Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_SPECIAL_FUNCTIONS_H |
| 11 | #define EIGEN_SPECIAL_FUNCTIONS_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | namespace internal { |
| 15 | |
| 16 | // Parts of this code are based on the Cephes Math Library. |
| 17 | // |
| 18 | // Cephes Math Library Release 2.8: June, 2000 |
| 19 | // Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier |
| 20 | // |
| 21 | // Permission has been kindly provided by the original author |
| 22 | // to incorporate the Cephes software into the Eigen codebase: |
| 23 | // |
| 24 | // From: Stephen Moshier |
| 25 | // To: Eugene Brevdo |
| 26 | // Subject: Re: Permission to wrap several cephes functions in Eigen |
| 27 | // |
| 28 | // Hello Eugene, |
| 29 | // |
| 30 | // Thank you for writing. |
| 31 | // |
| 32 | // If your licensing is similar to BSD, the formal way that has been |
| 33 | // handled is simply to add a statement to the effect that you are incorporating |
| 34 | // the Cephes software by permission of the author. |
| 35 | // |
| 36 | // Good luck with your project, |
| 37 | // Steve |
| 38 | |
| 39 | namespace cephes { |
| 40 | |
| 41 | /* polevl (modified for Eigen) |
| 42 | * |
| 43 | * Evaluate polynomial |
| 44 | * |
| 45 | * |
| 46 | * |
| 47 | * SYNOPSIS: |
| 48 | * |
| 49 | * int N; |
| 50 | * Scalar x, y, coef[N+1]; |
| 51 | * |
| 52 | * y = polevl<decltype(x), N>( x, coef); |
| 53 | * |
| 54 | * |
| 55 | * |
| 56 | * DESCRIPTION: |
| 57 | * |
| 58 | * Evaluates polynomial of degree N: |
| 59 | * |
| 60 | * 2 N |
| 61 | * y = C + C x + C x +...+ C x |
| 62 | * 0 1 2 N |
| 63 | * |
| 64 | * Coefficients are stored in reverse order: |
| 65 | * |
| 66 | * coef[0] = C , ..., coef[N] = C . |
| 67 | * N 0 |
| 68 | * |
| 69 | * The function p1evl() assumes that coef[N] = 1.0 and is |
| 70 | * omitted from the array. Its calling arguments are |
| 71 | * otherwise the same as polevl(). |
| 72 | * |
| 73 | * |
| 74 | * The Eigen implementation is templatized. For best speed, store |
| 75 | * coef as a const array (constexpr), e.g. |
| 76 | * |
| 77 | * const double coef[] = {1.0, 2.0, 3.0, ...}; |
| 78 | * |
| 79 | */ |
| 80 | template <typename Scalar, int N> |
| 81 | struct polevl { |
| 82 | EIGEN_DEVICE_FUNC |
| 83 | static EIGEN_STRONG_INLINE Scalar run(const Scalar x, const Scalar coef[]) { |
| 84 | EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); |
| 85 | |
| 86 | return polevl<Scalar, N - 1>::run(x, coef) * x + coef[N]; |
| 87 | } |
| 88 | }; |
| 89 | |
| 90 | template <typename Scalar> |
| 91 | struct polevl<Scalar, 0> { |
| 92 | EIGEN_DEVICE_FUNC |
| 93 | static EIGEN_STRONG_INLINE Scalar run(const Scalar, const Scalar coef[]) { |
| 94 | return coef[0]; |
| 95 | } |
| 96 | }; |
| 97 | |
| 98 | } // end namespace cephes |
| 99 | |
| 100 | /**************************************************************************** |
| 101 | * Implementation of lgamma, requires C++11/C99 * |
| 102 | ****************************************************************************/ |
| 103 | |
| 104 | template <typename Scalar> |
| 105 | struct lgamma_impl { |
| 106 | EIGEN_DEVICE_FUNC |
| 107 | static EIGEN_STRONG_INLINE Scalar run(const Scalar) { |
| 108 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 109 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 110 | return Scalar(0); |
| 111 | } |
| 112 | }; |
| 113 | |
| 114 | template <typename Scalar> |
| 115 | struct lgamma_retval { |
| 116 | typedef Scalar type; |
| 117 | }; |
| 118 | |
| 119 | #if EIGEN_HAS_C99_MATH |
| 120 | template <> |
| 121 | struct lgamma_impl<float> { |
| 122 | EIGEN_DEVICE_FUNC |
| 123 | static EIGEN_STRONG_INLINE float run(float x) { |
| 124 | #if !defined(__CUDA_ARCH__) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__) |
| 125 | int signgam; |
| 126 | return ::lgammaf_r(x, &signgam); |
| 127 | #else |
| 128 | return ::lgammaf(x); |
| 129 | #endif |
| 130 | } |
| 131 | }; |
| 132 | |
| 133 | template <> |
| 134 | struct lgamma_impl<double> { |
| 135 | EIGEN_DEVICE_FUNC |
| 136 | static EIGEN_STRONG_INLINE double run(double x) { |
| 137 | #if !defined(__CUDA_ARCH__) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__) |
| 138 | int signgam; |
| 139 | return ::lgamma_r(x, &signgam); |
| 140 | #else |
| 141 | return ::lgamma(x); |
| 142 | #endif |
| 143 | } |
| 144 | }; |
| 145 | #endif |
| 146 | |
| 147 | /**************************************************************************** |
| 148 | * Implementation of digamma (psi), based on Cephes * |
| 149 | ****************************************************************************/ |
| 150 | |
| 151 | template <typename Scalar> |
| 152 | struct digamma_retval { |
| 153 | typedef Scalar type; |
| 154 | }; |
| 155 | |
| 156 | /* |
| 157 | * |
| 158 | * Polynomial evaluation helper for the Psi (digamma) function. |
| 159 | * |
| 160 | * digamma_impl_maybe_poly::run(s) evaluates the asymptotic Psi expansion for |
| 161 | * input Scalar s, assuming s is above 10.0. |
| 162 | * |
| 163 | * If s is above a certain threshold for the given Scalar type, zero |
| 164 | * is returned. Otherwise the polynomial is evaluated with enough |
| 165 | * coefficients for results matching Scalar machine precision. |
| 166 | * |
| 167 | * |
| 168 | */ |
| 169 | template <typename Scalar> |
| 170 | struct digamma_impl_maybe_poly { |
| 171 | EIGEN_DEVICE_FUNC |
| 172 | static EIGEN_STRONG_INLINE Scalar run(const Scalar) { |
| 173 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 174 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 175 | return Scalar(0); |
| 176 | } |
| 177 | }; |
| 178 | |
| 179 | |
| 180 | template <> |
| 181 | struct digamma_impl_maybe_poly<float> { |
| 182 | EIGEN_DEVICE_FUNC |
| 183 | static EIGEN_STRONG_INLINE float run(const float s) { |
| 184 | const float A[] = { |
| 185 | -4.16666666666666666667E-3f, |
| 186 | 3.96825396825396825397E-3f, |
| 187 | -8.33333333333333333333E-3f, |
| 188 | 8.33333333333333333333E-2f |
| 189 | }; |
| 190 | |
| 191 | float z; |
| 192 | if (s < 1.0e8f) { |
| 193 | z = 1.0f / (s * s); |
| 194 | return z * cephes::polevl<float, 3>::run(z, A); |
| 195 | } else return 0.0f; |
| 196 | } |
| 197 | }; |
| 198 | |
| 199 | template <> |
| 200 | struct digamma_impl_maybe_poly<double> { |
| 201 | EIGEN_DEVICE_FUNC |
| 202 | static EIGEN_STRONG_INLINE double run(const double s) { |
| 203 | const double A[] = { |
| 204 | 8.33333333333333333333E-2, |
| 205 | -2.10927960927960927961E-2, |
| 206 | 7.57575757575757575758E-3, |
| 207 | -4.16666666666666666667E-3, |
| 208 | 3.96825396825396825397E-3, |
| 209 | -8.33333333333333333333E-3, |
| 210 | 8.33333333333333333333E-2 |
| 211 | }; |
| 212 | |
| 213 | double z; |
| 214 | if (s < 1.0e17) { |
| 215 | z = 1.0 / (s * s); |
| 216 | return z * cephes::polevl<double, 6>::run(z, A); |
| 217 | } |
| 218 | else return 0.0; |
| 219 | } |
| 220 | }; |
| 221 | |
| 222 | template <typename Scalar> |
| 223 | struct digamma_impl { |
| 224 | EIGEN_DEVICE_FUNC |
| 225 | static Scalar run(Scalar x) { |
| 226 | /* |
| 227 | * |
| 228 | * Psi (digamma) function (modified for Eigen) |
| 229 | * |
| 230 | * |
| 231 | * SYNOPSIS: |
| 232 | * |
| 233 | * double x, y, psi(); |
| 234 | * |
| 235 | * y = psi( x ); |
| 236 | * |
| 237 | * |
| 238 | * DESCRIPTION: |
| 239 | * |
| 240 | * d - |
| 241 | * psi(x) = -- ln | (x) |
| 242 | * dx |
| 243 | * |
| 244 | * is the logarithmic derivative of the gamma function. |
| 245 | * For integer x, |
| 246 | * n-1 |
| 247 | * - |
| 248 | * psi(n) = -EUL + > 1/k. |
| 249 | * - |
| 250 | * k=1 |
| 251 | * |
| 252 | * If x is negative, it is transformed to a positive argument by the |
| 253 | * reflection formula psi(1-x) = psi(x) + pi cot(pi x). |
| 254 | * For general positive x, the argument is made greater than 10 |
| 255 | * using the recurrence psi(x+1) = psi(x) + 1/x. |
| 256 | * Then the following asymptotic expansion is applied: |
| 257 | * |
| 258 | * inf. B |
| 259 | * - 2k |
| 260 | * psi(x) = log(x) - 1/2x - > ------- |
| 261 | * - 2k |
| 262 | * k=1 2k x |
| 263 | * |
| 264 | * where the B2k are Bernoulli numbers. |
| 265 | * |
| 266 | * ACCURACY (float): |
| 267 | * Relative error (except absolute when |psi| < 1): |
| 268 | * arithmetic domain # trials peak rms |
| 269 | * IEEE 0,30 30000 1.3e-15 1.4e-16 |
| 270 | * IEEE -30,0 40000 1.5e-15 2.2e-16 |
| 271 | * |
| 272 | * ACCURACY (double): |
| 273 | * Absolute error, relative when |psi| > 1 : |
| 274 | * arithmetic domain # trials peak rms |
| 275 | * IEEE -33,0 30000 8.2e-7 1.2e-7 |
| 276 | * IEEE 0,33 100000 7.3e-7 7.7e-8 |
| 277 | * |
| 278 | * ERROR MESSAGES: |
| 279 | * message condition value returned |
| 280 | * psi singularity x integer <=0 INFINITY |
| 281 | */ |
| 282 | |
| 283 | Scalar p, q, nz, s, w, y; |
| 284 | bool negative = false; |
| 285 | |
| 286 | const Scalar maxnum = NumTraits<Scalar>::infinity(); |
| 287 | const Scalar m_pi = Scalar(EIGEN_PI); |
| 288 | |
| 289 | const Scalar zero = Scalar(0); |
| 290 | const Scalar one = Scalar(1); |
| 291 | const Scalar half = Scalar(0.5); |
| 292 | nz = zero; |
| 293 | |
| 294 | if (x <= zero) { |
| 295 | negative = true; |
| 296 | q = x; |
| 297 | p = numext::floor(q); |
| 298 | if (p == q) { |
| 299 | return maxnum; |
| 300 | } |
| 301 | /* Remove the zeros of tan(m_pi x) |
| 302 | * by subtracting the nearest integer from x |
| 303 | */ |
| 304 | nz = q - p; |
| 305 | if (nz != half) { |
| 306 | if (nz > half) { |
| 307 | p += one; |
| 308 | nz = q - p; |
| 309 | } |
| 310 | nz = m_pi / numext::tan(m_pi * nz); |
| 311 | } |
| 312 | else { |
| 313 | nz = zero; |
| 314 | } |
| 315 | x = one - x; |
| 316 | } |
| 317 | |
| 318 | /* use the recurrence psi(x+1) = psi(x) + 1/x. */ |
| 319 | s = x; |
| 320 | w = zero; |
| 321 | while (s < Scalar(10)) { |
| 322 | w += one / s; |
| 323 | s += one; |
| 324 | } |
| 325 | |
| 326 | y = digamma_impl_maybe_poly<Scalar>::run(s); |
| 327 | |
| 328 | y = numext::log(s) - (half / s) - y - w; |
| 329 | |
| 330 | return (negative) ? y - nz : y; |
| 331 | } |
| 332 | }; |
| 333 | |
| 334 | /**************************************************************************** |
| 335 | * Implementation of erf, requires C++11/C99 * |
| 336 | ****************************************************************************/ |
| 337 | |
| 338 | template <typename Scalar> |
| 339 | struct erf_impl { |
| 340 | EIGEN_DEVICE_FUNC |
| 341 | static EIGEN_STRONG_INLINE Scalar run(const Scalar) { |
| 342 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 343 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 344 | return Scalar(0); |
| 345 | } |
| 346 | }; |
| 347 | |
| 348 | template <typename Scalar> |
| 349 | struct erf_retval { |
| 350 | typedef Scalar type; |
| 351 | }; |
| 352 | |
| 353 | #if EIGEN_HAS_C99_MATH |
| 354 | template <> |
| 355 | struct erf_impl<float> { |
| 356 | EIGEN_DEVICE_FUNC |
| 357 | static EIGEN_STRONG_INLINE float run(float x) { return ::erff(x); } |
| 358 | }; |
| 359 | |
| 360 | template <> |
| 361 | struct erf_impl<double> { |
| 362 | EIGEN_DEVICE_FUNC |
| 363 | static EIGEN_STRONG_INLINE double run(double x) { return ::erf(x); } |
| 364 | }; |
| 365 | #endif // EIGEN_HAS_C99_MATH |
| 366 | |
| 367 | /*************************************************************************** |
| 368 | * Implementation of erfc, requires C++11/C99 * |
| 369 | ****************************************************************************/ |
| 370 | |
| 371 | template <typename Scalar> |
| 372 | struct erfc_impl { |
| 373 | EIGEN_DEVICE_FUNC |
| 374 | static EIGEN_STRONG_INLINE Scalar run(const Scalar) { |
| 375 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 376 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 377 | return Scalar(0); |
| 378 | } |
| 379 | }; |
| 380 | |
| 381 | template <typename Scalar> |
| 382 | struct erfc_retval { |
| 383 | typedef Scalar type; |
| 384 | }; |
| 385 | |
| 386 | #if EIGEN_HAS_C99_MATH |
| 387 | template <> |
| 388 | struct erfc_impl<float> { |
| 389 | EIGEN_DEVICE_FUNC |
| 390 | static EIGEN_STRONG_INLINE float run(const float x) { return ::erfcf(x); } |
| 391 | }; |
| 392 | |
| 393 | template <> |
| 394 | struct erfc_impl<double> { |
| 395 | EIGEN_DEVICE_FUNC |
| 396 | static EIGEN_STRONG_INLINE double run(const double x) { return ::erfc(x); } |
| 397 | }; |
| 398 | #endif // EIGEN_HAS_C99_MATH |
| 399 | |
| 400 | /************************************************************************************************************** |
| 401 | * Implementation of igammac (complemented incomplete gamma integral), based on Cephes but requires C++11/C99 * |
| 402 | **************************************************************************************************************/ |
| 403 | |
| 404 | template <typename Scalar> |
| 405 | struct igammac_retval { |
| 406 | typedef Scalar type; |
| 407 | }; |
| 408 | |
| 409 | // NOTE: cephes_helper is also used to implement zeta |
| 410 | template <typename Scalar> |
| 411 | struct cephes_helper { |
| 412 | EIGEN_DEVICE_FUNC |
| 413 | static EIGEN_STRONG_INLINE Scalar machep() { assert(false && "machep not supported for this type"); return 0.0; } |
| 414 | EIGEN_DEVICE_FUNC |
| 415 | static EIGEN_STRONG_INLINE Scalar big() { assert(false && "big not supported for this type"); return 0.0; } |
| 416 | EIGEN_DEVICE_FUNC |
| 417 | static EIGEN_STRONG_INLINE Scalar biginv() { assert(false && "biginv not supported for this type"); return 0.0; } |
| 418 | }; |
| 419 | |
| 420 | template <> |
| 421 | struct cephes_helper<float> { |
| 422 | EIGEN_DEVICE_FUNC |
| 423 | static EIGEN_STRONG_INLINE float machep() { |
| 424 | return NumTraits<float>::epsilon() / 2; // 1.0 - machep == 1.0 |
| 425 | } |
| 426 | EIGEN_DEVICE_FUNC |
| 427 | static EIGEN_STRONG_INLINE float big() { |
| 428 | // use epsneg (1.0 - epsneg == 1.0) |
| 429 | return 1.0f / (NumTraits<float>::epsilon() / 2); |
| 430 | } |
| 431 | EIGEN_DEVICE_FUNC |
| 432 | static EIGEN_STRONG_INLINE float biginv() { |
| 433 | // epsneg |
| 434 | return machep(); |
| 435 | } |
| 436 | }; |
| 437 | |
| 438 | template <> |
| 439 | struct cephes_helper<double> { |
| 440 | EIGEN_DEVICE_FUNC |
| 441 | static EIGEN_STRONG_INLINE double machep() { |
| 442 | return NumTraits<double>::epsilon() / 2; // 1.0 - machep == 1.0 |
| 443 | } |
| 444 | EIGEN_DEVICE_FUNC |
| 445 | static EIGEN_STRONG_INLINE double big() { |
| 446 | return 1.0 / NumTraits<double>::epsilon(); |
| 447 | } |
| 448 | EIGEN_DEVICE_FUNC |
| 449 | static EIGEN_STRONG_INLINE double biginv() { |
| 450 | // inverse of eps |
| 451 | return NumTraits<double>::epsilon(); |
| 452 | } |
| 453 | }; |
| 454 | |
| 455 | #if !EIGEN_HAS_C99_MATH |
| 456 | |
| 457 | template <typename Scalar> |
| 458 | struct igammac_impl { |
| 459 | EIGEN_DEVICE_FUNC |
| 460 | static Scalar run(Scalar a, Scalar x) { |
| 461 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 462 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 463 | return Scalar(0); |
| 464 | } |
| 465 | }; |
| 466 | |
| 467 | #else |
| 468 | |
| 469 | template <typename Scalar> struct igamma_impl; // predeclare igamma_impl |
| 470 | |
| 471 | template <typename Scalar> |
| 472 | struct igammac_impl { |
| 473 | EIGEN_DEVICE_FUNC |
| 474 | static Scalar run(Scalar a, Scalar x) { |
| 475 | /* igamc() |
| 476 | * |
| 477 | * Incomplete gamma integral (modified for Eigen) |
| 478 | * |
| 479 | * |
| 480 | * |
| 481 | * SYNOPSIS: |
| 482 | * |
| 483 | * double a, x, y, igamc(); |
| 484 | * |
| 485 | * y = igamc( a, x ); |
| 486 | * |
| 487 | * DESCRIPTION: |
| 488 | * |
| 489 | * The function is defined by |
| 490 | * |
| 491 | * |
| 492 | * igamc(a,x) = 1 - igam(a,x) |
| 493 | * |
| 494 | * inf. |
| 495 | * - |
| 496 | * 1 | | -t a-1 |
| 497 | * = ----- | e t dt. |
| 498 | * - | | |
| 499 | * | (a) - |
| 500 | * x |
| 501 | * |
| 502 | * |
| 503 | * In this implementation both arguments must be positive. |
| 504 | * The integral is evaluated by either a power series or |
| 505 | * continued fraction expansion, depending on the relative |
| 506 | * values of a and x. |
| 507 | * |
| 508 | * ACCURACY (float): |
| 509 | * |
| 510 | * Relative error: |
| 511 | * arithmetic domain # trials peak rms |
| 512 | * IEEE 0,30 30000 7.8e-6 5.9e-7 |
| 513 | * |
| 514 | * |
| 515 | * ACCURACY (double): |
| 516 | * |
| 517 | * Tested at random a, x. |
| 518 | * a x Relative error: |
| 519 | * arithmetic domain domain # trials peak rms |
| 520 | * IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15 |
| 521 | * IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15 |
| 522 | * |
| 523 | */ |
| 524 | /* |
| 525 | Cephes Math Library Release 2.2: June, 1992 |
| 526 | Copyright 1985, 1987, 1992 by Stephen L. Moshier |
| 527 | Direct inquiries to 30 Frost Street, Cambridge, MA 02140 |
| 528 | */ |
| 529 | const Scalar zero = 0; |
| 530 | const Scalar one = 1; |
| 531 | const Scalar nan = NumTraits<Scalar>::quiet_NaN(); |
| 532 | |
| 533 | if ((x < zero) || (a <= zero)) { |
| 534 | // domain error |
| 535 | return nan; |
| 536 | } |
| 537 | |
| 538 | if ((x < one) || (x < a)) { |
| 539 | /* The checks above ensure that we meet the preconditions for |
| 540 | * igamma_impl::Impl(), so call it, rather than igamma_impl::Run(). |
| 541 | * Calling Run() would also work, but in that case the compiler may not be |
| 542 | * able to prove that igammac_impl::Run and igamma_impl::Run are not |
| 543 | * mutually recursive. This leads to worse code, particularly on |
| 544 | * platforms like nvptx, where recursion is allowed only begrudgingly. |
| 545 | */ |
| 546 | return (one - igamma_impl<Scalar>::Impl(a, x)); |
| 547 | } |
| 548 | |
| 549 | return Impl(a, x); |
| 550 | } |
| 551 | |
| 552 | private: |
| 553 | /* igamma_impl calls igammac_impl::Impl. */ |
| 554 | friend struct igamma_impl<Scalar>; |
| 555 | |
| 556 | /* Actually computes igamc(a, x). |
| 557 | * |
| 558 | * Preconditions: |
| 559 | * a > 0 |
| 560 | * x >= 1 |
| 561 | * x >= a |
| 562 | */ |
| 563 | EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) { |
| 564 | const Scalar zero = 0; |
| 565 | const Scalar one = 1; |
| 566 | const Scalar two = 2; |
| 567 | const Scalar machep = cephes_helper<Scalar>::machep(); |
| 568 | const Scalar maxlog = numext::log(NumTraits<Scalar>::highest()); |
| 569 | const Scalar big = cephes_helper<Scalar>::big(); |
| 570 | const Scalar biginv = cephes_helper<Scalar>::biginv(); |
| 571 | const Scalar inf = NumTraits<Scalar>::infinity(); |
| 572 | |
| 573 | Scalar ans, ax, c, yc, r, t, y, z; |
| 574 | Scalar pk, pkm1, pkm2, qk, qkm1, qkm2; |
| 575 | |
| 576 | if (x == inf) return zero; // std::isinf crashes on CUDA |
| 577 | |
| 578 | /* Compute x**a * exp(-x) / gamma(a) */ |
| 579 | ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a); |
| 580 | if (ax < -maxlog) { // underflow |
| 581 | return zero; |
| 582 | } |
| 583 | ax = numext::exp(ax); |
| 584 | |
| 585 | // continued fraction |
| 586 | y = one - a; |
| 587 | z = x + y + one; |
| 588 | c = zero; |
| 589 | pkm2 = one; |
| 590 | qkm2 = x; |
| 591 | pkm1 = x + one; |
| 592 | qkm1 = z * x; |
| 593 | ans = pkm1 / qkm1; |
| 594 | |
| 595 | while (true) { |
| 596 | c += one; |
| 597 | y += one; |
| 598 | z += two; |
| 599 | yc = y * c; |
| 600 | pk = pkm1 * z - pkm2 * yc; |
| 601 | qk = qkm1 * z - qkm2 * yc; |
| 602 | if (qk != zero) { |
| 603 | r = pk / qk; |
| 604 | t = numext::abs((ans - r) / r); |
| 605 | ans = r; |
| 606 | } else { |
| 607 | t = one; |
| 608 | } |
| 609 | pkm2 = pkm1; |
| 610 | pkm1 = pk; |
| 611 | qkm2 = qkm1; |
| 612 | qkm1 = qk; |
| 613 | if (numext::abs(pk) > big) { |
| 614 | pkm2 *= biginv; |
| 615 | pkm1 *= biginv; |
| 616 | qkm2 *= biginv; |
| 617 | qkm1 *= biginv; |
| 618 | } |
| 619 | if (t <= machep) { |
| 620 | break; |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | return (ans * ax); |
| 625 | } |
| 626 | }; |
| 627 | |
| 628 | #endif // EIGEN_HAS_C99_MATH |
| 629 | |
| 630 | /************************************************************************************************ |
| 631 | * Implementation of igamma (incomplete gamma integral), based on Cephes but requires C++11/C99 * |
| 632 | ************************************************************************************************/ |
| 633 | |
| 634 | template <typename Scalar> |
| 635 | struct igamma_retval { |
| 636 | typedef Scalar type; |
| 637 | }; |
| 638 | |
| 639 | #if !EIGEN_HAS_C99_MATH |
| 640 | |
| 641 | template <typename Scalar> |
| 642 | struct igamma_impl { |
| 643 | EIGEN_DEVICE_FUNC |
| 644 | static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar x) { |
| 645 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 646 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 647 | return Scalar(0); |
| 648 | } |
| 649 | }; |
| 650 | |
| 651 | #else |
| 652 | |
| 653 | template <typename Scalar> |
| 654 | struct igamma_impl { |
| 655 | EIGEN_DEVICE_FUNC |
| 656 | static Scalar run(Scalar a, Scalar x) { |
| 657 | /* igam() |
| 658 | * Incomplete gamma integral |
| 659 | * |
| 660 | * |
| 661 | * |
| 662 | * SYNOPSIS: |
| 663 | * |
| 664 | * double a, x, y, igam(); |
| 665 | * |
| 666 | * y = igam( a, x ); |
| 667 | * |
| 668 | * DESCRIPTION: |
| 669 | * |
| 670 | * The function is defined by |
| 671 | * |
| 672 | * x |
| 673 | * - |
| 674 | * 1 | | -t a-1 |
| 675 | * igam(a,x) = ----- | e t dt. |
| 676 | * - | | |
| 677 | * | (a) - |
| 678 | * 0 |
| 679 | * |
| 680 | * |
| 681 | * In this implementation both arguments must be positive. |
| 682 | * The integral is evaluated by either a power series or |
| 683 | * continued fraction expansion, depending on the relative |
| 684 | * values of a and x. |
| 685 | * |
| 686 | * ACCURACY (double): |
| 687 | * |
| 688 | * Relative error: |
| 689 | * arithmetic domain # trials peak rms |
| 690 | * IEEE 0,30 200000 3.6e-14 2.9e-15 |
| 691 | * IEEE 0,100 300000 9.9e-14 1.5e-14 |
| 692 | * |
| 693 | * |
| 694 | * ACCURACY (float): |
| 695 | * |
| 696 | * Relative error: |
| 697 | * arithmetic domain # trials peak rms |
| 698 | * IEEE 0,30 20000 7.8e-6 5.9e-7 |
| 699 | * |
| 700 | */ |
| 701 | /* |
| 702 | Cephes Math Library Release 2.2: June, 1992 |
| 703 | Copyright 1985, 1987, 1992 by Stephen L. Moshier |
| 704 | Direct inquiries to 30 Frost Street, Cambridge, MA 02140 |
| 705 | */ |
| 706 | |
| 707 | |
| 708 | /* left tail of incomplete gamma function: |
| 709 | * |
| 710 | * inf. k |
| 711 | * a -x - x |
| 712 | * x e > ---------- |
| 713 | * - - |
| 714 | * k=0 | (a+k+1) |
| 715 | * |
| 716 | */ |
| 717 | const Scalar zero = 0; |
| 718 | const Scalar one = 1; |
| 719 | const Scalar nan = NumTraits<Scalar>::quiet_NaN(); |
| 720 | |
| 721 | if (x == zero) return zero; |
| 722 | |
| 723 | if ((x < zero) || (a <= zero)) { // domain error |
| 724 | return nan; |
| 725 | } |
| 726 | |
| 727 | if ((x > one) && (x > a)) { |
| 728 | /* The checks above ensure that we meet the preconditions for |
| 729 | * igammac_impl::Impl(), so call it, rather than igammac_impl::Run(). |
| 730 | * Calling Run() would also work, but in that case the compiler may not be |
| 731 | * able to prove that igammac_impl::Run and igamma_impl::Run are not |
| 732 | * mutually recursive. This leads to worse code, particularly on |
| 733 | * platforms like nvptx, where recursion is allowed only begrudgingly. |
| 734 | */ |
| 735 | return (one - igammac_impl<Scalar>::Impl(a, x)); |
| 736 | } |
| 737 | |
| 738 | return Impl(a, x); |
| 739 | } |
| 740 | |
| 741 | private: |
| 742 | /* igammac_impl calls igamma_impl::Impl. */ |
| 743 | friend struct igammac_impl<Scalar>; |
| 744 | |
| 745 | /* Actually computes igam(a, x). |
| 746 | * |
| 747 | * Preconditions: |
| 748 | * x > 0 |
| 749 | * a > 0 |
| 750 | * !(x > 1 && x > a) |
| 751 | */ |
| 752 | EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) { |
| 753 | const Scalar zero = 0; |
| 754 | const Scalar one = 1; |
| 755 | const Scalar machep = cephes_helper<Scalar>::machep(); |
| 756 | const Scalar maxlog = numext::log(NumTraits<Scalar>::highest()); |
| 757 | |
| 758 | Scalar ans, ax, c, r; |
| 759 | |
| 760 | /* Compute x**a * exp(-x) / gamma(a) */ |
| 761 | ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a); |
| 762 | if (ax < -maxlog) { |
| 763 | // underflow |
| 764 | return zero; |
| 765 | } |
| 766 | ax = numext::exp(ax); |
| 767 | |
| 768 | /* power series */ |
| 769 | r = a; |
| 770 | c = one; |
| 771 | ans = one; |
| 772 | |
| 773 | while (true) { |
| 774 | r += one; |
| 775 | c *= x/r; |
| 776 | ans += c; |
| 777 | if (c/ans <= machep) { |
| 778 | break; |
| 779 | } |
| 780 | } |
| 781 | |
| 782 | return (ans * ax / a); |
| 783 | } |
| 784 | }; |
| 785 | |
| 786 | #endif // EIGEN_HAS_C99_MATH |
| 787 | |
| 788 | /***************************************************************************** |
| 789 | * Implementation of Riemann zeta function of two arguments, based on Cephes * |
| 790 | *****************************************************************************/ |
| 791 | |
| 792 | template <typename Scalar> |
| 793 | struct zeta_retval { |
| 794 | typedef Scalar type; |
| 795 | }; |
| 796 | |
| 797 | template <typename Scalar> |
| 798 | struct zeta_impl_series { |
| 799 | EIGEN_DEVICE_FUNC |
| 800 | static EIGEN_STRONG_INLINE Scalar run(const Scalar) { |
| 801 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 802 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 803 | return Scalar(0); |
| 804 | } |
| 805 | }; |
| 806 | |
| 807 | template <> |
| 808 | struct zeta_impl_series<float> { |
| 809 | EIGEN_DEVICE_FUNC |
| 810 | static EIGEN_STRONG_INLINE bool run(float& a, float& b, float& s, const float x, const float machep) { |
| 811 | int i = 0; |
| 812 | while(i < 9) |
| 813 | { |
| 814 | i += 1; |
| 815 | a += 1.0f; |
| 816 | b = numext::pow( a, -x ); |
| 817 | s += b; |
| 818 | if( numext::abs(b/s) < machep ) |
| 819 | return true; |
| 820 | } |
| 821 | |
| 822 | //Return whether we are done |
| 823 | return false; |
| 824 | } |
| 825 | }; |
| 826 | |
| 827 | template <> |
| 828 | struct zeta_impl_series<double> { |
| 829 | EIGEN_DEVICE_FUNC |
| 830 | static EIGEN_STRONG_INLINE bool run(double& a, double& b, double& s, const double x, const double machep) { |
| 831 | int i = 0; |
| 832 | while( (i < 9) || (a <= 9.0) ) |
| 833 | { |
| 834 | i += 1; |
| 835 | a += 1.0; |
| 836 | b = numext::pow( a, -x ); |
| 837 | s += b; |
| 838 | if( numext::abs(b/s) < machep ) |
| 839 | return true; |
| 840 | } |
| 841 | |
| 842 | //Return whether we are done |
| 843 | return false; |
| 844 | } |
| 845 | }; |
| 846 | |
| 847 | template <typename Scalar> |
| 848 | struct zeta_impl { |
| 849 | EIGEN_DEVICE_FUNC |
| 850 | static Scalar run(Scalar x, Scalar q) { |
| 851 | /* zeta.c |
| 852 | * |
| 853 | * Riemann zeta function of two arguments |
| 854 | * |
| 855 | * |
| 856 | * |
| 857 | * SYNOPSIS: |
| 858 | * |
| 859 | * double x, q, y, zeta(); |
| 860 | * |
| 861 | * y = zeta( x, q ); |
| 862 | * |
| 863 | * |
| 864 | * |
| 865 | * DESCRIPTION: |
| 866 | * |
| 867 | * |
| 868 | * |
| 869 | * inf. |
| 870 | * - -x |
| 871 | * zeta(x,q) = > (k+q) |
| 872 | * - |
| 873 | * k=0 |
| 874 | * |
| 875 | * where x > 1 and q is not a negative integer or zero. |
| 876 | * The Euler-Maclaurin summation formula is used to obtain |
| 877 | * the expansion |
| 878 | * |
| 879 | * n |
| 880 | * - -x |
| 881 | * zeta(x,q) = > (k+q) |
| 882 | * - |
| 883 | * k=1 |
| 884 | * |
| 885 | * 1-x inf. B x(x+1)...(x+2j) |
| 886 | * (n+q) 1 - 2j |
| 887 | * + --------- - ------- + > -------------------- |
| 888 | * x-1 x - x+2j+1 |
| 889 | * 2(n+q) j=1 (2j)! (n+q) |
| 890 | * |
| 891 | * where the B2j are Bernoulli numbers. Note that (see zetac.c) |
| 892 | * zeta(x,1) = zetac(x) + 1. |
| 893 | * |
| 894 | * |
| 895 | * |
| 896 | * ACCURACY: |
| 897 | * |
| 898 | * Relative error for single precision: |
| 899 | * arithmetic domain # trials peak rms |
| 900 | * IEEE 0,25 10000 6.9e-7 1.0e-7 |
| 901 | * |
| 902 | * Large arguments may produce underflow in powf(), in which |
| 903 | * case the results are inaccurate. |
| 904 | * |
| 905 | * REFERENCE: |
| 906 | * |
| 907 | * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals, |
| 908 | * Series, and Products, p. 1073; Academic Press, 1980. |
| 909 | * |
| 910 | */ |
| 911 | |
| 912 | int i; |
| 913 | Scalar p, r, a, b, k, s, t, w; |
| 914 | |
| 915 | const Scalar A[] = { |
| 916 | Scalar(12.0), |
| 917 | Scalar(-720.0), |
| 918 | Scalar(30240.0), |
| 919 | Scalar(-1209600.0), |
| 920 | Scalar(47900160.0), |
| 921 | Scalar(-1.8924375803183791606e9), /*1.307674368e12/691*/ |
| 922 | Scalar(7.47242496e10), |
| 923 | Scalar(-2.950130727918164224e12), /*1.067062284288e16/3617*/ |
| 924 | Scalar(1.1646782814350067249e14), /*5.109094217170944e18/43867*/ |
| 925 | Scalar(-4.5979787224074726105e15), /*8.028576626982912e20/174611*/ |
| 926 | Scalar(1.8152105401943546773e17), /*1.5511210043330985984e23/854513*/ |
| 927 | Scalar(-7.1661652561756670113e18) /*1.6938241367317436694528e27/236364091*/ |
| 928 | }; |
| 929 | |
| 930 | const Scalar maxnum = NumTraits<Scalar>::infinity(); |
| 931 | const Scalar zero = 0.0, half = 0.5, one = 1.0; |
| 932 | const Scalar machep = cephes_helper<Scalar>::machep(); |
| 933 | const Scalar nan = NumTraits<Scalar>::quiet_NaN(); |
| 934 | |
| 935 | if( x == one ) |
| 936 | return maxnum; |
| 937 | |
| 938 | if( x < one ) |
| 939 | { |
| 940 | return nan; |
| 941 | } |
| 942 | |
| 943 | if( q <= zero ) |
| 944 | { |
| 945 | if(q == numext::floor(q)) |
| 946 | { |
| 947 | return maxnum; |
| 948 | } |
| 949 | p = x; |
| 950 | r = numext::floor(p); |
| 951 | if (p != r) |
| 952 | return nan; |
| 953 | } |
| 954 | |
| 955 | /* Permit negative q but continue sum until n+q > +9 . |
| 956 | * This case should be handled by a reflection formula. |
| 957 | * If q<0 and x is an integer, there is a relation to |
| 958 | * the polygamma function. |
| 959 | */ |
| 960 | s = numext::pow( q, -x ); |
| 961 | a = q; |
| 962 | b = zero; |
| 963 | // Run the summation in a helper function that is specific to the floating precision |
| 964 | if (zeta_impl_series<Scalar>::run(a, b, s, x, machep)) { |
| 965 | return s; |
| 966 | } |
| 967 | |
| 968 | w = a; |
| 969 | s += b*w/(x-one); |
| 970 | s -= half * b; |
| 971 | a = one; |
| 972 | k = zero; |
| 973 | for( i=0; i<12; i++ ) |
| 974 | { |
| 975 | a *= x + k; |
| 976 | b /= w; |
| 977 | t = a*b/A[i]; |
| 978 | s = s + t; |
| 979 | t = numext::abs(t/s); |
| 980 | if( t < machep ) { |
| 981 | break; |
| 982 | } |
| 983 | k += one; |
| 984 | a *= x + k; |
| 985 | b /= w; |
| 986 | k += one; |
| 987 | } |
| 988 | return s; |
| 989 | } |
| 990 | }; |
| 991 | |
| 992 | /**************************************************************************** |
| 993 | * Implementation of polygamma function, requires C++11/C99 * |
| 994 | ****************************************************************************/ |
| 995 | |
| 996 | template <typename Scalar> |
| 997 | struct polygamma_retval { |
| 998 | typedef Scalar type; |
| 999 | }; |
| 1000 | |
| 1001 | #if !EIGEN_HAS_C99_MATH |
| 1002 | |
| 1003 | template <typename Scalar> |
| 1004 | struct polygamma_impl { |
| 1005 | EIGEN_DEVICE_FUNC |
| 1006 | static EIGEN_STRONG_INLINE Scalar run(Scalar n, Scalar x) { |
| 1007 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 1008 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 1009 | return Scalar(0); |
| 1010 | } |
| 1011 | }; |
| 1012 | |
| 1013 | #else |
| 1014 | |
| 1015 | template <typename Scalar> |
| 1016 | struct polygamma_impl { |
| 1017 | EIGEN_DEVICE_FUNC |
| 1018 | static Scalar run(Scalar n, Scalar x) { |
| 1019 | Scalar zero = 0.0, one = 1.0; |
| 1020 | Scalar nplus = n + one; |
| 1021 | const Scalar nan = NumTraits<Scalar>::quiet_NaN(); |
| 1022 | |
| 1023 | // Check that n is an integer |
| 1024 | if (numext::floor(n) != n) { |
| 1025 | return nan; |
| 1026 | } |
| 1027 | // Just return the digamma function for n = 1 |
| 1028 | else if (n == zero) { |
| 1029 | return digamma_impl<Scalar>::run(x); |
| 1030 | } |
| 1031 | // Use the same implementation as scipy |
| 1032 | else { |
| 1033 | Scalar factorial = numext::exp(lgamma_impl<Scalar>::run(nplus)); |
| 1034 | return numext::pow(-one, nplus) * factorial * zeta_impl<Scalar>::run(nplus, x); |
| 1035 | } |
| 1036 | } |
| 1037 | }; |
| 1038 | |
| 1039 | #endif // EIGEN_HAS_C99_MATH |
| 1040 | |
| 1041 | /************************************************************************************************ |
| 1042 | * Implementation of betainc (incomplete beta integral), based on Cephes but requires C++11/C99 * |
| 1043 | ************************************************************************************************/ |
| 1044 | |
| 1045 | template <typename Scalar> |
| 1046 | struct betainc_retval { |
| 1047 | typedef Scalar type; |
| 1048 | }; |
| 1049 | |
| 1050 | #if !EIGEN_HAS_C99_MATH |
| 1051 | |
| 1052 | template <typename Scalar> |
| 1053 | struct betainc_impl { |
| 1054 | EIGEN_DEVICE_FUNC |
| 1055 | static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x) { |
| 1056 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 1057 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 1058 | return Scalar(0); |
| 1059 | } |
| 1060 | }; |
| 1061 | |
| 1062 | #else |
| 1063 | |
| 1064 | template <typename Scalar> |
| 1065 | struct betainc_impl { |
| 1066 | EIGEN_DEVICE_FUNC |
| 1067 | static EIGEN_STRONG_INLINE Scalar run(Scalar, Scalar, Scalar) { |
| 1068 | /* betaincf.c |
| 1069 | * |
| 1070 | * Incomplete beta integral |
| 1071 | * |
| 1072 | * |
| 1073 | * SYNOPSIS: |
| 1074 | * |
| 1075 | * float a, b, x, y, betaincf(); |
| 1076 | * |
| 1077 | * y = betaincf( a, b, x ); |
| 1078 | * |
| 1079 | * |
| 1080 | * DESCRIPTION: |
| 1081 | * |
| 1082 | * Returns incomplete beta integral of the arguments, evaluated |
| 1083 | * from zero to x. The function is defined as |
| 1084 | * |
| 1085 | * x |
| 1086 | * - - |
| 1087 | * | (a+b) | | a-1 b-1 |
| 1088 | * ----------- | t (1-t) dt. |
| 1089 | * - - | | |
| 1090 | * | (a) | (b) - |
| 1091 | * 0 |
| 1092 | * |
| 1093 | * The domain of definition is 0 <= x <= 1. In this |
| 1094 | * implementation a and b are restricted to positive values. |
| 1095 | * The integral from x to 1 may be obtained by the symmetry |
| 1096 | * relation |
| 1097 | * |
| 1098 | * 1 - betainc( a, b, x ) = betainc( b, a, 1-x ). |
| 1099 | * |
| 1100 | * The integral is evaluated by a continued fraction expansion. |
| 1101 | * If a < 1, the function calls itself recursively after a |
| 1102 | * transformation to increase a to a+1. |
| 1103 | * |
| 1104 | * ACCURACY (float): |
| 1105 | * |
| 1106 | * Tested at random points (a,b,x) with a and b in the indicated |
| 1107 | * interval and x between 0 and 1. |
| 1108 | * |
| 1109 | * arithmetic domain # trials peak rms |
| 1110 | * Relative error: |
| 1111 | * IEEE 0,30 10000 3.7e-5 5.1e-6 |
| 1112 | * IEEE 0,100 10000 1.7e-4 2.5e-5 |
| 1113 | * The useful domain for relative error is limited by underflow |
| 1114 | * of the single precision exponential function. |
| 1115 | * Absolute error: |
| 1116 | * IEEE 0,30 100000 2.2e-5 9.6e-7 |
| 1117 | * IEEE 0,100 10000 6.5e-5 3.7e-6 |
| 1118 | * |
| 1119 | * Larger errors may occur for extreme ratios of a and b. |
| 1120 | * |
| 1121 | * ACCURACY (double): |
| 1122 | * arithmetic domain # trials peak rms |
| 1123 | * IEEE 0,5 10000 6.9e-15 4.5e-16 |
| 1124 | * IEEE 0,85 250000 2.2e-13 1.7e-14 |
| 1125 | * IEEE 0,1000 30000 5.3e-12 6.3e-13 |
| 1126 | * IEEE 0,10000 250000 9.3e-11 7.1e-12 |
| 1127 | * IEEE 0,100000 10000 8.7e-10 4.8e-11 |
| 1128 | * Outputs smaller than the IEEE gradual underflow threshold |
| 1129 | * were excluded from these statistics. |
| 1130 | * |
| 1131 | * ERROR MESSAGES: |
| 1132 | * message condition value returned |
| 1133 | * incbet domain x<0, x>1 nan |
| 1134 | * incbet underflow nan |
| 1135 | */ |
| 1136 | |
| 1137 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), |
| 1138 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 1139 | return Scalar(0); |
| 1140 | } |
| 1141 | }; |
| 1142 | |
| 1143 | /* Continued fraction expansion #1 for incomplete beta integral (small_branch = True) |
| 1144 | * Continued fraction expansion #2 for incomplete beta integral (small_branch = False) |
| 1145 | */ |
| 1146 | template <typename Scalar> |
| 1147 | struct incbeta_cfe { |
| 1148 | EIGEN_DEVICE_FUNC |
| 1149 | static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x, bool small_branch) { |
| 1150 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, float>::value || |
| 1151 | internal::is_same<Scalar, double>::value), |
| 1152 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 1153 | const Scalar big = cephes_helper<Scalar>::big(); |
| 1154 | const Scalar machep = cephes_helper<Scalar>::machep(); |
| 1155 | const Scalar biginv = cephes_helper<Scalar>::biginv(); |
| 1156 | |
| 1157 | const Scalar zero = 0; |
| 1158 | const Scalar one = 1; |
| 1159 | const Scalar two = 2; |
| 1160 | |
| 1161 | Scalar xk, pk, pkm1, pkm2, qk, qkm1, qkm2; |
| 1162 | Scalar k1, k2, k3, k4, k5, k6, k7, k8, k26update; |
| 1163 | Scalar ans; |
| 1164 | int n; |
| 1165 | |
| 1166 | const int num_iters = (internal::is_same<Scalar, float>::value) ? 100 : 300; |
| 1167 | const Scalar thresh = |
| 1168 | (internal::is_same<Scalar, float>::value) ? machep : Scalar(3) * machep; |
| 1169 | Scalar r = (internal::is_same<Scalar, float>::value) ? zero : one; |
| 1170 | |
| 1171 | if (small_branch) { |
| 1172 | k1 = a; |
| 1173 | k2 = a + b; |
| 1174 | k3 = a; |
| 1175 | k4 = a + one; |
| 1176 | k5 = one; |
| 1177 | k6 = b - one; |
| 1178 | k7 = k4; |
| 1179 | k8 = a + two; |
| 1180 | k26update = one; |
| 1181 | } else { |
| 1182 | k1 = a; |
| 1183 | k2 = b - one; |
| 1184 | k3 = a; |
| 1185 | k4 = a + one; |
| 1186 | k5 = one; |
| 1187 | k6 = a + b; |
| 1188 | k7 = a + one; |
| 1189 | k8 = a + two; |
| 1190 | k26update = -one; |
| 1191 | x = x / (one - x); |
| 1192 | } |
| 1193 | |
| 1194 | pkm2 = zero; |
| 1195 | qkm2 = one; |
| 1196 | pkm1 = one; |
| 1197 | qkm1 = one; |
| 1198 | ans = one; |
| 1199 | n = 0; |
| 1200 | |
| 1201 | do { |
| 1202 | xk = -(x * k1 * k2) / (k3 * k4); |
| 1203 | pk = pkm1 + pkm2 * xk; |
| 1204 | qk = qkm1 + qkm2 * xk; |
| 1205 | pkm2 = pkm1; |
| 1206 | pkm1 = pk; |
| 1207 | qkm2 = qkm1; |
| 1208 | qkm1 = qk; |
| 1209 | |
| 1210 | xk = (x * k5 * k6) / (k7 * k8); |
| 1211 | pk = pkm1 + pkm2 * xk; |
| 1212 | qk = qkm1 + qkm2 * xk; |
| 1213 | pkm2 = pkm1; |
| 1214 | pkm1 = pk; |
| 1215 | qkm2 = qkm1; |
| 1216 | qkm1 = qk; |
| 1217 | |
| 1218 | if (qk != zero) { |
| 1219 | r = pk / qk; |
| 1220 | if (numext::abs(ans - r) < numext::abs(r) * thresh) { |
| 1221 | return r; |
| 1222 | } |
| 1223 | ans = r; |
| 1224 | } |
| 1225 | |
| 1226 | k1 += one; |
| 1227 | k2 += k26update; |
| 1228 | k3 += two; |
| 1229 | k4 += two; |
| 1230 | k5 += one; |
| 1231 | k6 -= k26update; |
| 1232 | k7 += two; |
| 1233 | k8 += two; |
| 1234 | |
| 1235 | if ((numext::abs(qk) + numext::abs(pk)) > big) { |
| 1236 | pkm2 *= biginv; |
| 1237 | pkm1 *= biginv; |
| 1238 | qkm2 *= biginv; |
| 1239 | qkm1 *= biginv; |
| 1240 | } |
| 1241 | if ((numext::abs(qk) < biginv) || (numext::abs(pk) < biginv)) { |
| 1242 | pkm2 *= big; |
| 1243 | pkm1 *= big; |
| 1244 | qkm2 *= big; |
| 1245 | qkm1 *= big; |
| 1246 | } |
| 1247 | } while (++n < num_iters); |
| 1248 | |
| 1249 | return ans; |
| 1250 | } |
| 1251 | }; |
| 1252 | |
| 1253 | /* Helper functions depending on the Scalar type */ |
| 1254 | template <typename Scalar> |
| 1255 | struct betainc_helper {}; |
| 1256 | |
| 1257 | template <> |
| 1258 | struct betainc_helper<float> { |
| 1259 | /* Core implementation, assumes a large (> 1.0) */ |
| 1260 | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float incbsa(float aa, float bb, |
| 1261 | float xx) { |
| 1262 | float ans, a, b, t, x, onemx; |
| 1263 | bool reversed_a_b = false; |
| 1264 | |
| 1265 | onemx = 1.0f - xx; |
| 1266 | |
| 1267 | /* see if x is greater than the mean */ |
| 1268 | if (xx > (aa / (aa + bb))) { |
| 1269 | reversed_a_b = true; |
| 1270 | a = bb; |
| 1271 | b = aa; |
| 1272 | t = xx; |
| 1273 | x = onemx; |
| 1274 | } else { |
| 1275 | a = aa; |
| 1276 | b = bb; |
| 1277 | t = onemx; |
| 1278 | x = xx; |
| 1279 | } |
| 1280 | |
| 1281 | /* Choose expansion for optimal convergence */ |
| 1282 | if (b > 10.0f) { |
| 1283 | if (numext::abs(b * x / a) < 0.3f) { |
| 1284 | t = betainc_helper<float>::incbps(a, b, x); |
| 1285 | if (reversed_a_b) t = 1.0f - t; |
| 1286 | return t; |
| 1287 | } |
| 1288 | } |
| 1289 | |
| 1290 | ans = x * (a + b - 2.0f) / (a - 1.0f); |
| 1291 | if (ans < 1.0f) { |
| 1292 | ans = incbeta_cfe<float>::run(a, b, x, true /* small_branch */); |
| 1293 | t = b * numext::log(t); |
| 1294 | } else { |
| 1295 | ans = incbeta_cfe<float>::run(a, b, x, false /* small_branch */); |
| 1296 | t = (b - 1.0f) * numext::log(t); |
| 1297 | } |
| 1298 | |
| 1299 | t += a * numext::log(x) + lgamma_impl<float>::run(a + b) - |
| 1300 | lgamma_impl<float>::run(a) - lgamma_impl<float>::run(b); |
| 1301 | t += numext::log(ans / a); |
| 1302 | t = numext::exp(t); |
| 1303 | |
| 1304 | if (reversed_a_b) t = 1.0f - t; |
| 1305 | return t; |
| 1306 | } |
| 1307 | |
| 1308 | EIGEN_DEVICE_FUNC |
| 1309 | static EIGEN_STRONG_INLINE float incbps(float a, float b, float x) { |
| 1310 | float t, u, y, s; |
| 1311 | const float machep = cephes_helper<float>::machep(); |
| 1312 | |
| 1313 | y = a * numext::log(x) + (b - 1.0f) * numext::log1p(-x) - numext::log(a); |
| 1314 | y -= lgamma_impl<float>::run(a) + lgamma_impl<float>::run(b); |
| 1315 | y += lgamma_impl<float>::run(a + b); |
| 1316 | |
| 1317 | t = x / (1.0f - x); |
| 1318 | s = 0.0f; |
| 1319 | u = 1.0f; |
| 1320 | do { |
| 1321 | b -= 1.0f; |
| 1322 | if (b == 0.0f) { |
| 1323 | break; |
| 1324 | } |
| 1325 | a += 1.0f; |
| 1326 | u *= t * b / a; |
| 1327 | s += u; |
| 1328 | } while (numext::abs(u) > machep); |
| 1329 | |
| 1330 | return numext::exp(y) * (1.0f + s); |
| 1331 | } |
| 1332 | }; |
| 1333 | |
| 1334 | template <> |
| 1335 | struct betainc_impl<float> { |
| 1336 | EIGEN_DEVICE_FUNC |
| 1337 | static float run(float a, float b, float x) { |
| 1338 | const float nan = NumTraits<float>::quiet_NaN(); |
| 1339 | float ans, t; |
| 1340 | |
| 1341 | if (a <= 0.0f) return nan; |
| 1342 | if (b <= 0.0f) return nan; |
| 1343 | if ((x <= 0.0f) || (x >= 1.0f)) { |
| 1344 | if (x == 0.0f) return 0.0f; |
| 1345 | if (x == 1.0f) return 1.0f; |
| 1346 | // mtherr("betaincf", DOMAIN); |
| 1347 | return nan; |
| 1348 | } |
| 1349 | |
| 1350 | /* transformation for small aa */ |
| 1351 | if (a <= 1.0f) { |
| 1352 | ans = betainc_helper<float>::incbsa(a + 1.0f, b, x); |
| 1353 | t = a * numext::log(x) + b * numext::log1p(-x) + |
| 1354 | lgamma_impl<float>::run(a + b) - lgamma_impl<float>::run(a + 1.0f) - |
| 1355 | lgamma_impl<float>::run(b); |
| 1356 | return (ans + numext::exp(t)); |
| 1357 | } else { |
| 1358 | return betainc_helper<float>::incbsa(a, b, x); |
| 1359 | } |
| 1360 | } |
| 1361 | }; |
| 1362 | |
| 1363 | template <> |
| 1364 | struct betainc_helper<double> { |
| 1365 | EIGEN_DEVICE_FUNC |
| 1366 | static EIGEN_STRONG_INLINE double incbps(double a, double b, double x) { |
| 1367 | const double machep = cephes_helper<double>::machep(); |
| 1368 | |
| 1369 | double s, t, u, v, n, t1, z, ai; |
| 1370 | |
| 1371 | ai = 1.0 / a; |
| 1372 | u = (1.0 - b) * x; |
| 1373 | v = u / (a + 1.0); |
| 1374 | t1 = v; |
| 1375 | t = u; |
| 1376 | n = 2.0; |
| 1377 | s = 0.0; |
| 1378 | z = machep * ai; |
| 1379 | while (numext::abs(v) > z) { |
| 1380 | u = (n - b) * x / n; |
| 1381 | t *= u; |
| 1382 | v = t / (a + n); |
| 1383 | s += v; |
| 1384 | n += 1.0; |
| 1385 | } |
| 1386 | s += t1; |
| 1387 | s += ai; |
| 1388 | |
| 1389 | u = a * numext::log(x); |
| 1390 | // TODO: gamma() is not directly implemented in Eigen. |
| 1391 | /* |
| 1392 | if ((a + b) < maxgam && numext::abs(u) < maxlog) { |
| 1393 | t = gamma(a + b) / (gamma(a) * gamma(b)); |
| 1394 | s = s * t * pow(x, a); |
| 1395 | } else { |
| 1396 | */ |
| 1397 | t = lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) - |
| 1398 | lgamma_impl<double>::run(b) + u + numext::log(s); |
| 1399 | return s = numext::exp(t); |
| 1400 | } |
| 1401 | }; |
| 1402 | |
| 1403 | template <> |
| 1404 | struct betainc_impl<double> { |
| 1405 | EIGEN_DEVICE_FUNC |
| 1406 | static double run(double aa, double bb, double xx) { |
| 1407 | const double nan = NumTraits<double>::quiet_NaN(); |
| 1408 | const double machep = cephes_helper<double>::machep(); |
| 1409 | // const double maxgam = 171.624376956302725; |
| 1410 | |
| 1411 | double a, b, t, x, xc, w, y; |
| 1412 | bool reversed_a_b = false; |
| 1413 | |
| 1414 | if (aa <= 0.0 || bb <= 0.0) { |
| 1415 | return nan; // goto domerr; |
| 1416 | } |
| 1417 | |
| 1418 | if ((xx <= 0.0) || (xx >= 1.0)) { |
| 1419 | if (xx == 0.0) return (0.0); |
| 1420 | if (xx == 1.0) return (1.0); |
| 1421 | // mtherr("incbet", DOMAIN); |
| 1422 | return nan; |
| 1423 | } |
| 1424 | |
| 1425 | if ((bb * xx) <= 1.0 && xx <= 0.95) { |
| 1426 | return betainc_helper<double>::incbps(aa, bb, xx); |
| 1427 | } |
| 1428 | |
| 1429 | w = 1.0 - xx; |
| 1430 | |
| 1431 | /* Reverse a and b if x is greater than the mean. */ |
| 1432 | if (xx > (aa / (aa + bb))) { |
| 1433 | reversed_a_b = true; |
| 1434 | a = bb; |
| 1435 | b = aa; |
| 1436 | xc = xx; |
| 1437 | x = w; |
| 1438 | } else { |
| 1439 | a = aa; |
| 1440 | b = bb; |
| 1441 | xc = w; |
| 1442 | x = xx; |
| 1443 | } |
| 1444 | |
| 1445 | if (reversed_a_b && (b * x) <= 1.0 && x <= 0.95) { |
| 1446 | t = betainc_helper<double>::incbps(a, b, x); |
| 1447 | if (t <= machep) { |
| 1448 | t = 1.0 - machep; |
| 1449 | } else { |
| 1450 | t = 1.0 - t; |
| 1451 | } |
| 1452 | return t; |
| 1453 | } |
| 1454 | |
| 1455 | /* Choose expansion for better convergence. */ |
| 1456 | y = x * (a + b - 2.0) - (a - 1.0); |
| 1457 | if (y < 0.0) { |
| 1458 | w = incbeta_cfe<double>::run(a, b, x, true /* small_branch */); |
| 1459 | } else { |
| 1460 | w = incbeta_cfe<double>::run(a, b, x, false /* small_branch */) / xc; |
| 1461 | } |
| 1462 | |
| 1463 | /* Multiply w by the factor |
| 1464 | a b _ _ _ |
| 1465 | x (1-x) | (a+b) / ( a | (a) | (b) ) . */ |
| 1466 | |
| 1467 | y = a * numext::log(x); |
| 1468 | t = b * numext::log(xc); |
| 1469 | // TODO: gamma is not directly implemented in Eigen. |
| 1470 | /* |
| 1471 | if ((a + b) < maxgam && numext::abs(y) < maxlog && numext::abs(t) < maxlog) |
| 1472 | { |
| 1473 | t = pow(xc, b); |
| 1474 | t *= pow(x, a); |
| 1475 | t /= a; |
| 1476 | t *= w; |
| 1477 | t *= gamma(a + b) / (gamma(a) * gamma(b)); |
| 1478 | } else { |
| 1479 | */ |
| 1480 | /* Resort to logarithms. */ |
| 1481 | y += t + lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) - |
| 1482 | lgamma_impl<double>::run(b); |
| 1483 | y += numext::log(w / a); |
| 1484 | t = numext::exp(y); |
| 1485 | |
| 1486 | /* } */ |
| 1487 | // done: |
| 1488 | |
| 1489 | if (reversed_a_b) { |
| 1490 | if (t <= machep) { |
| 1491 | t = 1.0 - machep; |
| 1492 | } else { |
| 1493 | t = 1.0 - t; |
| 1494 | } |
| 1495 | } |
| 1496 | return t; |
| 1497 | } |
| 1498 | }; |
| 1499 | |
| 1500 | #endif // EIGEN_HAS_C99_MATH |
| 1501 | |
| 1502 | } // end namespace internal |
| 1503 | |
| 1504 | namespace numext { |
| 1505 | |
| 1506 | template <typename Scalar> |
| 1507 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(lgamma, Scalar) |
| 1508 | lgamma(const Scalar& x) { |
| 1509 | return EIGEN_MATHFUNC_IMPL(lgamma, Scalar)::run(x); |
| 1510 | } |
| 1511 | |
| 1512 | template <typename Scalar> |
| 1513 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(digamma, Scalar) |
| 1514 | digamma(const Scalar& x) { |
| 1515 | return EIGEN_MATHFUNC_IMPL(digamma, Scalar)::run(x); |
| 1516 | } |
| 1517 | |
| 1518 | template <typename Scalar> |
| 1519 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(zeta, Scalar) |
| 1520 | zeta(const Scalar& x, const Scalar& q) { |
| 1521 | return EIGEN_MATHFUNC_IMPL(zeta, Scalar)::run(x, q); |
| 1522 | } |
| 1523 | |
| 1524 | template <typename Scalar> |
| 1525 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(polygamma, Scalar) |
| 1526 | polygamma(const Scalar& n, const Scalar& x) { |
| 1527 | return EIGEN_MATHFUNC_IMPL(polygamma, Scalar)::run(n, x); |
| 1528 | } |
| 1529 | |
| 1530 | template <typename Scalar> |
| 1531 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erf, Scalar) |
| 1532 | erf(const Scalar& x) { |
| 1533 | return EIGEN_MATHFUNC_IMPL(erf, Scalar)::run(x); |
| 1534 | } |
| 1535 | |
| 1536 | template <typename Scalar> |
| 1537 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erfc, Scalar) |
| 1538 | erfc(const Scalar& x) { |
| 1539 | return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x); |
| 1540 | } |
| 1541 | |
| 1542 | template <typename Scalar> |
| 1543 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar) |
| 1544 | igamma(const Scalar& a, const Scalar& x) { |
| 1545 | return EIGEN_MATHFUNC_IMPL(igamma, Scalar)::run(a, x); |
| 1546 | } |
| 1547 | |
| 1548 | template <typename Scalar> |
| 1549 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar) |
| 1550 | igammac(const Scalar& a, const Scalar& x) { |
| 1551 | return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x); |
| 1552 | } |
| 1553 | |
| 1554 | template <typename Scalar> |
| 1555 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(betainc, Scalar) |
| 1556 | betainc(const Scalar& a, const Scalar& b, const Scalar& x) { |
| 1557 | return EIGEN_MATHFUNC_IMPL(betainc, Scalar)::run(a, b, x); |
| 1558 | } |
| 1559 | |
| 1560 | } // end namespace numext |
| 1561 | |
| 1562 | |
| 1563 | } // end namespace Eigen |
| 1564 | |
| 1565 | #endif // EIGEN_SPECIAL_FUNCTIONS_H |