blob: f524d7137741e645642c2de3d4c7218526a5f0ae [file] [log] [blame]
Austin Schuh189376f2018-12-20 22:11:15 +11001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_SPECIAL_FUNCTIONS_H
11#define EIGEN_SPECIAL_FUNCTIONS_H
12
13namespace Eigen {
14namespace internal {
15
16// Parts of this code are based on the Cephes Math Library.
17//
18// Cephes Math Library Release 2.8: June, 2000
19// Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
20//
21// Permission has been kindly provided by the original author
22// to incorporate the Cephes software into the Eigen codebase:
23//
24// From: Stephen Moshier
25// To: Eugene Brevdo
26// Subject: Re: Permission to wrap several cephes functions in Eigen
27//
28// Hello Eugene,
29//
30// Thank you for writing.
31//
32// If your licensing is similar to BSD, the formal way that has been
33// handled is simply to add a statement to the effect that you are incorporating
34// the Cephes software by permission of the author.
35//
36// Good luck with your project,
37// Steve
38
39namespace cephes {
40
41/* polevl (modified for Eigen)
42 *
43 * Evaluate polynomial
44 *
45 *
46 *
47 * SYNOPSIS:
48 *
49 * int N;
50 * Scalar x, y, coef[N+1];
51 *
52 * y = polevl<decltype(x), N>( x, coef);
53 *
54 *
55 *
56 * DESCRIPTION:
57 *
58 * Evaluates polynomial of degree N:
59 *
60 * 2 N
61 * y = C + C x + C x +...+ C x
62 * 0 1 2 N
63 *
64 * Coefficients are stored in reverse order:
65 *
66 * coef[0] = C , ..., coef[N] = C .
67 * N 0
68 *
69 * The function p1evl() assumes that coef[N] = 1.0 and is
70 * omitted from the array. Its calling arguments are
71 * otherwise the same as polevl().
72 *
73 *
74 * The Eigen implementation is templatized. For best speed, store
75 * coef as a const array (constexpr), e.g.
76 *
77 * const double coef[] = {1.0, 2.0, 3.0, ...};
78 *
79 */
80template <typename Scalar, int N>
81struct polevl {
82 EIGEN_DEVICE_FUNC
83 static EIGEN_STRONG_INLINE Scalar run(const Scalar x, const Scalar coef[]) {
84 EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
85
86 return polevl<Scalar, N - 1>::run(x, coef) * x + coef[N];
87 }
88};
89
90template <typename Scalar>
91struct polevl<Scalar, 0> {
92 EIGEN_DEVICE_FUNC
93 static EIGEN_STRONG_INLINE Scalar run(const Scalar, const Scalar coef[]) {
94 return coef[0];
95 }
96};
97
98} // end namespace cephes
99
100/****************************************************************************
101 * Implementation of lgamma, requires C++11/C99 *
102 ****************************************************************************/
103
104template <typename Scalar>
105struct lgamma_impl {
106 EIGEN_DEVICE_FUNC
107 static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
108 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
109 THIS_TYPE_IS_NOT_SUPPORTED);
110 return Scalar(0);
111 }
112};
113
114template <typename Scalar>
115struct lgamma_retval {
116 typedef Scalar type;
117};
118
119#if EIGEN_HAS_C99_MATH
120template <>
121struct lgamma_impl<float> {
122 EIGEN_DEVICE_FUNC
123 static EIGEN_STRONG_INLINE float run(float x) {
124#if !defined(__CUDA_ARCH__) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__)
125 int signgam;
126 return ::lgammaf_r(x, &signgam);
127#else
128 return ::lgammaf(x);
129#endif
130 }
131};
132
133template <>
134struct lgamma_impl<double> {
135 EIGEN_DEVICE_FUNC
136 static EIGEN_STRONG_INLINE double run(double x) {
137#if !defined(__CUDA_ARCH__) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__)
138 int signgam;
139 return ::lgamma_r(x, &signgam);
140#else
141 return ::lgamma(x);
142#endif
143 }
144};
145#endif
146
147/****************************************************************************
148 * Implementation of digamma (psi), based on Cephes *
149 ****************************************************************************/
150
151template <typename Scalar>
152struct digamma_retval {
153 typedef Scalar type;
154};
155
156/*
157 *
158 * Polynomial evaluation helper for the Psi (digamma) function.
159 *
160 * digamma_impl_maybe_poly::run(s) evaluates the asymptotic Psi expansion for
161 * input Scalar s, assuming s is above 10.0.
162 *
163 * If s is above a certain threshold for the given Scalar type, zero
164 * is returned. Otherwise the polynomial is evaluated with enough
165 * coefficients for results matching Scalar machine precision.
166 *
167 *
168 */
169template <typename Scalar>
170struct digamma_impl_maybe_poly {
171 EIGEN_DEVICE_FUNC
172 static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
173 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
174 THIS_TYPE_IS_NOT_SUPPORTED);
175 return Scalar(0);
176 }
177};
178
179
180template <>
181struct digamma_impl_maybe_poly<float> {
182 EIGEN_DEVICE_FUNC
183 static EIGEN_STRONG_INLINE float run(const float s) {
184 const float A[] = {
185 -4.16666666666666666667E-3f,
186 3.96825396825396825397E-3f,
187 -8.33333333333333333333E-3f,
188 8.33333333333333333333E-2f
189 };
190
191 float z;
192 if (s < 1.0e8f) {
193 z = 1.0f / (s * s);
194 return z * cephes::polevl<float, 3>::run(z, A);
195 } else return 0.0f;
196 }
197};
198
199template <>
200struct digamma_impl_maybe_poly<double> {
201 EIGEN_DEVICE_FUNC
202 static EIGEN_STRONG_INLINE double run(const double s) {
203 const double A[] = {
204 8.33333333333333333333E-2,
205 -2.10927960927960927961E-2,
206 7.57575757575757575758E-3,
207 -4.16666666666666666667E-3,
208 3.96825396825396825397E-3,
209 -8.33333333333333333333E-3,
210 8.33333333333333333333E-2
211 };
212
213 double z;
214 if (s < 1.0e17) {
215 z = 1.0 / (s * s);
216 return z * cephes::polevl<double, 6>::run(z, A);
217 }
218 else return 0.0;
219 }
220};
221
222template <typename Scalar>
223struct digamma_impl {
224 EIGEN_DEVICE_FUNC
225 static Scalar run(Scalar x) {
226 /*
227 *
228 * Psi (digamma) function (modified for Eigen)
229 *
230 *
231 * SYNOPSIS:
232 *
233 * double x, y, psi();
234 *
235 * y = psi( x );
236 *
237 *
238 * DESCRIPTION:
239 *
240 * d -
241 * psi(x) = -- ln | (x)
242 * dx
243 *
244 * is the logarithmic derivative of the gamma function.
245 * For integer x,
246 * n-1
247 * -
248 * psi(n) = -EUL + > 1/k.
249 * -
250 * k=1
251 *
252 * If x is negative, it is transformed to a positive argument by the
253 * reflection formula psi(1-x) = psi(x) + pi cot(pi x).
254 * For general positive x, the argument is made greater than 10
255 * using the recurrence psi(x+1) = psi(x) + 1/x.
256 * Then the following asymptotic expansion is applied:
257 *
258 * inf. B
259 * - 2k
260 * psi(x) = log(x) - 1/2x - > -------
261 * - 2k
262 * k=1 2k x
263 *
264 * where the B2k are Bernoulli numbers.
265 *
266 * ACCURACY (float):
267 * Relative error (except absolute when |psi| < 1):
268 * arithmetic domain # trials peak rms
269 * IEEE 0,30 30000 1.3e-15 1.4e-16
270 * IEEE -30,0 40000 1.5e-15 2.2e-16
271 *
272 * ACCURACY (double):
273 * Absolute error, relative when |psi| > 1 :
274 * arithmetic domain # trials peak rms
275 * IEEE -33,0 30000 8.2e-7 1.2e-7
276 * IEEE 0,33 100000 7.3e-7 7.7e-8
277 *
278 * ERROR MESSAGES:
279 * message condition value returned
280 * psi singularity x integer <=0 INFINITY
281 */
282
283 Scalar p, q, nz, s, w, y;
284 bool negative = false;
285
286 const Scalar maxnum = NumTraits<Scalar>::infinity();
287 const Scalar m_pi = Scalar(EIGEN_PI);
288
289 const Scalar zero = Scalar(0);
290 const Scalar one = Scalar(1);
291 const Scalar half = Scalar(0.5);
292 nz = zero;
293
294 if (x <= zero) {
295 negative = true;
296 q = x;
297 p = numext::floor(q);
298 if (p == q) {
299 return maxnum;
300 }
301 /* Remove the zeros of tan(m_pi x)
302 * by subtracting the nearest integer from x
303 */
304 nz = q - p;
305 if (nz != half) {
306 if (nz > half) {
307 p += one;
308 nz = q - p;
309 }
310 nz = m_pi / numext::tan(m_pi * nz);
311 }
312 else {
313 nz = zero;
314 }
315 x = one - x;
316 }
317
318 /* use the recurrence psi(x+1) = psi(x) + 1/x. */
319 s = x;
320 w = zero;
321 while (s < Scalar(10)) {
322 w += one / s;
323 s += one;
324 }
325
326 y = digamma_impl_maybe_poly<Scalar>::run(s);
327
328 y = numext::log(s) - (half / s) - y - w;
329
330 return (negative) ? y - nz : y;
331 }
332};
333
334/****************************************************************************
335 * Implementation of erf, requires C++11/C99 *
336 ****************************************************************************/
337
338template <typename Scalar>
339struct erf_impl {
340 EIGEN_DEVICE_FUNC
341 static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
342 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
343 THIS_TYPE_IS_NOT_SUPPORTED);
344 return Scalar(0);
345 }
346};
347
348template <typename Scalar>
349struct erf_retval {
350 typedef Scalar type;
351};
352
353#if EIGEN_HAS_C99_MATH
354template <>
355struct erf_impl<float> {
356 EIGEN_DEVICE_FUNC
357 static EIGEN_STRONG_INLINE float run(float x) { return ::erff(x); }
358};
359
360template <>
361struct erf_impl<double> {
362 EIGEN_DEVICE_FUNC
363 static EIGEN_STRONG_INLINE double run(double x) { return ::erf(x); }
364};
365#endif // EIGEN_HAS_C99_MATH
366
367/***************************************************************************
368* Implementation of erfc, requires C++11/C99 *
369****************************************************************************/
370
371template <typename Scalar>
372struct erfc_impl {
373 EIGEN_DEVICE_FUNC
374 static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
375 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
376 THIS_TYPE_IS_NOT_SUPPORTED);
377 return Scalar(0);
378 }
379};
380
381template <typename Scalar>
382struct erfc_retval {
383 typedef Scalar type;
384};
385
386#if EIGEN_HAS_C99_MATH
387template <>
388struct erfc_impl<float> {
389 EIGEN_DEVICE_FUNC
390 static EIGEN_STRONG_INLINE float run(const float x) { return ::erfcf(x); }
391};
392
393template <>
394struct erfc_impl<double> {
395 EIGEN_DEVICE_FUNC
396 static EIGEN_STRONG_INLINE double run(const double x) { return ::erfc(x); }
397};
398#endif // EIGEN_HAS_C99_MATH
399
400/**************************************************************************************************************
401 * Implementation of igammac (complemented incomplete gamma integral), based on Cephes but requires C++11/C99 *
402 **************************************************************************************************************/
403
404template <typename Scalar>
405struct igammac_retval {
406 typedef Scalar type;
407};
408
409// NOTE: cephes_helper is also used to implement zeta
410template <typename Scalar>
411struct cephes_helper {
412 EIGEN_DEVICE_FUNC
413 static EIGEN_STRONG_INLINE Scalar machep() { assert(false && "machep not supported for this type"); return 0.0; }
414 EIGEN_DEVICE_FUNC
415 static EIGEN_STRONG_INLINE Scalar big() { assert(false && "big not supported for this type"); return 0.0; }
416 EIGEN_DEVICE_FUNC
417 static EIGEN_STRONG_INLINE Scalar biginv() { assert(false && "biginv not supported for this type"); return 0.0; }
418};
419
420template <>
421struct cephes_helper<float> {
422 EIGEN_DEVICE_FUNC
423 static EIGEN_STRONG_INLINE float machep() {
424 return NumTraits<float>::epsilon() / 2; // 1.0 - machep == 1.0
425 }
426 EIGEN_DEVICE_FUNC
427 static EIGEN_STRONG_INLINE float big() {
428 // use epsneg (1.0 - epsneg == 1.0)
429 return 1.0f / (NumTraits<float>::epsilon() / 2);
430 }
431 EIGEN_DEVICE_FUNC
432 static EIGEN_STRONG_INLINE float biginv() {
433 // epsneg
434 return machep();
435 }
436};
437
438template <>
439struct cephes_helper<double> {
440 EIGEN_DEVICE_FUNC
441 static EIGEN_STRONG_INLINE double machep() {
442 return NumTraits<double>::epsilon() / 2; // 1.0 - machep == 1.0
443 }
444 EIGEN_DEVICE_FUNC
445 static EIGEN_STRONG_INLINE double big() {
446 return 1.0 / NumTraits<double>::epsilon();
447 }
448 EIGEN_DEVICE_FUNC
449 static EIGEN_STRONG_INLINE double biginv() {
450 // inverse of eps
451 return NumTraits<double>::epsilon();
452 }
453};
454
455#if !EIGEN_HAS_C99_MATH
456
457template <typename Scalar>
458struct igammac_impl {
459 EIGEN_DEVICE_FUNC
460 static Scalar run(Scalar a, Scalar x) {
461 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
462 THIS_TYPE_IS_NOT_SUPPORTED);
463 return Scalar(0);
464 }
465};
466
467#else
468
469template <typename Scalar> struct igamma_impl; // predeclare igamma_impl
470
471template <typename Scalar>
472struct igammac_impl {
473 EIGEN_DEVICE_FUNC
474 static Scalar run(Scalar a, Scalar x) {
475 /* igamc()
476 *
477 * Incomplete gamma integral (modified for Eigen)
478 *
479 *
480 *
481 * SYNOPSIS:
482 *
483 * double a, x, y, igamc();
484 *
485 * y = igamc( a, x );
486 *
487 * DESCRIPTION:
488 *
489 * The function is defined by
490 *
491 *
492 * igamc(a,x) = 1 - igam(a,x)
493 *
494 * inf.
495 * -
496 * 1 | | -t a-1
497 * = ----- | e t dt.
498 * - | |
499 * | (a) -
500 * x
501 *
502 *
503 * In this implementation both arguments must be positive.
504 * The integral is evaluated by either a power series or
505 * continued fraction expansion, depending on the relative
506 * values of a and x.
507 *
508 * ACCURACY (float):
509 *
510 * Relative error:
511 * arithmetic domain # trials peak rms
512 * IEEE 0,30 30000 7.8e-6 5.9e-7
513 *
514 *
515 * ACCURACY (double):
516 *
517 * Tested at random a, x.
518 * a x Relative error:
519 * arithmetic domain domain # trials peak rms
520 * IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
521 * IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
522 *
523 */
524 /*
525 Cephes Math Library Release 2.2: June, 1992
526 Copyright 1985, 1987, 1992 by Stephen L. Moshier
527 Direct inquiries to 30 Frost Street, Cambridge, MA 02140
528 */
529 const Scalar zero = 0;
530 const Scalar one = 1;
531 const Scalar nan = NumTraits<Scalar>::quiet_NaN();
532
533 if ((x < zero) || (a <= zero)) {
534 // domain error
535 return nan;
536 }
537
538 if ((x < one) || (x < a)) {
539 /* The checks above ensure that we meet the preconditions for
540 * igamma_impl::Impl(), so call it, rather than igamma_impl::Run().
541 * Calling Run() would also work, but in that case the compiler may not be
542 * able to prove that igammac_impl::Run and igamma_impl::Run are not
543 * mutually recursive. This leads to worse code, particularly on
544 * platforms like nvptx, where recursion is allowed only begrudgingly.
545 */
546 return (one - igamma_impl<Scalar>::Impl(a, x));
547 }
548
549 return Impl(a, x);
550 }
551
552 private:
553 /* igamma_impl calls igammac_impl::Impl. */
554 friend struct igamma_impl<Scalar>;
555
556 /* Actually computes igamc(a, x).
557 *
558 * Preconditions:
559 * a > 0
560 * x >= 1
561 * x >= a
562 */
563 EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) {
564 const Scalar zero = 0;
565 const Scalar one = 1;
566 const Scalar two = 2;
567 const Scalar machep = cephes_helper<Scalar>::machep();
568 const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
569 const Scalar big = cephes_helper<Scalar>::big();
570 const Scalar biginv = cephes_helper<Scalar>::biginv();
571 const Scalar inf = NumTraits<Scalar>::infinity();
572
573 Scalar ans, ax, c, yc, r, t, y, z;
574 Scalar pk, pkm1, pkm2, qk, qkm1, qkm2;
575
576 if (x == inf) return zero; // std::isinf crashes on CUDA
577
578 /* Compute x**a * exp(-x) / gamma(a) */
579 ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
580 if (ax < -maxlog) { // underflow
581 return zero;
582 }
583 ax = numext::exp(ax);
584
585 // continued fraction
586 y = one - a;
587 z = x + y + one;
588 c = zero;
589 pkm2 = one;
590 qkm2 = x;
591 pkm1 = x + one;
592 qkm1 = z * x;
593 ans = pkm1 / qkm1;
594
595 while (true) {
596 c += one;
597 y += one;
598 z += two;
599 yc = y * c;
600 pk = pkm1 * z - pkm2 * yc;
601 qk = qkm1 * z - qkm2 * yc;
602 if (qk != zero) {
603 r = pk / qk;
604 t = numext::abs((ans - r) / r);
605 ans = r;
606 } else {
607 t = one;
608 }
609 pkm2 = pkm1;
610 pkm1 = pk;
611 qkm2 = qkm1;
612 qkm1 = qk;
613 if (numext::abs(pk) > big) {
614 pkm2 *= biginv;
615 pkm1 *= biginv;
616 qkm2 *= biginv;
617 qkm1 *= biginv;
618 }
619 if (t <= machep) {
620 break;
621 }
622 }
623
624 return (ans * ax);
625 }
626};
627
628#endif // EIGEN_HAS_C99_MATH
629
630/************************************************************************************************
631 * Implementation of igamma (incomplete gamma integral), based on Cephes but requires C++11/C99 *
632 ************************************************************************************************/
633
634template <typename Scalar>
635struct igamma_retval {
636 typedef Scalar type;
637};
638
639#if !EIGEN_HAS_C99_MATH
640
641template <typename Scalar>
642struct igamma_impl {
643 EIGEN_DEVICE_FUNC
644 static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar x) {
645 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
646 THIS_TYPE_IS_NOT_SUPPORTED);
647 return Scalar(0);
648 }
649};
650
651#else
652
653template <typename Scalar>
654struct igamma_impl {
655 EIGEN_DEVICE_FUNC
656 static Scalar run(Scalar a, Scalar x) {
657 /* igam()
658 * Incomplete gamma integral
659 *
660 *
661 *
662 * SYNOPSIS:
663 *
664 * double a, x, y, igam();
665 *
666 * y = igam( a, x );
667 *
668 * DESCRIPTION:
669 *
670 * The function is defined by
671 *
672 * x
673 * -
674 * 1 | | -t a-1
675 * igam(a,x) = ----- | e t dt.
676 * - | |
677 * | (a) -
678 * 0
679 *
680 *
681 * In this implementation both arguments must be positive.
682 * The integral is evaluated by either a power series or
683 * continued fraction expansion, depending on the relative
684 * values of a and x.
685 *
686 * ACCURACY (double):
687 *
688 * Relative error:
689 * arithmetic domain # trials peak rms
690 * IEEE 0,30 200000 3.6e-14 2.9e-15
691 * IEEE 0,100 300000 9.9e-14 1.5e-14
692 *
693 *
694 * ACCURACY (float):
695 *
696 * Relative error:
697 * arithmetic domain # trials peak rms
698 * IEEE 0,30 20000 7.8e-6 5.9e-7
699 *
700 */
701 /*
702 Cephes Math Library Release 2.2: June, 1992
703 Copyright 1985, 1987, 1992 by Stephen L. Moshier
704 Direct inquiries to 30 Frost Street, Cambridge, MA 02140
705 */
706
707
708 /* left tail of incomplete gamma function:
709 *
710 * inf. k
711 * a -x - x
712 * x e > ----------
713 * - -
714 * k=0 | (a+k+1)
715 *
716 */
717 const Scalar zero = 0;
718 const Scalar one = 1;
719 const Scalar nan = NumTraits<Scalar>::quiet_NaN();
720
721 if (x == zero) return zero;
722
723 if ((x < zero) || (a <= zero)) { // domain error
724 return nan;
725 }
726
727 if ((x > one) && (x > a)) {
728 /* The checks above ensure that we meet the preconditions for
729 * igammac_impl::Impl(), so call it, rather than igammac_impl::Run().
730 * Calling Run() would also work, but in that case the compiler may not be
731 * able to prove that igammac_impl::Run and igamma_impl::Run are not
732 * mutually recursive. This leads to worse code, particularly on
733 * platforms like nvptx, where recursion is allowed only begrudgingly.
734 */
735 return (one - igammac_impl<Scalar>::Impl(a, x));
736 }
737
738 return Impl(a, x);
739 }
740
741 private:
742 /* igammac_impl calls igamma_impl::Impl. */
743 friend struct igammac_impl<Scalar>;
744
745 /* Actually computes igam(a, x).
746 *
747 * Preconditions:
748 * x > 0
749 * a > 0
750 * !(x > 1 && x > a)
751 */
752 EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) {
753 const Scalar zero = 0;
754 const Scalar one = 1;
755 const Scalar machep = cephes_helper<Scalar>::machep();
756 const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
757
758 Scalar ans, ax, c, r;
759
760 /* Compute x**a * exp(-x) / gamma(a) */
761 ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
762 if (ax < -maxlog) {
763 // underflow
764 return zero;
765 }
766 ax = numext::exp(ax);
767
768 /* power series */
769 r = a;
770 c = one;
771 ans = one;
772
773 while (true) {
774 r += one;
775 c *= x/r;
776 ans += c;
777 if (c/ans <= machep) {
778 break;
779 }
780 }
781
782 return (ans * ax / a);
783 }
784};
785
786#endif // EIGEN_HAS_C99_MATH
787
788/*****************************************************************************
789 * Implementation of Riemann zeta function of two arguments, based on Cephes *
790 *****************************************************************************/
791
792template <typename Scalar>
793struct zeta_retval {
794 typedef Scalar type;
795};
796
797template <typename Scalar>
798struct zeta_impl_series {
799 EIGEN_DEVICE_FUNC
800 static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
801 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
802 THIS_TYPE_IS_NOT_SUPPORTED);
803 return Scalar(0);
804 }
805};
806
807template <>
808struct zeta_impl_series<float> {
809 EIGEN_DEVICE_FUNC
810 static EIGEN_STRONG_INLINE bool run(float& a, float& b, float& s, const float x, const float machep) {
811 int i = 0;
812 while(i < 9)
813 {
814 i += 1;
815 a += 1.0f;
816 b = numext::pow( a, -x );
817 s += b;
818 if( numext::abs(b/s) < machep )
819 return true;
820 }
821
822 //Return whether we are done
823 return false;
824 }
825};
826
827template <>
828struct zeta_impl_series<double> {
829 EIGEN_DEVICE_FUNC
830 static EIGEN_STRONG_INLINE bool run(double& a, double& b, double& s, const double x, const double machep) {
831 int i = 0;
832 while( (i < 9) || (a <= 9.0) )
833 {
834 i += 1;
835 a += 1.0;
836 b = numext::pow( a, -x );
837 s += b;
838 if( numext::abs(b/s) < machep )
839 return true;
840 }
841
842 //Return whether we are done
843 return false;
844 }
845};
846
847template <typename Scalar>
848struct zeta_impl {
849 EIGEN_DEVICE_FUNC
850 static Scalar run(Scalar x, Scalar q) {
851 /* zeta.c
852 *
853 * Riemann zeta function of two arguments
854 *
855 *
856 *
857 * SYNOPSIS:
858 *
859 * double x, q, y, zeta();
860 *
861 * y = zeta( x, q );
862 *
863 *
864 *
865 * DESCRIPTION:
866 *
867 *
868 *
869 * inf.
870 * - -x
871 * zeta(x,q) = > (k+q)
872 * -
873 * k=0
874 *
875 * where x > 1 and q is not a negative integer or zero.
876 * The Euler-Maclaurin summation formula is used to obtain
877 * the expansion
878 *
879 * n
880 * - -x
881 * zeta(x,q) = > (k+q)
882 * -
883 * k=1
884 *
885 * 1-x inf. B x(x+1)...(x+2j)
886 * (n+q) 1 - 2j
887 * + --------- - ------- + > --------------------
888 * x-1 x - x+2j+1
889 * 2(n+q) j=1 (2j)! (n+q)
890 *
891 * where the B2j are Bernoulli numbers. Note that (see zetac.c)
892 * zeta(x,1) = zetac(x) + 1.
893 *
894 *
895 *
896 * ACCURACY:
897 *
898 * Relative error for single precision:
899 * arithmetic domain # trials peak rms
900 * IEEE 0,25 10000 6.9e-7 1.0e-7
901 *
902 * Large arguments may produce underflow in powf(), in which
903 * case the results are inaccurate.
904 *
905 * REFERENCE:
906 *
907 * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
908 * Series, and Products, p. 1073; Academic Press, 1980.
909 *
910 */
911
912 int i;
913 Scalar p, r, a, b, k, s, t, w;
914
915 const Scalar A[] = {
916 Scalar(12.0),
917 Scalar(-720.0),
918 Scalar(30240.0),
919 Scalar(-1209600.0),
920 Scalar(47900160.0),
921 Scalar(-1.8924375803183791606e9), /*1.307674368e12/691*/
922 Scalar(7.47242496e10),
923 Scalar(-2.950130727918164224e12), /*1.067062284288e16/3617*/
924 Scalar(1.1646782814350067249e14), /*5.109094217170944e18/43867*/
925 Scalar(-4.5979787224074726105e15), /*8.028576626982912e20/174611*/
926 Scalar(1.8152105401943546773e17), /*1.5511210043330985984e23/854513*/
927 Scalar(-7.1661652561756670113e18) /*1.6938241367317436694528e27/236364091*/
928 };
929
930 const Scalar maxnum = NumTraits<Scalar>::infinity();
931 const Scalar zero = 0.0, half = 0.5, one = 1.0;
932 const Scalar machep = cephes_helper<Scalar>::machep();
933 const Scalar nan = NumTraits<Scalar>::quiet_NaN();
934
935 if( x == one )
936 return maxnum;
937
938 if( x < one )
939 {
940 return nan;
941 }
942
943 if( q <= zero )
944 {
945 if(q == numext::floor(q))
946 {
947 return maxnum;
948 }
949 p = x;
950 r = numext::floor(p);
951 if (p != r)
952 return nan;
953 }
954
955 /* Permit negative q but continue sum until n+q > +9 .
956 * This case should be handled by a reflection formula.
957 * If q<0 and x is an integer, there is a relation to
958 * the polygamma function.
959 */
960 s = numext::pow( q, -x );
961 a = q;
962 b = zero;
963 // Run the summation in a helper function that is specific to the floating precision
964 if (zeta_impl_series<Scalar>::run(a, b, s, x, machep)) {
965 return s;
966 }
967
968 w = a;
969 s += b*w/(x-one);
970 s -= half * b;
971 a = one;
972 k = zero;
973 for( i=0; i<12; i++ )
974 {
975 a *= x + k;
976 b /= w;
977 t = a*b/A[i];
978 s = s + t;
979 t = numext::abs(t/s);
980 if( t < machep ) {
981 break;
982 }
983 k += one;
984 a *= x + k;
985 b /= w;
986 k += one;
987 }
988 return s;
989 }
990};
991
992/****************************************************************************
993 * Implementation of polygamma function, requires C++11/C99 *
994 ****************************************************************************/
995
996template <typename Scalar>
997struct polygamma_retval {
998 typedef Scalar type;
999};
1000
1001#if !EIGEN_HAS_C99_MATH
1002
1003template <typename Scalar>
1004struct polygamma_impl {
1005 EIGEN_DEVICE_FUNC
1006 static EIGEN_STRONG_INLINE Scalar run(Scalar n, Scalar x) {
1007 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
1008 THIS_TYPE_IS_NOT_SUPPORTED);
1009 return Scalar(0);
1010 }
1011};
1012
1013#else
1014
1015template <typename Scalar>
1016struct polygamma_impl {
1017 EIGEN_DEVICE_FUNC
1018 static Scalar run(Scalar n, Scalar x) {
1019 Scalar zero = 0.0, one = 1.0;
1020 Scalar nplus = n + one;
1021 const Scalar nan = NumTraits<Scalar>::quiet_NaN();
1022
1023 // Check that n is an integer
1024 if (numext::floor(n) != n) {
1025 return nan;
1026 }
1027 // Just return the digamma function for n = 1
1028 else if (n == zero) {
1029 return digamma_impl<Scalar>::run(x);
1030 }
1031 // Use the same implementation as scipy
1032 else {
1033 Scalar factorial = numext::exp(lgamma_impl<Scalar>::run(nplus));
1034 return numext::pow(-one, nplus) * factorial * zeta_impl<Scalar>::run(nplus, x);
1035 }
1036 }
1037};
1038
1039#endif // EIGEN_HAS_C99_MATH
1040
1041/************************************************************************************************
1042 * Implementation of betainc (incomplete beta integral), based on Cephes but requires C++11/C99 *
1043 ************************************************************************************************/
1044
1045template <typename Scalar>
1046struct betainc_retval {
1047 typedef Scalar type;
1048};
1049
1050#if !EIGEN_HAS_C99_MATH
1051
1052template <typename Scalar>
1053struct betainc_impl {
1054 EIGEN_DEVICE_FUNC
1055 static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x) {
1056 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
1057 THIS_TYPE_IS_NOT_SUPPORTED);
1058 return Scalar(0);
1059 }
1060};
1061
1062#else
1063
1064template <typename Scalar>
1065struct betainc_impl {
1066 EIGEN_DEVICE_FUNC
1067 static EIGEN_STRONG_INLINE Scalar run(Scalar, Scalar, Scalar) {
1068 /* betaincf.c
1069 *
1070 * Incomplete beta integral
1071 *
1072 *
1073 * SYNOPSIS:
1074 *
1075 * float a, b, x, y, betaincf();
1076 *
1077 * y = betaincf( a, b, x );
1078 *
1079 *
1080 * DESCRIPTION:
1081 *
1082 * Returns incomplete beta integral of the arguments, evaluated
1083 * from zero to x. The function is defined as
1084 *
1085 * x
1086 * - -
1087 * | (a+b) | | a-1 b-1
1088 * ----------- | t (1-t) dt.
1089 * - - | |
1090 * | (a) | (b) -
1091 * 0
1092 *
1093 * The domain of definition is 0 <= x <= 1. In this
1094 * implementation a and b are restricted to positive values.
1095 * The integral from x to 1 may be obtained by the symmetry
1096 * relation
1097 *
1098 * 1 - betainc( a, b, x ) = betainc( b, a, 1-x ).
1099 *
1100 * The integral is evaluated by a continued fraction expansion.
1101 * If a < 1, the function calls itself recursively after a
1102 * transformation to increase a to a+1.
1103 *
1104 * ACCURACY (float):
1105 *
1106 * Tested at random points (a,b,x) with a and b in the indicated
1107 * interval and x between 0 and 1.
1108 *
1109 * arithmetic domain # trials peak rms
1110 * Relative error:
1111 * IEEE 0,30 10000 3.7e-5 5.1e-6
1112 * IEEE 0,100 10000 1.7e-4 2.5e-5
1113 * The useful domain for relative error is limited by underflow
1114 * of the single precision exponential function.
1115 * Absolute error:
1116 * IEEE 0,30 100000 2.2e-5 9.6e-7
1117 * IEEE 0,100 10000 6.5e-5 3.7e-6
1118 *
1119 * Larger errors may occur for extreme ratios of a and b.
1120 *
1121 * ACCURACY (double):
1122 * arithmetic domain # trials peak rms
1123 * IEEE 0,5 10000 6.9e-15 4.5e-16
1124 * IEEE 0,85 250000 2.2e-13 1.7e-14
1125 * IEEE 0,1000 30000 5.3e-12 6.3e-13
1126 * IEEE 0,10000 250000 9.3e-11 7.1e-12
1127 * IEEE 0,100000 10000 8.7e-10 4.8e-11
1128 * Outputs smaller than the IEEE gradual underflow threshold
1129 * were excluded from these statistics.
1130 *
1131 * ERROR MESSAGES:
1132 * message condition value returned
1133 * incbet domain x<0, x>1 nan
1134 * incbet underflow nan
1135 */
1136
1137 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
1138 THIS_TYPE_IS_NOT_SUPPORTED);
1139 return Scalar(0);
1140 }
1141};
1142
1143/* Continued fraction expansion #1 for incomplete beta integral (small_branch = True)
1144 * Continued fraction expansion #2 for incomplete beta integral (small_branch = False)
1145 */
1146template <typename Scalar>
1147struct incbeta_cfe {
1148 EIGEN_DEVICE_FUNC
1149 static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x, bool small_branch) {
1150 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, float>::value ||
1151 internal::is_same<Scalar, double>::value),
1152 THIS_TYPE_IS_NOT_SUPPORTED);
1153 const Scalar big = cephes_helper<Scalar>::big();
1154 const Scalar machep = cephes_helper<Scalar>::machep();
1155 const Scalar biginv = cephes_helper<Scalar>::biginv();
1156
1157 const Scalar zero = 0;
1158 const Scalar one = 1;
1159 const Scalar two = 2;
1160
1161 Scalar xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
1162 Scalar k1, k2, k3, k4, k5, k6, k7, k8, k26update;
1163 Scalar ans;
1164 int n;
1165
1166 const int num_iters = (internal::is_same<Scalar, float>::value) ? 100 : 300;
1167 const Scalar thresh =
1168 (internal::is_same<Scalar, float>::value) ? machep : Scalar(3) * machep;
1169 Scalar r = (internal::is_same<Scalar, float>::value) ? zero : one;
1170
1171 if (small_branch) {
1172 k1 = a;
1173 k2 = a + b;
1174 k3 = a;
1175 k4 = a + one;
1176 k5 = one;
1177 k6 = b - one;
1178 k7 = k4;
1179 k8 = a + two;
1180 k26update = one;
1181 } else {
1182 k1 = a;
1183 k2 = b - one;
1184 k3 = a;
1185 k4 = a + one;
1186 k5 = one;
1187 k6 = a + b;
1188 k7 = a + one;
1189 k8 = a + two;
1190 k26update = -one;
1191 x = x / (one - x);
1192 }
1193
1194 pkm2 = zero;
1195 qkm2 = one;
1196 pkm1 = one;
1197 qkm1 = one;
1198 ans = one;
1199 n = 0;
1200
1201 do {
1202 xk = -(x * k1 * k2) / (k3 * k4);
1203 pk = pkm1 + pkm2 * xk;
1204 qk = qkm1 + qkm2 * xk;
1205 pkm2 = pkm1;
1206 pkm1 = pk;
1207 qkm2 = qkm1;
1208 qkm1 = qk;
1209
1210 xk = (x * k5 * k6) / (k7 * k8);
1211 pk = pkm1 + pkm2 * xk;
1212 qk = qkm1 + qkm2 * xk;
1213 pkm2 = pkm1;
1214 pkm1 = pk;
1215 qkm2 = qkm1;
1216 qkm1 = qk;
1217
1218 if (qk != zero) {
1219 r = pk / qk;
1220 if (numext::abs(ans - r) < numext::abs(r) * thresh) {
1221 return r;
1222 }
1223 ans = r;
1224 }
1225
1226 k1 += one;
1227 k2 += k26update;
1228 k3 += two;
1229 k4 += two;
1230 k5 += one;
1231 k6 -= k26update;
1232 k7 += two;
1233 k8 += two;
1234
1235 if ((numext::abs(qk) + numext::abs(pk)) > big) {
1236 pkm2 *= biginv;
1237 pkm1 *= biginv;
1238 qkm2 *= biginv;
1239 qkm1 *= biginv;
1240 }
1241 if ((numext::abs(qk) < biginv) || (numext::abs(pk) < biginv)) {
1242 pkm2 *= big;
1243 pkm1 *= big;
1244 qkm2 *= big;
1245 qkm1 *= big;
1246 }
1247 } while (++n < num_iters);
1248
1249 return ans;
1250 }
1251};
1252
1253/* Helper functions depending on the Scalar type */
1254template <typename Scalar>
1255struct betainc_helper {};
1256
1257template <>
1258struct betainc_helper<float> {
1259 /* Core implementation, assumes a large (> 1.0) */
1260 EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float incbsa(float aa, float bb,
1261 float xx) {
1262 float ans, a, b, t, x, onemx;
1263 bool reversed_a_b = false;
1264
1265 onemx = 1.0f - xx;
1266
1267 /* see if x is greater than the mean */
1268 if (xx > (aa / (aa + bb))) {
1269 reversed_a_b = true;
1270 a = bb;
1271 b = aa;
1272 t = xx;
1273 x = onemx;
1274 } else {
1275 a = aa;
1276 b = bb;
1277 t = onemx;
1278 x = xx;
1279 }
1280
1281 /* Choose expansion for optimal convergence */
1282 if (b > 10.0f) {
1283 if (numext::abs(b * x / a) < 0.3f) {
1284 t = betainc_helper<float>::incbps(a, b, x);
1285 if (reversed_a_b) t = 1.0f - t;
1286 return t;
1287 }
1288 }
1289
1290 ans = x * (a + b - 2.0f) / (a - 1.0f);
1291 if (ans < 1.0f) {
1292 ans = incbeta_cfe<float>::run(a, b, x, true /* small_branch */);
1293 t = b * numext::log(t);
1294 } else {
1295 ans = incbeta_cfe<float>::run(a, b, x, false /* small_branch */);
1296 t = (b - 1.0f) * numext::log(t);
1297 }
1298
1299 t += a * numext::log(x) + lgamma_impl<float>::run(a + b) -
1300 lgamma_impl<float>::run(a) - lgamma_impl<float>::run(b);
1301 t += numext::log(ans / a);
1302 t = numext::exp(t);
1303
1304 if (reversed_a_b) t = 1.0f - t;
1305 return t;
1306 }
1307
1308 EIGEN_DEVICE_FUNC
1309 static EIGEN_STRONG_INLINE float incbps(float a, float b, float x) {
1310 float t, u, y, s;
1311 const float machep = cephes_helper<float>::machep();
1312
1313 y = a * numext::log(x) + (b - 1.0f) * numext::log1p(-x) - numext::log(a);
1314 y -= lgamma_impl<float>::run(a) + lgamma_impl<float>::run(b);
1315 y += lgamma_impl<float>::run(a + b);
1316
1317 t = x / (1.0f - x);
1318 s = 0.0f;
1319 u = 1.0f;
1320 do {
1321 b -= 1.0f;
1322 if (b == 0.0f) {
1323 break;
1324 }
1325 a += 1.0f;
1326 u *= t * b / a;
1327 s += u;
1328 } while (numext::abs(u) > machep);
1329
1330 return numext::exp(y) * (1.0f + s);
1331 }
1332};
1333
1334template <>
1335struct betainc_impl<float> {
1336 EIGEN_DEVICE_FUNC
1337 static float run(float a, float b, float x) {
1338 const float nan = NumTraits<float>::quiet_NaN();
1339 float ans, t;
1340
1341 if (a <= 0.0f) return nan;
1342 if (b <= 0.0f) return nan;
1343 if ((x <= 0.0f) || (x >= 1.0f)) {
1344 if (x == 0.0f) return 0.0f;
1345 if (x == 1.0f) return 1.0f;
1346 // mtherr("betaincf", DOMAIN);
1347 return nan;
1348 }
1349
1350 /* transformation for small aa */
1351 if (a <= 1.0f) {
1352 ans = betainc_helper<float>::incbsa(a + 1.0f, b, x);
1353 t = a * numext::log(x) + b * numext::log1p(-x) +
1354 lgamma_impl<float>::run(a + b) - lgamma_impl<float>::run(a + 1.0f) -
1355 lgamma_impl<float>::run(b);
1356 return (ans + numext::exp(t));
1357 } else {
1358 return betainc_helper<float>::incbsa(a, b, x);
1359 }
1360 }
1361};
1362
1363template <>
1364struct betainc_helper<double> {
1365 EIGEN_DEVICE_FUNC
1366 static EIGEN_STRONG_INLINE double incbps(double a, double b, double x) {
1367 const double machep = cephes_helper<double>::machep();
1368
1369 double s, t, u, v, n, t1, z, ai;
1370
1371 ai = 1.0 / a;
1372 u = (1.0 - b) * x;
1373 v = u / (a + 1.0);
1374 t1 = v;
1375 t = u;
1376 n = 2.0;
1377 s = 0.0;
1378 z = machep * ai;
1379 while (numext::abs(v) > z) {
1380 u = (n - b) * x / n;
1381 t *= u;
1382 v = t / (a + n);
1383 s += v;
1384 n += 1.0;
1385 }
1386 s += t1;
1387 s += ai;
1388
1389 u = a * numext::log(x);
1390 // TODO: gamma() is not directly implemented in Eigen.
1391 /*
1392 if ((a + b) < maxgam && numext::abs(u) < maxlog) {
1393 t = gamma(a + b) / (gamma(a) * gamma(b));
1394 s = s * t * pow(x, a);
1395 } else {
1396 */
1397 t = lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) -
1398 lgamma_impl<double>::run(b) + u + numext::log(s);
1399 return s = numext::exp(t);
1400 }
1401};
1402
1403template <>
1404struct betainc_impl<double> {
1405 EIGEN_DEVICE_FUNC
1406 static double run(double aa, double bb, double xx) {
1407 const double nan = NumTraits<double>::quiet_NaN();
1408 const double machep = cephes_helper<double>::machep();
1409 // const double maxgam = 171.624376956302725;
1410
1411 double a, b, t, x, xc, w, y;
1412 bool reversed_a_b = false;
1413
1414 if (aa <= 0.0 || bb <= 0.0) {
1415 return nan; // goto domerr;
1416 }
1417
1418 if ((xx <= 0.0) || (xx >= 1.0)) {
1419 if (xx == 0.0) return (0.0);
1420 if (xx == 1.0) return (1.0);
1421 // mtherr("incbet", DOMAIN);
1422 return nan;
1423 }
1424
1425 if ((bb * xx) <= 1.0 && xx <= 0.95) {
1426 return betainc_helper<double>::incbps(aa, bb, xx);
1427 }
1428
1429 w = 1.0 - xx;
1430
1431 /* Reverse a and b if x is greater than the mean. */
1432 if (xx > (aa / (aa + bb))) {
1433 reversed_a_b = true;
1434 a = bb;
1435 b = aa;
1436 xc = xx;
1437 x = w;
1438 } else {
1439 a = aa;
1440 b = bb;
1441 xc = w;
1442 x = xx;
1443 }
1444
1445 if (reversed_a_b && (b * x) <= 1.0 && x <= 0.95) {
1446 t = betainc_helper<double>::incbps(a, b, x);
1447 if (t <= machep) {
1448 t = 1.0 - machep;
1449 } else {
1450 t = 1.0 - t;
1451 }
1452 return t;
1453 }
1454
1455 /* Choose expansion for better convergence. */
1456 y = x * (a + b - 2.0) - (a - 1.0);
1457 if (y < 0.0) {
1458 w = incbeta_cfe<double>::run(a, b, x, true /* small_branch */);
1459 } else {
1460 w = incbeta_cfe<double>::run(a, b, x, false /* small_branch */) / xc;
1461 }
1462
1463 /* Multiply w by the factor
1464 a b _ _ _
1465 x (1-x) | (a+b) / ( a | (a) | (b) ) . */
1466
1467 y = a * numext::log(x);
1468 t = b * numext::log(xc);
1469 // TODO: gamma is not directly implemented in Eigen.
1470 /*
1471 if ((a + b) < maxgam && numext::abs(y) < maxlog && numext::abs(t) < maxlog)
1472 {
1473 t = pow(xc, b);
1474 t *= pow(x, a);
1475 t /= a;
1476 t *= w;
1477 t *= gamma(a + b) / (gamma(a) * gamma(b));
1478 } else {
1479 */
1480 /* Resort to logarithms. */
1481 y += t + lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) -
1482 lgamma_impl<double>::run(b);
1483 y += numext::log(w / a);
1484 t = numext::exp(y);
1485
1486 /* } */
1487 // done:
1488
1489 if (reversed_a_b) {
1490 if (t <= machep) {
1491 t = 1.0 - machep;
1492 } else {
1493 t = 1.0 - t;
1494 }
1495 }
1496 return t;
1497 }
1498};
1499
1500#endif // EIGEN_HAS_C99_MATH
1501
1502} // end namespace internal
1503
1504namespace numext {
1505
1506template <typename Scalar>
1507EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(lgamma, Scalar)
1508 lgamma(const Scalar& x) {
1509 return EIGEN_MATHFUNC_IMPL(lgamma, Scalar)::run(x);
1510}
1511
1512template <typename Scalar>
1513EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(digamma, Scalar)
1514 digamma(const Scalar& x) {
1515 return EIGEN_MATHFUNC_IMPL(digamma, Scalar)::run(x);
1516}
1517
1518template <typename Scalar>
1519EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(zeta, Scalar)
1520zeta(const Scalar& x, const Scalar& q) {
1521 return EIGEN_MATHFUNC_IMPL(zeta, Scalar)::run(x, q);
1522}
1523
1524template <typename Scalar>
1525EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(polygamma, Scalar)
1526polygamma(const Scalar& n, const Scalar& x) {
1527 return EIGEN_MATHFUNC_IMPL(polygamma, Scalar)::run(n, x);
1528}
1529
1530template <typename Scalar>
1531EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erf, Scalar)
1532 erf(const Scalar& x) {
1533 return EIGEN_MATHFUNC_IMPL(erf, Scalar)::run(x);
1534}
1535
1536template <typename Scalar>
1537EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erfc, Scalar)
1538 erfc(const Scalar& x) {
1539 return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x);
1540}
1541
1542template <typename Scalar>
1543EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar)
1544 igamma(const Scalar& a, const Scalar& x) {
1545 return EIGEN_MATHFUNC_IMPL(igamma, Scalar)::run(a, x);
1546}
1547
1548template <typename Scalar>
1549EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar)
1550 igammac(const Scalar& a, const Scalar& x) {
1551 return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x);
1552}
1553
1554template <typename Scalar>
1555EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(betainc, Scalar)
1556 betainc(const Scalar& a, const Scalar& b, const Scalar& x) {
1557 return EIGEN_MATHFUNC_IMPL(betainc, Scalar)::run(a, b, x);
1558}
1559
1560} // end namespace numext
1561
1562
1563} // end namespace Eigen
1564
1565#endif // EIGEN_SPECIAL_FUNCTIONS_H