 | // only one branch is evaluated (due to our template specialization of pselect |
| 513 | // being an if statement.) |
| 514 | |
| 515 | template <typename T, typename ScalarType> |
| 516 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T generic_ndtri_gt_exp_neg_two(const T& b) { |
| 517 | const ScalarType p0[] = { |
| 518 | ScalarType(-5.99633501014107895267e1), |
| 519 | ScalarType(9.80010754185999661536e1), |
| 520 | ScalarType(-5.66762857469070293439e1), |
| 521 | ScalarType(1.39312609387279679503e1), |
| 522 | ScalarType(-1.23916583867381258016e0) |
| 523 | }; |
| 524 | const ScalarType q0[] = { |
| 525 | ScalarType(1.0), |
| 526 | ScalarType(1.95448858338141759834e0), |
| 527 | ScalarType(4.67627912898881538453e0), |
| 528 | ScalarType(8.63602421390890590575e1), |
| 529 | ScalarType(-2.25462687854119370527e2), |
| 530 | ScalarType(2.00260212380060660359e2), |
| 531 | ScalarType(-8.20372256168333339912e1), |
| 532 | ScalarType(1.59056225126211695515e1), |
| 533 | ScalarType(-1.18331621121330003142e0) |
| 534 | }; |
| 535 | const T sqrt2pi = pset1<T>(ScalarType(2.50662827463100050242e0)); |
| 536 | const T half = pset1<T>(ScalarType(0.5)); |
| 537 | T c, c2, ndtri_gt_exp_neg_two; |
| 538 | |
| 539 | c = psub(b, half); |
| 540 | c2 = pmul(c, c); |
| 541 | ndtri_gt_exp_neg_two = pmadd(c, pmul( |
| 542 | c2, pdiv( |
| 543 | internal::ppolevl<T, 4>::run(c2, p0), |
| 544 | internal::ppolevl<T, 8>::run(c2, q0))), c); |
| 545 | return pmul(ndtri_gt_exp_neg_two, sqrt2pi); |
| 546 | } |
| 547 | |
| 548 | template <typename T, typename ScalarType> |
| 549 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T generic_ndtri_lt_exp_neg_two( |
| 550 | const T& b, const T& should_flipsign) { |
| 551 | /* Approximation for interval z = sqrt(-2 log a ) between 2 and 8 |
| 552 | * i.e., a between exp(-2) = .135 and exp(-32) = 1.27e-14. |
| 553 | */ |
| 554 | const ScalarType p1[] = { |
| 555 | ScalarType(4.05544892305962419923e0), |
| 556 | ScalarType(3.15251094599893866154e1), |
| 557 | ScalarType(5.71628192246421288162e1), |
| 558 | ScalarType(4.40805073893200834700e1), |
| 559 | ScalarType(1.46849561928858024014e1), |
| 560 | ScalarType(2.18663306850790267539e0), |
| 561 | ScalarType(-1.40256079171354495875e-1), |
| 562 | ScalarType(-3.50424626827848203418e-2), |
| 563 | ScalarType(-8.57456785154685413611e-4) |
| 564 | }; |
| 565 | const ScalarType q1[] = { |
| 566 | ScalarType(1.0), |
| 567 | ScalarType(1.57799883256466749731e1), |
| 568 | ScalarType(4.53907635128879210584e1), |
| 569 | ScalarType(4.13172038254672030440e1), |
| 570 | ScalarType(1.50425385692907503408e1), |
| 571 | ScalarType(2.50464946208309415979e0), |
| 572 | ScalarType(-1.42182922854787788574e-1), |
| 573 | ScalarType(-3.80806407691578277194e-2), |
| 574 | ScalarType(-9.33259480895457427372e-4) |
| 575 | }; |
| 576 | /* Approximation for interval z = sqrt(-2 log a ) between 8 and 64 |
| 577 | * i.e., a between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890. |
| 578 | */ |
| 579 | const ScalarType p2[] = { |
| 580 | ScalarType(3.23774891776946035970e0), |
| 581 | ScalarType(6.91522889068984211695e0), |
| 582 | ScalarType(3.93881025292474443415e0), |
| 583 | ScalarType(1.33303460815807542389e0), |
| 584 | ScalarType(2.01485389549179081538e-1), |
| 585 | ScalarType(1.23716634817820021358e-2), |
| 586 | ScalarType(3.01581553508235416007e-4), |
| 587 | ScalarType(2.65806974686737550832e-6), |
| 588 | ScalarType(6.23974539184983293730e-9) |
| 589 | }; |
| 590 | const ScalarType q2[] = { |
| 591 | ScalarType(1.0), |
| 592 | ScalarType(6.02427039364742014255e0), |
| 593 | ScalarType(3.67983563856160859403e0), |
| 594 | ScalarType(1.37702099489081330271e0), |
| 595 | ScalarType(2.16236993594496635890e-1), |
| 596 | ScalarType(1.34204006088543189037e-2), |
| 597 | ScalarType(3.28014464682127739104e-4), |
| 598 | ScalarType(2.89247864745380683936e-6), |
| 599 | ScalarType(6.79019408009981274425e-9) |
| 600 | }; |
| 601 | const T eight = pset1<T>(ScalarType(8.0)); |
| 602 | const T one = pset1<T>(ScalarType(1)); |
| 603 | const T neg_two = pset1<T>(ScalarType(-2)); |
| 604 | T x, x0, x1, z; |
| 605 | |
| 606 | x = psqrt(pmul(neg_two, plog(b))); |
| 607 | x0 = psub(x, pdiv(plog(x), x)); |
| 608 | z = pdiv(one, x); |
| 609 | x1 = pmul( |
| 610 | z, pselect( |
| 611 | pcmp_lt(x, eight), |
| 612 | pdiv(internal::ppolevl<T, 8>::run(z, p1), |
| 613 | internal::ppolevl<T, 8>::run(z, q1)), |
| 614 | pdiv(internal::ppolevl<T, 8>::run(z, p2), |
| 615 | internal::ppolevl<T, 8>::run(z, q2)))); |
| 616 | return flipsign(should_flipsign, psub(x0, x1)); |
| 617 | } |
| 618 | |
| 619 | template <typename T, typename ScalarType> |
| 620 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 621 | T generic_ndtri(const T& a) { |
| 622 | const T maxnum = pset1<T>(NumTraits<ScalarType>::infinity()); |
| 623 | const T neg_maxnum = pset1<T>(-NumTraits<ScalarType>::infinity()); |
| 624 | |
| 625 | const T zero = pset1<T>(ScalarType(0)); |
| 626 | const T one = pset1<T>(ScalarType(1)); |
| 627 | // exp(-2) |
| 628 | const T exp_neg_two = pset1<T>(ScalarType(0.13533528323661269189)); |
| 629 | T b, ndtri, should_flipsign; |
| 630 | |
| 631 | should_flipsign = pcmp_le(a, psub(one, exp_neg_two)); |
| 632 | b = pselect(should_flipsign, a, psub(one, a)); |
| 633 | |
| 634 | ndtri = pselect( |
| 635 | pcmp_lt(exp_neg_two, b), |
| 636 | generic_ndtri_gt_exp_neg_two<T, ScalarType>(b), |
| 637 | generic_ndtri_lt_exp_neg_two<T, ScalarType>(b, should_flipsign)); |
| 638 | |
| 639 | return pselect( |
| 640 | pcmp_le(a, zero), neg_maxnum, |
| 641 | pselect(pcmp_le(one, a), maxnum, ndtri)); |
| 642 | } |
| 643 | |
| 644 | template <typename Scalar> |
| 645 | struct ndtri_retval { |
| 646 | typedef Scalar type; |
| 647 | }; |
| 648 | |
| 649 | #if !EIGEN_HAS_C99_MATH |
| 650 | |
| 651 | template <typename Scalar> |
| 652 | struct ndtri_impl { |
| 653 | EIGEN_DEVICE_FUNC |
| 654 | static EIGEN_STRONG_INLINE Scalar run(const Scalar) { |
| 655 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 656 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 657 | return Scalar(0); |
| 658 | } |
| 659 | }; |
| 660 | |
| 661 | # else |
| 662 | |
| 663 | template <typename Scalar> |
| 664 | struct ndtri_impl { |
| 665 | EIGEN_DEVICE_FUNC |
| 666 | static EIGEN_STRONG_INLINE Scalar run(const Scalar x) { |
| 667 | return generic_ndtri<Scalar, Scalar>(x); |
| 668 | } |
| 669 | }; |
| 670 | |
| 671 | #endif // EIGEN_HAS_C99_MATH |
| 672 | |
| 673 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 674 | /************************************************************************************************************** |
| 675 | * Implementation of igammac (complemented incomplete gamma integral), based on Cephes but requires C++11/C99 * |
| 676 | **************************************************************************************************************/ |
| 677 | |
| 678 | template <typename Scalar> |
| 679 | struct igammac_retval { |
| 680 | typedef Scalar type; |
| 681 | }; |
| 682 | |
| 683 | // NOTE: cephes_helper is also used to implement zeta |
| 684 | template <typename Scalar> |
| 685 | struct cephes_helper { |
| 686 | EIGEN_DEVICE_FUNC |
| 687 | static EIGEN_STRONG_INLINE Scalar machep() { assert(false && "machep not supported for this type"); return 0.0; } |
| 688 | EIGEN_DEVICE_FUNC |
| 689 | static EIGEN_STRONG_INLINE Scalar big() { assert(false && "big not supported for this type"); return 0.0; } |
| 690 | EIGEN_DEVICE_FUNC |
| 691 | static EIGEN_STRONG_INLINE Scalar biginv() { assert(false && "biginv not supported for this type"); return 0.0; } |
| 692 | }; |
| 693 | |
| 694 | template <> |
| 695 | struct cephes_helper<float> { |
| 696 | EIGEN_DEVICE_FUNC |
| 697 | static EIGEN_STRONG_INLINE float machep() { |
| 698 | return NumTraits<float>::epsilon() / 2; // 1.0 - machep == 1.0 |
| 699 | } |
| 700 | EIGEN_DEVICE_FUNC |
| 701 | static EIGEN_STRONG_INLINE float big() { |
| 702 | // use epsneg (1.0 - epsneg == 1.0) |
| 703 | return 1.0f / (NumTraits<float>::epsilon() / 2); |
| 704 | } |
| 705 | EIGEN_DEVICE_FUNC |
| 706 | static EIGEN_STRONG_INLINE float biginv() { |
| 707 | // epsneg |
| 708 | return machep(); |
| 709 | } |
| 710 | }; |
| 711 | |
| 712 | template <> |
| 713 | struct cephes_helper<double> { |
| 714 | EIGEN_DEVICE_FUNC |
| 715 | static EIGEN_STRONG_INLINE double machep() { |
| 716 | return NumTraits<double>::epsilon() / 2; // 1.0 - machep == 1.0 |
| 717 | } |
| 718 | EIGEN_DEVICE_FUNC |
| 719 | static EIGEN_STRONG_INLINE double big() { |
| 720 | return 1.0 / NumTraits<double>::epsilon(); |
| 721 | } |
| 722 | EIGEN_DEVICE_FUNC |
| 723 | static EIGEN_STRONG_INLINE double biginv() { |
| 724 | // inverse of eps |
| 725 | return NumTraits<double>::epsilon(); |
| 726 | } |
| 727 | }; |
| 728 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 729 | enum IgammaComputationMode { VALUE, DERIVATIVE, SAMPLE_DERIVATIVE }; |
| 730 | |
| 731 | template <typename Scalar> |
| 732 | EIGEN_DEVICE_FUNC |
| 733 | static EIGEN_STRONG_INLINE Scalar main_igamma_term(Scalar a, Scalar x) { |
| 734 | /* Compute x**a * exp(-x) / gamma(a) */ |
| 735 | Scalar logax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a); |
| 736 | if (logax < -numext::log(NumTraits<Scalar>::highest()) || |
| 737 | // Assuming x and a aren't Nan. |
| 738 | (numext::isnan)(logax)) { |
| 739 | return Scalar(0); |
| 740 | } |
| 741 | return numext::exp(logax); |
| 742 | } |
| 743 | |
| 744 | template <typename Scalar, IgammaComputationMode mode> |
| 745 | EIGEN_DEVICE_FUNC |
| 746 | int igamma_num_iterations() { |
| 747 | /* Returns the maximum number of internal iterations for igamma computation. |
| 748 | */ |
| 749 | if (mode == VALUE) { |
| 750 | return 2000; |
| 751 | } |
| 752 | |
| 753 | if (internal::is_same<Scalar, float>::value) { |
| 754 | return 200; |
| 755 | } else if (internal::is_same<Scalar, double>::value) { |
| 756 | return 500; |
| 757 | } else { |
| 758 | return 2000; |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | template <typename Scalar, IgammaComputationMode mode> |
| 763 | struct igammac_cf_impl { |
| 764 | /* Computes igamc(a, x) or derivative (depending on the mode) |
| 765 | * using the continued fraction expansion of the complementary |
| 766 | * incomplete Gamma function. |
| 767 | * |
| 768 | * Preconditions: |
| 769 | * a > 0 |
| 770 | * x >= 1 |
| 771 | * x >= a |
| 772 | */ |
| 773 | EIGEN_DEVICE_FUNC |
| 774 | static Scalar run(Scalar a, Scalar x) { |
| 775 | const Scalar zero = 0; |
| 776 | const Scalar one = 1; |
| 777 | const Scalar two = 2; |
| 778 | const Scalar machep = cephes_helper<Scalar>::machep(); |
| 779 | const Scalar big = cephes_helper<Scalar>::big(); |
| 780 | const Scalar biginv = cephes_helper<Scalar>::biginv(); |
| 781 | |
| 782 | if ((numext::isinf)(x)) { |
| 783 | return zero; |
| 784 | } |
| 785 | |
| 786 | Scalar ax = main_igamma_term<Scalar>(a, x); |
| 787 | // This is independent of mode. If this value is zero, |
| 788 | // then the function value is zero. If the function value is zero, |
| 789 | // then we are in a neighborhood where the function value evalutes to zero, |
| 790 | // so the derivative is zero. |
| 791 | if (ax == zero) { |
| 792 | return zero; |
| 793 | } |
| 794 | |
| 795 | // continued fraction |
| 796 | Scalar y = one - a; |
| 797 | Scalar z = x + y + one; |
| 798 | Scalar c = zero; |
| 799 | Scalar pkm2 = one; |
| 800 | Scalar qkm2 = x; |
| 801 | Scalar pkm1 = x + one; |
| 802 | Scalar qkm1 = z * x; |
| 803 | Scalar ans = pkm1 / qkm1; |
| 804 | |
| 805 | Scalar dpkm2_da = zero; |
| 806 | Scalar dqkm2_da = zero; |
| 807 | Scalar dpkm1_da = zero; |
| 808 | Scalar dqkm1_da = -x; |
| 809 | Scalar dans_da = (dpkm1_da - ans * dqkm1_da) / qkm1; |
| 810 | |
| 811 | for (int i = 0; i < igamma_num_iterations<Scalar, mode>(); i++) { |
| 812 | c += one; |
| 813 | y += one; |
| 814 | z += two; |
| 815 | |
| 816 | Scalar yc = y * c; |
| 817 | Scalar pk = pkm1 * z - pkm2 * yc; |
| 818 | Scalar qk = qkm1 * z - qkm2 * yc; |
| 819 | |
| 820 | Scalar dpk_da = dpkm1_da * z - pkm1 - dpkm2_da * yc + pkm2 * c; |
| 821 | Scalar dqk_da = dqkm1_da * z - qkm1 - dqkm2_da * yc + qkm2 * c; |
| 822 | |
| 823 | if (qk != zero) { |
| 824 | Scalar ans_prev = ans; |
| 825 | ans = pk / qk; |
| 826 | |
| 827 | Scalar dans_da_prev = dans_da; |
| 828 | dans_da = (dpk_da - ans * dqk_da) / qk; |
| 829 | |
| 830 | if (mode == VALUE) { |
| 831 | if (numext::abs(ans_prev - ans) <= machep * numext::abs(ans)) { |
| 832 | break; |
| 833 | } |
| 834 | } else { |
| 835 | if (numext::abs(dans_da - dans_da_prev) <= machep) { |
| 836 | break; |
| 837 | } |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | pkm2 = pkm1; |
| 842 | pkm1 = pk; |
| 843 | qkm2 = qkm1; |
| 844 | qkm1 = qk; |
| 845 | |
| 846 | dpkm2_da = dpkm1_da; |
| 847 | dpkm1_da = dpk_da; |
| 848 | dqkm2_da = dqkm1_da; |
| 849 | dqkm1_da = dqk_da; |
| 850 | |
| 851 | if (numext::abs(pk) > big) { |
| 852 | pkm2 *= biginv; |
| 853 | pkm1 *= biginv; |
| 854 | qkm2 *= biginv; |
| 855 | qkm1 *= biginv; |
| 856 | |
| 857 | dpkm2_da *= biginv; |
| 858 | dpkm1_da *= biginv; |
| 859 | dqkm2_da *= biginv; |
| 860 | dqkm1_da *= biginv; |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | /* Compute x**a * exp(-x) / gamma(a) */ |
| 865 | Scalar dlogax_da = numext::log(x) - digamma_impl<Scalar>::run(a); |
| 866 | Scalar dax_da = ax * dlogax_da; |
| 867 | |
| 868 | switch (mode) { |
| 869 | case VALUE: |
| 870 | return ans * ax; |
| 871 | case DERIVATIVE: |
| 872 | return ans * dax_da + dans_da * ax; |
| 873 | case SAMPLE_DERIVATIVE: |
| 874 | default: // this is needed to suppress clang warning |
| 875 | return -(dans_da + ans * dlogax_da) * x; |
| 876 | } |
| 877 | } |
| 878 | }; |
| 879 | |
| 880 | template <typename Scalar, IgammaComputationMode mode> |
| 881 | struct igamma_series_impl { |
| 882 | /* Computes igam(a, x) or its derivative (depending on the mode) |
| 883 | * using the series expansion of the incomplete Gamma function. |
| 884 | * |
| 885 | * Preconditions: |
| 886 | * x > 0 |
| 887 | * a > 0 |
| 888 | * !(x > 1 && x > a) |
| 889 | */ |
| 890 | EIGEN_DEVICE_FUNC |
| 891 | static Scalar run(Scalar a, Scalar x) { |
| 892 | const Scalar zero = 0; |
| 893 | const Scalar one = 1; |
| 894 | const Scalar machep = cephes_helper<Scalar>::machep(); |
| 895 | |
| 896 | Scalar ax = main_igamma_term<Scalar>(a, x); |
| 897 | |
| 898 | // This is independent of mode. If this value is zero, |
| 899 | // then the function value is zero. If the function value is zero, |
| 900 | // then we are in a neighborhood where the function value evalutes to zero, |
| 901 | // so the derivative is zero. |
| 902 | if (ax == zero) { |
| 903 | return zero; |
| 904 | } |
| 905 | |
| 906 | ax /= a; |
| 907 | |
| 908 | /* power series */ |
| 909 | Scalar r = a; |
| 910 | Scalar c = one; |
| 911 | Scalar ans = one; |
| 912 | |
| 913 | Scalar dc_da = zero; |
| 914 | Scalar dans_da = zero; |
| 915 | |
| 916 | for (int i = 0; i < igamma_num_iterations<Scalar, mode>(); i++) { |
| 917 | r += one; |
| 918 | Scalar term = x / r; |
| 919 | Scalar dterm_da = -x / (r * r); |
| 920 | dc_da = term * dc_da + dterm_da * c; |
| 921 | dans_da += dc_da; |
| 922 | c *= term; |
| 923 | ans += c; |
| 924 | |
| 925 | if (mode == VALUE) { |
| 926 | if (c <= machep * ans) { |
| 927 | break; |
| 928 | } |
| 929 | } else { |
| 930 | if (numext::abs(dc_da) <= machep * numext::abs(dans_da)) { |
| 931 | break; |
| 932 | } |
| 933 | } |
| 934 | } |
| 935 | |
| 936 | Scalar dlogax_da = numext::log(x) - digamma_impl<Scalar>::run(a + one); |
| 937 | Scalar dax_da = ax * dlogax_da; |
| 938 | |
| 939 | switch (mode) { |
| 940 | case VALUE: |
| 941 | return ans * ax; |
| 942 | case DERIVATIVE: |
| 943 | return ans * dax_da + dans_da * ax; |
| 944 | case SAMPLE_DERIVATIVE: |
| 945 | default: // this is needed to suppress clang warning |
| 946 | return -(dans_da + ans * dlogax_da) * x / a; |
| 947 | } |
| 948 | } |
| 949 | }; |
| 950 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 951 | #if !EIGEN_HAS_C99_MATH |
| 952 | |
| 953 | template <typename Scalar> |
| 954 | struct igammac_impl { |
| 955 | EIGEN_DEVICE_FUNC |
| 956 | static Scalar run(Scalar a, Scalar x) { |
| 957 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 958 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 959 | return Scalar(0); |
| 960 | } |
| 961 | }; |
| 962 | |
| 963 | #else |
| 964 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 965 | template <typename Scalar> |
| 966 | struct igammac_impl { |
| 967 | EIGEN_DEVICE_FUNC |
| 968 | static Scalar run(Scalar a, Scalar x) { |
| 969 | /* igamc() |
| 970 | * |
| 971 | * Incomplete gamma integral (modified for Eigen) |
| 972 | * |
| 973 | * |
| 974 | * |
| 975 | * SYNOPSIS: |
| 976 | * |
| 977 | * double a, x, y, igamc(); |
| 978 | * |
| 979 | * y = igamc( a, x ); |
| 980 | * |
| 981 | * DESCRIPTION: |
| 982 | * |
| 983 | * The function is defined by |
| 984 | * |
| 985 | * |
| 986 | * igamc(a,x) = 1 - igam(a,x) |
| 987 | * |
| 988 | * inf. |
| 989 | * - |
| 990 | * 1 | | -t a-1 |
| 991 | * = ----- | e t dt. |
| 992 | * - | | |
| 993 | * | (a) - |
| 994 | * x |
| 995 | * |
| 996 | * |
| 997 | * In this implementation both arguments must be positive. |
| 998 | * The integral is evaluated by either a power series or |
| 999 | * continued fraction expansion, depending on the relative |
| 1000 | * values of a and x. |
| 1001 | * |
| 1002 | * ACCURACY (float): |
| 1003 | * |
| 1004 | * Relative error: |
| 1005 | * arithmetic domain # trials peak rms |
| 1006 | * IEEE 0,30 30000 7.8e-6 5.9e-7 |
| 1007 | * |
| 1008 | * |
| 1009 | * ACCURACY (double): |
| 1010 | * |
| 1011 | * Tested at random a, x. |
| 1012 | * a x Relative error: |
| 1013 | * arithmetic domain domain # trials peak rms |
| 1014 | * IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15 |
| 1015 | * IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15 |
| 1016 | * |
| 1017 | */ |
| 1018 | /* |
| 1019 | Cephes Math Library Release 2.2: June, 1992 |
| 1020 | Copyright 1985, 1987, 1992 by Stephen L. Moshier |
| 1021 | Direct inquiries to 30 Frost Street, Cambridge, MA 02140 |
| 1022 | */ |
| 1023 | const Scalar zero = 0; |
| 1024 | const Scalar one = 1; |
| 1025 | const Scalar nan = NumTraits<Scalar>::quiet_NaN(); |
| 1026 | |
| 1027 | if ((x < zero) || (a <= zero)) { |
| 1028 | // domain error |
| 1029 | return nan; |
| 1030 | } |
| 1031 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1032 | if ((numext::isnan)(a) || (numext::isnan)(x)) { // propagate nans |
| 1033 | return nan; |
| 1034 | } |
| 1035 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1036 | if ((x < one) || (x < a)) { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1037 | return (one - igamma_series_impl<Scalar, VALUE>::run(a, x)); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1038 | } |
| 1039 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1040 | return igammac_cf_impl<Scalar, VALUE>::run(a, x); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1041 | } |
| 1042 | }; |
| 1043 | |
| 1044 | #endif // EIGEN_HAS_C99_MATH |
| 1045 | |
| 1046 | /************************************************************************************************ |
| 1047 | * Implementation of igamma (incomplete gamma integral), based on Cephes but requires C++11/C99 * |
| 1048 | ************************************************************************************************/ |
| 1049 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1050 | #if !EIGEN_HAS_C99_MATH |
| 1051 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1052 | template <typename Scalar, IgammaComputationMode mode> |
| 1053 | struct igamma_generic_impl { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1054 | EIGEN_DEVICE_FUNC |
| 1055 | static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar x) { |
| 1056 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 1057 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 1058 | return Scalar(0); |
| 1059 | } |
| 1060 | }; |
| 1061 | |
| 1062 | #else |
| 1063 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1064 | template <typename Scalar, IgammaComputationMode mode> |
| 1065 | struct igamma_generic_impl { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1066 | EIGEN_DEVICE_FUNC |
| 1067 | static Scalar run(Scalar a, Scalar x) { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1068 | /* Depending on the mode, returns |
| 1069 | * - VALUE: incomplete Gamma function igamma(a, x) |
| 1070 | * - DERIVATIVE: derivative of incomplete Gamma function d/da igamma(a, x) |
| 1071 | * - SAMPLE_DERIVATIVE: implicit derivative of a Gamma random variable |
| 1072 | * x ~ Gamma(x | a, 1), dx/da = -1 / Gamma(x | a, 1) * d igamma(a, x) / dx |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1073 | * |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1074 | * Derivatives are implemented by forward-mode differentiation. |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1075 | */ |
| 1076 | const Scalar zero = 0; |
| 1077 | const Scalar one = 1; |
| 1078 | const Scalar nan = NumTraits<Scalar>::quiet_NaN(); |
| 1079 | |
| 1080 | if (x == zero) return zero; |
| 1081 | |
| 1082 | if ((x < zero) || (a <= zero)) { // domain error |
| 1083 | return nan; |
| 1084 | } |
| 1085 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1086 | if ((numext::isnan)(a) || (numext::isnan)(x)) { // propagate nans |
| 1087 | return nan; |
| 1088 | } |
| 1089 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1090 | if ((x > one) && (x > a)) { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1091 | Scalar ret = igammac_cf_impl<Scalar, mode>::run(a, x); |
| 1092 | if (mode == VALUE) { |
| 1093 | return one - ret; |
| 1094 | } else { |
| 1095 | return -ret; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1096 | } |
| 1097 | } |
| 1098 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1099 | return igamma_series_impl<Scalar, mode>::run(a, x); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1100 | } |
| 1101 | }; |
| 1102 | |
| 1103 | #endif // EIGEN_HAS_C99_MATH |
| 1104 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1105 | template <typename Scalar> |
| 1106 | struct igamma_retval { |
| 1107 | typedef Scalar type; |
| 1108 | }; |
| 1109 | |
| 1110 | template <typename Scalar> |
| 1111 | struct igamma_impl : igamma_generic_impl<Scalar, VALUE> { |
| 1112 | /* igam() |
| 1113 | * Incomplete gamma integral. |
| 1114 | * |
| 1115 | * The CDF of Gamma(a, 1) random variable at the point x. |
| 1116 | * |
| 1117 | * Accuracy estimation. For each a in [10^-2, 10^-1...10^3] we sample |
| 1118 | * 50 Gamma random variables x ~ Gamma(x | a, 1), a total of 300 points. |
| 1119 | * The ground truth is computed by mpmath. Mean absolute error: |
| 1120 | * float: 1.26713e-05 |
| 1121 | * double: 2.33606e-12 |
| 1122 | * |
| 1123 | * Cephes documentation below. |
| 1124 | * |
| 1125 | * SYNOPSIS: |
| 1126 | * |
| 1127 | * double a, x, y, igam(); |
| 1128 | * |
| 1129 | * y = igam( a, x ); |
| 1130 | * |
| 1131 | * DESCRIPTION: |
| 1132 | * |
| 1133 | * The function is defined by |
| 1134 | * |
| 1135 | * x |
| 1136 | * - |
| 1137 | * 1 | | -t a-1 |
| 1138 | * igam(a,x) = ----- | e t dt. |
| 1139 | * - | | |
| 1140 | * | (a) - |
| 1141 | * 0 |
| 1142 | * |
| 1143 | * |
| 1144 | * In this implementation both arguments must be positive. |
| 1145 | * The integral is evaluated by either a power series or |
| 1146 | * continued fraction expansion, depending on the relative |
| 1147 | * values of a and x. |
| 1148 | * |
| 1149 | * ACCURACY (double): |
| 1150 | * |
| 1151 | * Relative error: |
| 1152 | * arithmetic domain # trials peak rms |
| 1153 | * IEEE 0,30 200000 3.6e-14 2.9e-15 |
| 1154 | * IEEE 0,100 300000 9.9e-14 1.5e-14 |
| 1155 | * |
| 1156 | * |
| 1157 | * ACCURACY (float): |
| 1158 | * |
| 1159 | * Relative error: |
| 1160 | * arithmetic domain # trials peak rms |
| 1161 | * IEEE 0,30 20000 7.8e-6 5.9e-7 |
| 1162 | * |
| 1163 | */ |
| 1164 | /* |
| 1165 | Cephes Math Library Release 2.2: June, 1992 |
| 1166 | Copyright 1985, 1987, 1992 by Stephen L. Moshier |
| 1167 | Direct inquiries to 30 Frost Street, Cambridge, MA 02140 |
| 1168 | */ |
| 1169 | |
| 1170 | /* left tail of incomplete gamma function: |
| 1171 | * |
| 1172 | * inf. k |
| 1173 | * a -x - x |
| 1174 | * x e > ---------- |
| 1175 | * - - |
| 1176 | * k=0 | (a+k+1) |
| 1177 | * |
| 1178 | */ |
| 1179 | }; |
| 1180 | |
| 1181 | template <typename Scalar> |
| 1182 | struct igamma_der_a_retval : igamma_retval<Scalar> {}; |
| 1183 | |
| 1184 | template <typename Scalar> |
| 1185 | struct igamma_der_a_impl : igamma_generic_impl<Scalar, DERIVATIVE> { |
| 1186 | /* Derivative of the incomplete Gamma function with respect to a. |
| 1187 | * |
| 1188 | * Computes d/da igamma(a, x) by forward differentiation of the igamma code. |
| 1189 | * |
| 1190 | * Accuracy estimation. For each a in [10^-2, 10^-1...10^3] we sample |
| 1191 | * 50 Gamma random variables x ~ Gamma(x | a, 1), a total of 300 points. |
| 1192 | * The ground truth is computed by mpmath. Mean absolute error: |
| 1193 | * float: 6.17992e-07 |
| 1194 | * double: 4.60453e-12 |
| 1195 | * |
| 1196 | * Reference: |
| 1197 | * R. Moore. "Algorithm AS 187: Derivatives of the incomplete gamma |
| 1198 | * integral". Journal of the Royal Statistical Society. 1982 |
| 1199 | */ |
| 1200 | }; |
| 1201 | |
| 1202 | template <typename Scalar> |
| 1203 | struct gamma_sample_der_alpha_retval : igamma_retval<Scalar> {}; |
| 1204 | |
| 1205 | template <typename Scalar> |
| 1206 | struct gamma_sample_der_alpha_impl |
| 1207 | : igamma_generic_impl<Scalar, SAMPLE_DERIVATIVE> { |
| 1208 | /* Derivative of a Gamma random variable sample with respect to alpha. |
| 1209 | * |
| 1210 | * Consider a sample of a Gamma random variable with the concentration |
| 1211 | * parameter alpha: sample ~ Gamma(alpha, 1). The reparameterization |
| 1212 | * derivative that we want to compute is dsample / dalpha = |
| 1213 | * d igammainv(alpha, u) / dalpha, where u = igamma(alpha, sample). |
| 1214 | * However, this formula is numerically unstable and expensive, so instead |
| 1215 | * we use implicit differentiation: |
| 1216 | * |
| 1217 | * igamma(alpha, sample) = u, where u ~ Uniform(0, 1). |
| 1218 | * Apply d / dalpha to both sides: |
| 1219 | * d igamma(alpha, sample) / dalpha |
| 1220 | * + d igamma(alpha, sample) / dsample * dsample/dalpha = 0 |
| 1221 | * d igamma(alpha, sample) / dalpha |
| 1222 | * + Gamma(sample | alpha, 1) dsample / dalpha = 0 |
| 1223 | * dsample/dalpha = - (d igamma(alpha, sample) / dalpha) |
| 1224 | * / Gamma(sample | alpha, 1) |
| 1225 | * |
| 1226 | * Here Gamma(sample | alpha, 1) is the PDF of the Gamma distribution |
| 1227 | * (note that the derivative of the CDF w.r.t. sample is the PDF). |
| 1228 | * See the reference below for more details. |
| 1229 | * |
| 1230 | * The derivative of igamma(alpha, sample) is computed by forward |
| 1231 | * differentiation of the igamma code. Division by the Gamma PDF is performed |
| 1232 | * in the same code, increasing the accuracy and speed due to cancellation |
| 1233 | * of some terms. |
| 1234 | * |
| 1235 | * Accuracy estimation. For each alpha in [10^-2, 10^-1...10^3] we sample |
| 1236 | * 50 Gamma random variables sample ~ Gamma(sample | alpha, 1), a total of 300 |
| 1237 | * points. The ground truth is computed by mpmath. Mean absolute error: |
| 1238 | * float: 2.1686e-06 |
| 1239 | * double: 1.4774e-12 |
| 1240 | * |
| 1241 | * Reference: |
| 1242 | * M. Figurnov, S. Mohamed, A. Mnih "Implicit Reparameterization Gradients". |
| 1243 | * 2018 |
| 1244 | */ |
| 1245 | }; |
| 1246 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1247 | /***************************************************************************** |
| 1248 | * Implementation of Riemann zeta function of two arguments, based on Cephes * |
| 1249 | *****************************************************************************/ |
| 1250 | |
| 1251 | template <typename Scalar> |
| 1252 | struct zeta_retval { |
| 1253 | typedef Scalar type; |
| 1254 | }; |
| 1255 | |
| 1256 | template <typename Scalar> |
| 1257 | struct zeta_impl_series { |
| 1258 | EIGEN_DEVICE_FUNC |
| 1259 | static EIGEN_STRONG_INLINE Scalar run(const Scalar) { |
| 1260 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 1261 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 1262 | return Scalar(0); |
| 1263 | } |
| 1264 | }; |
| 1265 | |
| 1266 | template <> |
| 1267 | struct zeta_impl_series<float> { |
| 1268 | EIGEN_DEVICE_FUNC |
| 1269 | static EIGEN_STRONG_INLINE bool run(float& a, float& b, float& s, const float x, const float machep) { |
| 1270 | int i = 0; |
| 1271 | while(i < 9) |
| 1272 | { |
| 1273 | i += 1; |
| 1274 | a += 1.0f; |
| 1275 | b = numext::pow( a, -x ); |
| 1276 | s += b; |
| 1277 | if( numext::abs(b/s) < machep ) |
| 1278 | return true; |
| 1279 | } |
| 1280 | |
| 1281 | //Return whether we are done |
| 1282 | return false; |
| 1283 | } |
| 1284 | }; |
| 1285 | |
| 1286 | template <> |
| 1287 | struct zeta_impl_series<double> { |
| 1288 | EIGEN_DEVICE_FUNC |
| 1289 | static EIGEN_STRONG_INLINE bool run(double& a, double& b, double& s, const double x, const double machep) { |
| 1290 | int i = 0; |
| 1291 | while( (i < 9) || (a <= 9.0) ) |
| 1292 | { |
| 1293 | i += 1; |
| 1294 | a += 1.0; |
| 1295 | b = numext::pow( a, -x ); |
| 1296 | s += b; |
| 1297 | if( numext::abs(b/s) < machep ) |
| 1298 | return true; |
| 1299 | } |
| 1300 | |
| 1301 | //Return whether we are done |
| 1302 | return false; |
| 1303 | } |
| 1304 | }; |
| 1305 | |
| 1306 | template <typename Scalar> |
| 1307 | struct zeta_impl { |
| 1308 | EIGEN_DEVICE_FUNC |
| 1309 | static Scalar run(Scalar x, Scalar q) { |
| 1310 | /* zeta.c |
| 1311 | * |
| 1312 | * Riemann zeta function of two arguments |
| 1313 | * |
| 1314 | * |
| 1315 | * |
| 1316 | * SYNOPSIS: |
| 1317 | * |
| 1318 | * double x, q, y, zeta(); |
| 1319 | * |
| 1320 | * y = zeta( x, q ); |
| 1321 | * |
| 1322 | * |
| 1323 | * |
| 1324 | * DESCRIPTION: |
| 1325 | * |
| 1326 | * |
| 1327 | * |
| 1328 | * inf. |
| 1329 | * - -x |
| 1330 | * zeta(x,q) = > (k+q) |
| 1331 | * - |
| 1332 | * k=0 |
| 1333 | * |
| 1334 | * where x > 1 and q is not a negative integer or zero. |
| 1335 | * The Euler-Maclaurin summation formula is used to obtain |
| 1336 | * the expansion |
| 1337 | * |
| 1338 | * n |
| 1339 | * - -x |
| 1340 | * zeta(x,q) = > (k+q) |
| 1341 | * - |
| 1342 | * k=1 |
| 1343 | * |
| 1344 | * 1-x inf. B x(x+1)...(x+2j) |
| 1345 | * (n+q) 1 - 2j |
| 1346 | * + --------- - ------- + > -------------------- |
| 1347 | * x-1 x - x+2j+1 |
| 1348 | * 2(n+q) j=1 (2j)! (n+q) |
| 1349 | * |
| 1350 | * where the B2j are Bernoulli numbers. Note that (see zetac.c) |
| 1351 | * zeta(x,1) = zetac(x) + 1. |
| 1352 | * |
| 1353 | * |
| 1354 | * |
| 1355 | * ACCURACY: |
| 1356 | * |
| 1357 | * Relative error for single precision: |
| 1358 | * arithmetic domain # trials peak rms |
| 1359 | * IEEE 0,25 10000 6.9e-7 1.0e-7 |
| 1360 | * |
| 1361 | * Large arguments may produce underflow in powf(), in which |
| 1362 | * case the results are inaccurate. |
| 1363 | * |
| 1364 | * REFERENCE: |
| 1365 | * |
| 1366 | * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals, |
| 1367 | * Series, and Products, p. 1073; Academic Press, 1980. |
| 1368 | * |
| 1369 | */ |
| 1370 | |
| 1371 | int i; |
| 1372 | Scalar p, r, a, b, k, s, t, w; |
| 1373 | |
| 1374 | const Scalar A[] = { |
| 1375 | Scalar(12.0), |
| 1376 | Scalar(-720.0), |
| 1377 | Scalar(30240.0), |
| 1378 | Scalar(-1209600.0), |
| 1379 | Scalar(47900160.0), |
| 1380 | Scalar(-1.8924375803183791606e9), /*1.307674368e12/691*/ |
| 1381 | Scalar(7.47242496e10), |
| 1382 | Scalar(-2.950130727918164224e12), /*1.067062284288e16/3617*/ |
| 1383 | Scalar(1.1646782814350067249e14), /*5.109094217170944e18/43867*/ |
| 1384 | Scalar(-4.5979787224074726105e15), /*8.028576626982912e20/174611*/ |
| 1385 | Scalar(1.8152105401943546773e17), /*1.5511210043330985984e23/854513*/ |
| 1386 | Scalar(-7.1661652561756670113e18) /*1.6938241367317436694528e27/236364091*/ |
| 1387 | }; |
| 1388 | |
| 1389 | const Scalar maxnum = NumTraits<Scalar>::infinity(); |
| 1390 | const Scalar zero = 0.0, half = 0.5, one = 1.0; |
| 1391 | const Scalar machep = cephes_helper<Scalar>::machep(); |
| 1392 | const Scalar nan = NumTraits<Scalar>::quiet_NaN(); |
| 1393 | |
| 1394 | if( x == one ) |
| 1395 | return maxnum; |
| 1396 | |
| 1397 | if( x < one ) |
| 1398 | { |
| 1399 | return nan; |
| 1400 | } |
| 1401 | |
| 1402 | if( q <= zero ) |
| 1403 | { |
| 1404 | if(q == numext::floor(q)) |
| 1405 | { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1406 | if (x == numext::floor(x) && long(x) % 2 == 0) { |
| 1407 | return maxnum; |
| 1408 | } |
| 1409 | else { |
| 1410 | return nan; |
| 1411 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1412 | } |
| 1413 | p = x; |
| 1414 | r = numext::floor(p); |
| 1415 | if (p != r) |
| 1416 | return nan; |
| 1417 | } |
| 1418 | |
| 1419 | /* Permit negative q but continue sum until n+q > +9 . |
| 1420 | * This case should be handled by a reflection formula. |
| 1421 | * If q<0 and x is an integer, there is a relation to |
| 1422 | * the polygamma function. |
| 1423 | */ |
| 1424 | s = numext::pow( q, -x ); |
| 1425 | a = q; |
| 1426 | b = zero; |
| 1427 | // Run the summation in a helper function that is specific to the floating precision |
| 1428 | if (zeta_impl_series<Scalar>::run(a, b, s, x, machep)) { |
| 1429 | return s; |
| 1430 | } |
| 1431 | |
| 1432 | w = a; |
| 1433 | s += b*w/(x-one); |
| 1434 | s -= half * b; |
| 1435 | a = one; |
| 1436 | k = zero; |
| 1437 | for( i=0; i<12; i++ ) |
| 1438 | { |
| 1439 | a *= x + k; |
| 1440 | b /= w; |
| 1441 | t = a*b/A[i]; |
| 1442 | s = s + t; |
| 1443 | t = numext::abs(t/s); |
| 1444 | if( t < machep ) { |
| 1445 | break; |
| 1446 | } |
| 1447 | k += one; |
| 1448 | a *= x + k; |
| 1449 | b /= w; |
| 1450 | k += one; |
| 1451 | } |
| 1452 | return s; |
| 1453 | } |
| 1454 | }; |
| 1455 | |
| 1456 | /**************************************************************************** |
| 1457 | * Implementation of polygamma function, requires C++11/C99 * |
| 1458 | ****************************************************************************/ |
| 1459 | |
| 1460 | template <typename Scalar> |
| 1461 | struct polygamma_retval { |
| 1462 | typedef Scalar type; |
| 1463 | }; |
| 1464 | |
| 1465 | #if !EIGEN_HAS_C99_MATH |
| 1466 | |
| 1467 | template <typename Scalar> |
| 1468 | struct polygamma_impl { |
| 1469 | EIGEN_DEVICE_FUNC |
| 1470 | static EIGEN_STRONG_INLINE Scalar run(Scalar n, Scalar x) { |
| 1471 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 1472 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 1473 | return Scalar(0); |
| 1474 | } |
| 1475 | }; |
| 1476 | |
| 1477 | #else |
| 1478 | |
| 1479 | template <typename Scalar> |
| 1480 | struct polygamma_impl { |
| 1481 | EIGEN_DEVICE_FUNC |
| 1482 | static Scalar run(Scalar n, Scalar x) { |
| 1483 | Scalar zero = 0.0, one = 1.0; |
| 1484 | Scalar nplus = n + one; |
| 1485 | const Scalar nan = NumTraits<Scalar>::quiet_NaN(); |
| 1486 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1487 | // Check that n is a non-negative integer |
| 1488 | if (numext::floor(n) != n || n < zero) { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1489 | return nan; |
| 1490 | } |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1491 | // Just return the digamma function for n = 0 |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1492 | else if (n == zero) { |
| 1493 | return digamma_impl<Scalar>::run(x); |
| 1494 | } |
| 1495 | // Use the same implementation as scipy |
| 1496 | else { |
| 1497 | Scalar factorial = numext::exp(lgamma_impl<Scalar>::run(nplus)); |
| 1498 | return numext::pow(-one, nplus) * factorial * zeta_impl<Scalar>::run(nplus, x); |
| 1499 | } |
| 1500 | } |
| 1501 | }; |
| 1502 | |
| 1503 | #endif // EIGEN_HAS_C99_MATH |
| 1504 | |
| 1505 | /************************************************************************************************ |
| 1506 | * Implementation of betainc (incomplete beta integral), based on Cephes but requires C++11/C99 * |
| 1507 | ************************************************************************************************/ |
| 1508 | |
| 1509 | template <typename Scalar> |
| 1510 | struct betainc_retval { |
| 1511 | typedef Scalar type; |
| 1512 | }; |
| 1513 | |
| 1514 | #if !EIGEN_HAS_C99_MATH |
| 1515 | |
| 1516 | template <typename Scalar> |
| 1517 | struct betainc_impl { |
| 1518 | EIGEN_DEVICE_FUNC |
| 1519 | static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x) { |
| 1520 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 1521 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 1522 | return Scalar(0); |
| 1523 | } |
| 1524 | }; |
| 1525 | |
| 1526 | #else |
| 1527 | |
| 1528 | template <typename Scalar> |
| 1529 | struct betainc_impl { |
| 1530 | EIGEN_DEVICE_FUNC |
| 1531 | static EIGEN_STRONG_INLINE Scalar run(Scalar, Scalar, Scalar) { |
| 1532 | /* betaincf.c |
| 1533 | * |
| 1534 | * Incomplete beta integral |
| 1535 | * |
| 1536 | * |
| 1537 | * SYNOPSIS: |
| 1538 | * |
| 1539 | * float a, b, x, y, betaincf(); |
| 1540 | * |
| 1541 | * y = betaincf( a, b, x ); |
| 1542 | * |
| 1543 | * |
| 1544 | * DESCRIPTION: |
| 1545 | * |
| 1546 | * Returns incomplete beta integral of the arguments, evaluated |
| 1547 | * from zero to x. The function is defined as |
| 1548 | * |
| 1549 | * x |
| 1550 | * - - |
| 1551 | * | (a+b) | | a-1 b-1 |
| 1552 | * ----------- | t (1-t) dt. |
| 1553 | * - - | | |
| 1554 | * | (a) | (b) - |
| 1555 | * 0 |
| 1556 | * |
| 1557 | * The domain of definition is 0 <= x <= 1. In this |
| 1558 | * implementation a and b are restricted to positive values. |
| 1559 | * The integral from x to 1 may be obtained by the symmetry |
| 1560 | * relation |
| 1561 | * |
| 1562 | * 1 - betainc( a, b, x ) = betainc( b, a, 1-x ). |
| 1563 | * |
| 1564 | * The integral is evaluated by a continued fraction expansion. |
| 1565 | * If a < 1, the function calls itself recursively after a |
| 1566 | * transformation to increase a to a+1. |
| 1567 | * |
| 1568 | * ACCURACY (float): |
| 1569 | * |
| 1570 | * Tested at random points (a,b,x) with a and b in the indicated |
| 1571 | * interval and x between 0 and 1. |
| 1572 | * |
| 1573 | * arithmetic domain # trials peak rms |
| 1574 | * Relative error: |
| 1575 | * IEEE 0,30 10000 3.7e-5 5.1e-6 |
| 1576 | * IEEE 0,100 10000 1.7e-4 2.5e-5 |
| 1577 | * The useful domain for relative error is limited by underflow |
| 1578 | * of the single precision exponential function. |
| 1579 | * Absolute error: |
| 1580 | * IEEE 0,30 100000 2.2e-5 9.6e-7 |
| 1581 | * IEEE 0,100 10000 6.5e-5 3.7e-6 |
| 1582 | * |
| 1583 | * Larger errors may occur for extreme ratios of a and b. |
| 1584 | * |
| 1585 | * ACCURACY (double): |
| 1586 | * arithmetic domain # trials peak rms |
| 1587 | * IEEE 0,5 10000 6.9e-15 4.5e-16 |
| 1588 | * IEEE 0,85 250000 2.2e-13 1.7e-14 |
| 1589 | * IEEE 0,1000 30000 5.3e-12 6.3e-13 |
| 1590 | * IEEE 0,10000 250000 9.3e-11 7.1e-12 |
| 1591 | * IEEE 0,100000 10000 8.7e-10 4.8e-11 |
| 1592 | * Outputs smaller than the IEEE gradual underflow threshold |
| 1593 | * were excluded from these statistics. |
| 1594 | * |
| 1595 | * ERROR MESSAGES: |
| 1596 | * message condition value returned |
| 1597 | * incbet domain x<0, x>1 nan |
| 1598 | * incbet underflow nan |
| 1599 | */ |
| 1600 | |
| 1601 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 1602 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 1603 | return Scalar(0); |
| 1604 | } |
| 1605 | }; |
| 1606 | |
| 1607 | /* Continued fraction expansion #1 for incomplete beta integral (small_branch = True) |
| 1608 | * Continued fraction expansion #2 for incomplete beta integral (small_branch = False) |
| 1609 | */ |
| 1610 | template <typename Scalar> |
| 1611 | struct incbeta_cfe { |
| 1612 | EIGEN_DEVICE_FUNC |
| 1613 | static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x, bool small_branch) { |
| 1614 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, float>::value || |
| 1615 | internal::is_same<Scalar, double>::value), |
| 1616 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 1617 | const Scalar big = cephes_helper<Scalar>::big(); |
| 1618 | const Scalar machep = cephes_helper<Scalar>::machep(); |
| 1619 | const Scalar biginv = cephes_helper<Scalar>::biginv(); |
| 1620 | |
| 1621 | const Scalar zero = 0; |
| 1622 | const Scalar one = 1; |
| 1623 | const Scalar two = 2; |
| 1624 | |
| 1625 | Scalar xk, pk, pkm1, pkm2, qk, qkm1, qkm2; |
| 1626 | Scalar k1, k2, k3, k4, k5, k6, k7, k8, k26update; |
| 1627 | Scalar ans; |
| 1628 | int n; |
| 1629 | |
| 1630 | const int num_iters = (internal::is_same<Scalar, float>::value) ? 100 : 300; |
| 1631 | const Scalar thresh = |
| 1632 | (internal::is_same<Scalar, float>::value) ? machep : Scalar(3) * machep; |
| 1633 | Scalar r = (internal::is_same<Scalar, float>::value) ? zero : one; |
| 1634 | |
| 1635 | if (small_branch) { |
| 1636 | k1 = a; |
| 1637 | k2 = a + b; |
| 1638 | k3 = a; |
| 1639 | k4 = a + one; |
| 1640 | k5 = one; |
| 1641 | k6 = b - one; |
| 1642 | k7 = k4; |
| 1643 | k8 = a + two; |
| 1644 | k26update = one; |
| 1645 | } else { |
| 1646 | k1 = a; |
| 1647 | k2 = b - one; |
| 1648 | k3 = a; |
| 1649 | k4 = a + one; |
| 1650 | k5 = one; |
| 1651 | k6 = a + b; |
| 1652 | k7 = a + one; |
| 1653 | k8 = a + two; |
| 1654 | k26update = -one; |
| 1655 | x = x / (one - x); |
| 1656 | } |
| 1657 | |
| 1658 | pkm2 = zero; |
| 1659 | qkm2 = one; |
| 1660 | pkm1 = one; |
| 1661 | qkm1 = one; |
| 1662 | ans = one; |
| 1663 | n = 0; |
| 1664 | |
| 1665 | do { |
| 1666 | xk = -(x * k1 * k2) / (k3 * k4); |
| 1667 | pk = pkm1 + pkm2 * xk; |
| 1668 | qk = qkm1 + qkm2 * xk; |
| 1669 | pkm2 = pkm1; |
| 1670 | pkm1 = pk; |
| 1671 | qkm2 = qkm1; |
| 1672 | qkm1 = qk; |
| 1673 | |
| 1674 | xk = (x * k5 * k6) / (k7 * k8); |
| 1675 | pk = pkm1 + pkm2 * xk; |
| 1676 | qk = qkm1 + qkm2 * xk; |
| 1677 | pkm2 = pkm1; |
| 1678 | pkm1 = pk; |
| 1679 | qkm2 = qkm1; |
| 1680 | qkm1 = qk; |
| 1681 | |
| 1682 | if (qk != zero) { |
| 1683 | r = pk / qk; |
| 1684 | if (numext::abs(ans - r) < numext::abs(r) * thresh) { |
| 1685 | return r; |
| 1686 | } |
| 1687 | ans = r; |
| 1688 | } |
| 1689 | |
| 1690 | k1 += one; |
| 1691 | k2 += k26update; |
| 1692 | k3 += two; |
| 1693 | k4 += two; |
| 1694 | k5 += one; |
| 1695 | k6 -= k26update; |
| 1696 | k7 += two; |
| 1697 | k8 += two; |
| 1698 | |
| 1699 | if ((numext::abs(qk) + numext::abs(pk)) > big) { |
| 1700 | pkm2 *= biginv; |
| 1701 | pkm1 *= biginv; |
| 1702 | qkm2 *= biginv; |
| 1703 | qkm1 *= biginv; |
| 1704 | } |
| 1705 | if ((numext::abs(qk) < biginv) || (numext::abs(pk) < biginv)) { |
| 1706 | pkm2 *= big; |
| 1707 | pkm1 *= big; |
| 1708 | qkm2 *= big; |
| 1709 | qkm1 *= big; |
| 1710 | } |
| 1711 | } while (++n < num_iters); |
| 1712 | |
| 1713 | return ans; |
| 1714 | } |
| 1715 | }; |
| 1716 | |
| 1717 | /* Helper functions depending on the Scalar type */ |
| 1718 | template <typename Scalar> |
| 1719 | struct betainc_helper {}; |
| 1720 | |
| 1721 | template <> |
| 1722 | struct betainc_helper<float> { |
| 1723 | /* Core implementation, assumes a large (> 1.0) */ |
| 1724 | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float incbsa(float aa, float bb, |
| 1725 | float xx) { |
| 1726 | float ans, a, b, t, x, onemx; |
| 1727 | bool reversed_a_b = false; |
| 1728 | |
| 1729 | onemx = 1.0f - xx; |
| 1730 | |
| 1731 | /* see if x is greater than the mean */ |
| 1732 | if (xx > (aa / (aa + bb))) { |
| 1733 | reversed_a_b = true; |
| 1734 | a = bb; |
| 1735 | b = aa; |
| 1736 | t = xx; |
| 1737 | x = onemx; |
| 1738 | } else { |
| 1739 | a = aa; |
| 1740 | b = bb; |
| 1741 | t = onemx; |
| 1742 | x = xx; |
| 1743 | } |
| 1744 | |
| 1745 | /* Choose expansion for optimal convergence */ |
| 1746 | if (b > 10.0f) { |
| 1747 | if (numext::abs(b * x / a) < 0.3f) { |
| 1748 | t = betainc_helper<float>::incbps(a, b, x); |
| 1749 | if (reversed_a_b) t = 1.0f - t; |
| 1750 | return t; |
| 1751 | } |
| 1752 | } |
| 1753 | |
| 1754 | ans = x * (a + b - 2.0f) / (a - 1.0f); |
| 1755 | if (ans < 1.0f) { |
| 1756 | ans = incbeta_cfe<float>::run(a, b, x, true /* small_branch */); |
| 1757 | t = b * numext::log(t); |
| 1758 | } else { |
| 1759 | ans = incbeta_cfe<float>::run(a, b, x, false /* small_branch */); |
| 1760 | t = (b - 1.0f) * numext::log(t); |
| 1761 | } |
| 1762 | |
| 1763 | t += a * numext::log(x) + lgamma_impl<float>::run(a + b) - |
| 1764 | lgamma_impl<float>::run(a) - lgamma_impl<float>::run(b); |
| 1765 | t += numext::log(ans / a); |
| 1766 | t = numext::exp(t); |
| 1767 | |
| 1768 | if (reversed_a_b) t = 1.0f - t; |
| 1769 | return t; |
| 1770 | } |
| 1771 | |
| 1772 | EIGEN_DEVICE_FUNC |
| 1773 | static EIGEN_STRONG_INLINE float incbps(float a, float b, float x) { |
| 1774 | float t, u, y, s; |
| 1775 | const float machep = cephes_helper<float>::machep(); |
| 1776 | |
| 1777 | y = a * numext::log(x) + (b - 1.0f) * numext::log1p(-x) - numext::log(a); |
| 1778 | y -= lgamma_impl<float>::run(a) + lgamma_impl<float>::run(b); |
| 1779 | y += lgamma_impl<float>::run(a + b); |
| 1780 | |
| 1781 | t = x / (1.0f - x); |
| 1782 | s = 0.0f; |
| 1783 | u = 1.0f; |
| 1784 | do { |
| 1785 | b -= 1.0f; |
| 1786 | if (b == 0.0f) { |
| 1787 | break; |
| 1788 | } |
| 1789 | a += 1.0f; |
| 1790 | u *= t * b / a; |
| 1791 | s += u; |
| 1792 | } while (numext::abs(u) > machep); |
| 1793 | |
| 1794 | return numext::exp(y) * (1.0f + s); |
| 1795 | } |
| 1796 | }; |
| 1797 | |
| 1798 | template <> |
| 1799 | struct betainc_impl<float> { |
| 1800 | EIGEN_DEVICE_FUNC |
| 1801 | static float run(float a, float b, float x) { |
| 1802 | const float nan = NumTraits<float>::quiet_NaN(); |
| 1803 | float ans, t; |
| 1804 | |
| 1805 | if (a <= 0.0f) return nan; |
| 1806 | if (b <= 0.0f) return nan; |
| 1807 | if ((x <= 0.0f) || (x >= 1.0f)) { |
| 1808 | if (x == 0.0f) return 0.0f; |
| 1809 | if (x == 1.0f) return 1.0f; |
| 1810 | // mtherr("betaincf", DOMAIN); |
| 1811 | return nan; |
| 1812 | } |
| 1813 | |
| 1814 | /* transformation for small aa */ |
| 1815 | if (a <= 1.0f) { |
| 1816 | ans = betainc_helper<float>::incbsa(a + 1.0f, b, x); |
| 1817 | t = a * numext::log(x) + b * numext::log1p(-x) + |
| 1818 | lgamma_impl<float>::run(a + b) - lgamma_impl<float>::run(a + 1.0f) - |
| 1819 | lgamma_impl<float>::run(b); |
| 1820 | return (ans + numext::exp(t)); |
| 1821 | } else { |
| 1822 | return betainc_helper<float>::incbsa(a, b, x); |
| 1823 | } |
| 1824 | } |
| 1825 | }; |
| 1826 | |
| 1827 | template <> |
| 1828 | struct betainc_helper<double> { |
| 1829 | EIGEN_DEVICE_FUNC |
| 1830 | static EIGEN_STRONG_INLINE double incbps(double a, double b, double x) { |
| 1831 | const double machep = cephes_helper<double>::machep(); |
| 1832 | |
| 1833 | double s, t, u, v, n, t1, z, ai; |
| 1834 | |
| 1835 | ai = 1.0 / a; |
| 1836 | u = (1.0 - b) * x; |
| 1837 | v = u / (a + 1.0); |
| 1838 | t1 = v; |
| 1839 | t = u; |
| 1840 | n = 2.0; |
| 1841 | s = 0.0; |
| 1842 | z = machep * ai; |
| 1843 | while (numext::abs(v) > z) { |
| 1844 | u = (n - b) * x / n; |
| 1845 | t *= u; |
| 1846 | v = t / (a + n); |
| 1847 | s += v; |
| 1848 | n += 1.0; |
| 1849 | } |
| 1850 | s += t1; |
| 1851 | s += ai; |
| 1852 | |
| 1853 | u = a * numext::log(x); |
| 1854 | // TODO: gamma() is not directly implemented in Eigen. |
| 1855 | /* |
| 1856 | if ((a + b) < maxgam && numext::abs(u) < maxlog) { |
| 1857 | t = gamma(a + b) / (gamma(a) * gamma(b)); |
| 1858 | s = s * t * pow(x, a); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1859 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1860 | */ |
| 1861 | t = lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) - |
| 1862 | lgamma_impl<double>::run(b) + u + numext::log(s); |
| 1863 | return s = numext::exp(t); |
| 1864 | } |
| 1865 | }; |
| 1866 | |
| 1867 | template <> |
| 1868 | struct betainc_impl<double> { |
| 1869 | EIGEN_DEVICE_FUNC |
| 1870 | static double run(double aa, double bb, double xx) { |
| 1871 | const double nan = NumTraits<double>::quiet_NaN(); |
| 1872 | const double machep = cephes_helper<double>::machep(); |
| 1873 | // const double maxgam = 171.624376956302725; |
| 1874 | |
| 1875 | double a, b, t, x, xc, w, y; |
| 1876 | bool reversed_a_b = false; |
| 1877 | |
| 1878 | if (aa <= 0.0 || bb <= 0.0) { |
| 1879 | return nan; // goto domerr; |
| 1880 | } |
| 1881 | |
| 1882 | if ((xx <= 0.0) || (xx >= 1.0)) { |
| 1883 | if (xx == 0.0) return (0.0); |
| 1884 | if (xx == 1.0) return (1.0); |
| 1885 | // mtherr("incbet", DOMAIN); |
| 1886 | return nan; |
| 1887 | } |
| 1888 | |
| 1889 | if ((bb * xx) <= 1.0 && xx <= 0.95) { |
| 1890 | return betainc_helper<double>::incbps(aa, bb, xx); |
| 1891 | } |
| 1892 | |
| 1893 | w = 1.0 - xx; |
| 1894 | |
| 1895 | /* Reverse a and b if x is greater than the mean. */ |
| 1896 | if (xx > (aa / (aa + bb))) { |
| 1897 | reversed_a_b = true; |
| 1898 | a = bb; |
| 1899 | b = aa; |
| 1900 | xc = xx; |
| 1901 | x = w; |
| 1902 | } else { |
| 1903 | a = aa; |
| 1904 | b = bb; |
| 1905 | xc = w; |
| 1906 | x = xx; |
| 1907 | } |
| 1908 | |
| 1909 | if (reversed_a_b && (b * x) <= 1.0 && x <= 0.95) { |
| 1910 | t = betainc_helper<double>::incbps(a, b, x); |
| 1911 | if (t <= machep) { |
| 1912 | t = 1.0 - machep; |
| 1913 | } else { |
| 1914 | t = 1.0 - t; |
| 1915 | } |
| 1916 | return t; |
| 1917 | } |
| 1918 | |
| 1919 | /* Choose expansion for better convergence. */ |
| 1920 | y = x * (a + b - 2.0) - (a - 1.0); |
| 1921 | if (y < 0.0) { |
| 1922 | w = incbeta_cfe<double>::run(a, b, x, true /* small_branch */); |
| 1923 | } else { |
| 1924 | w = incbeta_cfe<double>::run(a, b, x, false /* small_branch */) / xc; |
| 1925 | } |
| 1926 | |
| 1927 | /* Multiply w by the factor |
| 1928 | a b _ _ _ |
| 1929 | x (1-x) | (a+b) / ( a | (a) | (b) ) . */ |
| 1930 | |
| 1931 | y = a * numext::log(x); |
| 1932 | t = b * numext::log(xc); |
| 1933 | // TODO: gamma is not directly implemented in Eigen. |
| 1934 | /* |
| 1935 | if ((a + b) < maxgam && numext::abs(y) < maxlog && numext::abs(t) < maxlog) |
| 1936 | { |
| 1937 | t = pow(xc, b); |
| 1938 | t *= pow(x, a); |
| 1939 | t /= a; |
| 1940 | t *= w; |
| 1941 | t *= gamma(a + b) / (gamma(a) * gamma(b)); |
| 1942 | } else { |
| 1943 | */ |
| 1944 | /* Resort to logarithms. */ |
| 1945 | y += t + lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) - |
| 1946 | lgamma_impl<double>::run(b); |
| 1947 | y += numext::log(w / a); |
| 1948 | t = numext::exp(y); |
| 1949 | |
| 1950 | /* } */ |
| 1951 | // done: |
| 1952 | |
| 1953 | if (reversed_a_b) { |
| 1954 | if (t <= machep) { |
| 1955 | t = 1.0 - machep; |
| 1956 | } else { |
| 1957 | t = 1.0 - t; |
| 1958 | } |
| 1959 | } |
| 1960 | return t; |
| 1961 | } |
| 1962 | }; |
| 1963 | |
| 1964 | #endif // EIGEN_HAS_C99_MATH |
| 1965 | |
| 1966 | } // end namespace internal |
| 1967 | |
| 1968 | namespace numext { |
| 1969 | |
| 1970 | template <typename Scalar> |
| 1971 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(lgamma, Scalar) |
| 1972 | lgamma(const Scalar& x) { |
| 1973 | return EIGEN_MATHFUNC_IMPL(lgamma, Scalar)::run(x); |
| 1974 | } |
| 1975 | |
| 1976 | template <typename Scalar> |
| 1977 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(digamma, Scalar) |
| 1978 | digamma(const Scalar& x) { |
| 1979 | return EIGEN_MATHFUNC_IMPL(digamma, Scalar)::run(x); |
| 1980 | } |
| 1981 | |
| 1982 | template <typename Scalar> |
| 1983 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(zeta, Scalar) |
| 1984 | zeta(const Scalar& x, const Scalar& q) { |
| 1985 | return EIGEN_MATHFUNC_IMPL(zeta, Scalar)::run(x, q); |
| 1986 | } |
| 1987 | |
| 1988 | template <typename Scalar> |
| 1989 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(polygamma, Scalar) |
| 1990 | polygamma(const Scalar& n, const Scalar& x) { |
| 1991 | return EIGEN_MATHFUNC_IMPL(polygamma, Scalar)::run(n, x); |
| 1992 | } |
| 1993 | |
| 1994 | template <typename Scalar> |
| 1995 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erf, Scalar) |
| 1996 | erf(const Scalar& x) { |
| 1997 | return EIGEN_MATHFUNC_IMPL(erf, Scalar)::run(x); |
| 1998 | } |
| 1999 | |
| 2000 | template <typename Scalar> |
| 2001 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erfc, Scalar) |
| 2002 | erfc(const Scalar& x) { |
| 2003 | return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x); |
| 2004 | } |
| 2005 | |
| 2006 | template <typename Scalar> |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 2007 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(ndtri, Scalar) |
| 2008 | ndtri(const Scalar& x) { |
| 2009 | return EIGEN_MATHFUNC_IMPL(ndtri, Scalar)::run(x); |
| 2010 | } |
| 2011 | |
| 2012 | template <typename Scalar> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 2013 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar) |
| 2014 | igamma(const Scalar& a, const Scalar& x) { |
| 2015 | return EIGEN_MATHFUNC_IMPL(igamma, Scalar)::run(a, x); |
| 2016 | } |
| 2017 | |
| 2018 | template <typename Scalar> |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 2019 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma_der_a, Scalar) |
| 2020 | igamma_der_a(const Scalar& a, const Scalar& x) { |
| 2021 | return EIGEN_MATHFUNC_IMPL(igamma_der_a, Scalar)::run(a, x); |
| 2022 | } |
| 2023 | |
| 2024 | template <typename Scalar> |
| 2025 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(gamma_sample_der_alpha, Scalar) |
| 2026 | gamma_sample_der_alpha(const Scalar& a, const Scalar& x) { |
| 2027 | return EIGEN_MATHFUNC_IMPL(gamma_sample_der_alpha, Scalar)::run(a, x); |
| 2028 | } |
| 2029 | |
| 2030 | template <typename Scalar> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 2031 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar) |
| 2032 | igammac(const Scalar& a, const Scalar& x) { |
| 2033 | return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x); |
| 2034 | } |
| 2035 | |
| 2036 | template <typename Scalar> |
| 2037 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(betainc, Scalar) |
| 2038 | betainc(const Scalar& a, const Scalar& b, const Scalar& x) { |
| 2039 | return EIGEN_MATHFUNC_IMPL(betainc, Scalar)::run(a, b, x); |
| 2040 | } |
| 2041 | |
| 2042 | } // end namespace numext |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 2043 | } // end namespace Eigen |
| 2044 | |
| 2045 | #endif // EIGEN_SPECIAL_FUNCTIONS_H |