Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | namespace Eigen { |
| 2 | |
| 3 | namespace internal { |
| 4 | |
| 5 | template <typename Scalar> |
| 6 | void lmpar( |
| 7 | Matrix< Scalar, Dynamic, Dynamic > &r, |
| 8 | const VectorXi &ipvt, |
| 9 | const Matrix< Scalar, Dynamic, 1 > &diag, |
| 10 | const Matrix< Scalar, Dynamic, 1 > &qtb, |
| 11 | Scalar delta, |
| 12 | Scalar &par, |
| 13 | Matrix< Scalar, Dynamic, 1 > &x) |
| 14 | { |
| 15 | using std::abs; |
| 16 | using std::sqrt; |
| 17 | typedef DenseIndex Index; |
| 18 | |
| 19 | /* Local variables */ |
| 20 | Index i, j, l; |
| 21 | Scalar fp; |
| 22 | Scalar parc, parl; |
| 23 | Index iter; |
| 24 | Scalar temp, paru; |
| 25 | Scalar gnorm; |
| 26 | Scalar dxnorm; |
| 27 | |
| 28 | |
| 29 | /* Function Body */ |
| 30 | const Scalar dwarf = (std::numeric_limits<Scalar>::min)(); |
| 31 | const Index n = r.cols(); |
| 32 | eigen_assert(n==diag.size()); |
| 33 | eigen_assert(n==qtb.size()); |
| 34 | eigen_assert(n==x.size()); |
| 35 | |
| 36 | Matrix< Scalar, Dynamic, 1 > wa1, wa2; |
| 37 | |
| 38 | /* compute and store in x the gauss-newton direction. if the */ |
| 39 | /* jacobian is rank-deficient, obtain a least squares solution. */ |
| 40 | Index nsing = n-1; |
| 41 | wa1 = qtb; |
| 42 | for (j = 0; j < n; ++j) { |
| 43 | if (r(j,j) == 0. && nsing == n-1) |
| 44 | nsing = j - 1; |
| 45 | if (nsing < n-1) |
| 46 | wa1[j] = 0.; |
| 47 | } |
| 48 | for (j = nsing; j>=0; --j) { |
| 49 | wa1[j] /= r(j,j); |
| 50 | temp = wa1[j]; |
| 51 | for (i = 0; i < j ; ++i) |
| 52 | wa1[i] -= r(i,j) * temp; |
| 53 | } |
| 54 | |
| 55 | for (j = 0; j < n; ++j) |
| 56 | x[ipvt[j]] = wa1[j]; |
| 57 | |
| 58 | /* initialize the iteration counter. */ |
| 59 | /* evaluate the function at the origin, and test */ |
| 60 | /* for acceptance of the gauss-newton direction. */ |
| 61 | iter = 0; |
| 62 | wa2 = diag.cwiseProduct(x); |
| 63 | dxnorm = wa2.blueNorm(); |
| 64 | fp = dxnorm - delta; |
| 65 | if (fp <= Scalar(0.1) * delta) { |
| 66 | par = 0; |
| 67 | return; |
| 68 | } |
| 69 | |
| 70 | /* if the jacobian is not rank deficient, the newton */ |
| 71 | /* step provides a lower bound, parl, for the zero of */ |
| 72 | /* the function. otherwise set this bound to zero. */ |
| 73 | parl = 0.; |
| 74 | if (nsing >= n-1) { |
| 75 | for (j = 0; j < n; ++j) { |
| 76 | l = ipvt[j]; |
| 77 | wa1[j] = diag[l] * (wa2[l] / dxnorm); |
| 78 | } |
| 79 | // it's actually a triangularView.solveInplace(), though in a weird |
| 80 | // way: |
| 81 | for (j = 0; j < n; ++j) { |
| 82 | Scalar sum = 0.; |
| 83 | for (i = 0; i < j; ++i) |
| 84 | sum += r(i,j) * wa1[i]; |
| 85 | wa1[j] = (wa1[j] - sum) / r(j,j); |
| 86 | } |
| 87 | temp = wa1.blueNorm(); |
| 88 | parl = fp / delta / temp / temp; |
| 89 | } |
| 90 | |
| 91 | /* calculate an upper bound, paru, for the zero of the function. */ |
| 92 | for (j = 0; j < n; ++j) |
| 93 | wa1[j] = r.col(j).head(j+1).dot(qtb.head(j+1)) / diag[ipvt[j]]; |
| 94 | |
| 95 | gnorm = wa1.stableNorm(); |
| 96 | paru = gnorm / delta; |
| 97 | if (paru == 0.) |
| 98 | paru = dwarf / (std::min)(delta,Scalar(0.1)); |
| 99 | |
| 100 | /* if the input par lies outside of the interval (parl,paru), */ |
| 101 | /* set par to the closer endpoint. */ |
| 102 | par = (std::max)(par,parl); |
| 103 | par = (std::min)(par,paru); |
| 104 | if (par == 0.) |
| 105 | par = gnorm / dxnorm; |
| 106 | |
| 107 | /* beginning of an iteration. */ |
| 108 | while (true) { |
| 109 | ++iter; |
| 110 | |
| 111 | /* evaluate the function at the current value of par. */ |
| 112 | if (par == 0.) |
| 113 | par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */ |
| 114 | wa1 = sqrt(par)* diag; |
| 115 | |
| 116 | Matrix< Scalar, Dynamic, 1 > sdiag(n); |
| 117 | qrsolv<Scalar>(r, ipvt, wa1, qtb, x, sdiag); |
| 118 | |
| 119 | wa2 = diag.cwiseProduct(x); |
| 120 | dxnorm = wa2.blueNorm(); |
| 121 | temp = fp; |
| 122 | fp = dxnorm - delta; |
| 123 | |
| 124 | /* if the function is small enough, accept the current value */ |
| 125 | /* of par. also test for the exceptional cases where parl */ |
| 126 | /* is zero or the number of iterations has reached 10. */ |
| 127 | if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10) |
| 128 | break; |
| 129 | |
| 130 | /* compute the newton correction. */ |
| 131 | for (j = 0; j < n; ++j) { |
| 132 | l = ipvt[j]; |
| 133 | wa1[j] = diag[l] * (wa2[l] / dxnorm); |
| 134 | } |
| 135 | for (j = 0; j < n; ++j) { |
| 136 | wa1[j] /= sdiag[j]; |
| 137 | temp = wa1[j]; |
| 138 | for (i = j+1; i < n; ++i) |
| 139 | wa1[i] -= r(i,j) * temp; |
| 140 | } |
| 141 | temp = wa1.blueNorm(); |
| 142 | parc = fp / delta / temp / temp; |
| 143 | |
| 144 | /* depending on the sign of the function, update parl or paru. */ |
| 145 | if (fp > 0.) |
| 146 | parl = (std::max)(parl,par); |
| 147 | if (fp < 0.) |
| 148 | paru = (std::min)(paru,par); |
| 149 | |
| 150 | /* compute an improved estimate for par. */ |
| 151 | /* Computing MAX */ |
| 152 | par = (std::max)(parl,par+parc); |
| 153 | |
| 154 | /* end of an iteration. */ |
| 155 | } |
| 156 | |
| 157 | /* termination. */ |
| 158 | if (iter == 0) |
| 159 | par = 0.; |
| 160 | return; |
| 161 | } |
| 162 | |
| 163 | template <typename Scalar> |
| 164 | void lmpar2( |
| 165 | const ColPivHouseholderQR<Matrix< Scalar, Dynamic, Dynamic> > &qr, |
| 166 | const Matrix< Scalar, Dynamic, 1 > &diag, |
| 167 | const Matrix< Scalar, Dynamic, 1 > &qtb, |
| 168 | Scalar delta, |
| 169 | Scalar &par, |
| 170 | Matrix< Scalar, Dynamic, 1 > &x) |
| 171 | |
| 172 | { |
| 173 | using std::sqrt; |
| 174 | using std::abs; |
| 175 | typedef DenseIndex Index; |
| 176 | |
| 177 | /* Local variables */ |
| 178 | Index j; |
| 179 | Scalar fp; |
| 180 | Scalar parc, parl; |
| 181 | Index iter; |
| 182 | Scalar temp, paru; |
| 183 | Scalar gnorm; |
| 184 | Scalar dxnorm; |
| 185 | |
| 186 | |
| 187 | /* Function Body */ |
| 188 | const Scalar dwarf = (std::numeric_limits<Scalar>::min)(); |
| 189 | const Index n = qr.matrixQR().cols(); |
| 190 | eigen_assert(n==diag.size()); |
| 191 | eigen_assert(n==qtb.size()); |
| 192 | |
| 193 | Matrix< Scalar, Dynamic, 1 > wa1, wa2; |
| 194 | |
| 195 | /* compute and store in x the gauss-newton direction. if the */ |
| 196 | /* jacobian is rank-deficient, obtain a least squares solution. */ |
| 197 | |
| 198 | // const Index rank = qr.nonzeroPivots(); // exactly double(0.) |
| 199 | const Index rank = qr.rank(); // use a threshold |
| 200 | wa1 = qtb; |
| 201 | wa1.tail(n-rank).setZero(); |
| 202 | qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank)); |
| 203 | |
| 204 | x = qr.colsPermutation()*wa1; |
| 205 | |
| 206 | /* initialize the iteration counter. */ |
| 207 | /* evaluate the function at the origin, and test */ |
| 208 | /* for acceptance of the gauss-newton direction. */ |
| 209 | iter = 0; |
| 210 | wa2 = diag.cwiseProduct(x); |
| 211 | dxnorm = wa2.blueNorm(); |
| 212 | fp = dxnorm - delta; |
| 213 | if (fp <= Scalar(0.1) * delta) { |
| 214 | par = 0; |
| 215 | return; |
| 216 | } |
| 217 | |
| 218 | /* if the jacobian is not rank deficient, the newton */ |
| 219 | /* step provides a lower bound, parl, for the zero of */ |
| 220 | /* the function. otherwise set this bound to zero. */ |
| 221 | parl = 0.; |
| 222 | if (rank==n) { |
| 223 | wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2)/dxnorm; |
| 224 | qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1); |
| 225 | temp = wa1.blueNorm(); |
| 226 | parl = fp / delta / temp / temp; |
| 227 | } |
| 228 | |
| 229 | /* calculate an upper bound, paru, for the zero of the function. */ |
| 230 | for (j = 0; j < n; ++j) |
| 231 | wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)]; |
| 232 | |
| 233 | gnorm = wa1.stableNorm(); |
| 234 | paru = gnorm / delta; |
| 235 | if (paru == 0.) |
| 236 | paru = dwarf / (std::min)(delta,Scalar(0.1)); |
| 237 | |
| 238 | /* if the input par lies outside of the interval (parl,paru), */ |
| 239 | /* set par to the closer endpoint. */ |
| 240 | par = (std::max)(par,parl); |
| 241 | par = (std::min)(par,paru); |
| 242 | if (par == 0.) |
| 243 | par = gnorm / dxnorm; |
| 244 | |
| 245 | /* beginning of an iteration. */ |
| 246 | Matrix< Scalar, Dynamic, Dynamic > s = qr.matrixQR(); |
| 247 | while (true) { |
| 248 | ++iter; |
| 249 | |
| 250 | /* evaluate the function at the current value of par. */ |
| 251 | if (par == 0.) |
| 252 | par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */ |
| 253 | wa1 = sqrt(par)* diag; |
| 254 | |
| 255 | Matrix< Scalar, Dynamic, 1 > sdiag(n); |
| 256 | qrsolv<Scalar>(s, qr.colsPermutation().indices(), wa1, qtb, x, sdiag); |
| 257 | |
| 258 | wa2 = diag.cwiseProduct(x); |
| 259 | dxnorm = wa2.blueNorm(); |
| 260 | temp = fp; |
| 261 | fp = dxnorm - delta; |
| 262 | |
| 263 | /* if the function is small enough, accept the current value */ |
| 264 | /* of par. also test for the exceptional cases where parl */ |
| 265 | /* is zero or the number of iterations has reached 10. */ |
| 266 | if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10) |
| 267 | break; |
| 268 | |
| 269 | /* compute the newton correction. */ |
| 270 | wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm); |
| 271 | // we could almost use this here, but the diagonal is outside qr, in sdiag[] |
| 272 | // qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1); |
| 273 | for (j = 0; j < n; ++j) { |
| 274 | wa1[j] /= sdiag[j]; |
| 275 | temp = wa1[j]; |
| 276 | for (Index i = j+1; i < n; ++i) |
| 277 | wa1[i] -= s(i,j) * temp; |
| 278 | } |
| 279 | temp = wa1.blueNorm(); |
| 280 | parc = fp / delta / temp / temp; |
| 281 | |
| 282 | /* depending on the sign of the function, update parl or paru. */ |
| 283 | if (fp > 0.) |
| 284 | parl = (std::max)(parl,par); |
| 285 | if (fp < 0.) |
| 286 | paru = (std::min)(paru,par); |
| 287 | |
| 288 | /* compute an improved estimate for par. */ |
| 289 | par = (std::max)(parl,par+parc); |
| 290 | } |
| 291 | if (iter == 0) |
| 292 | par = 0.; |
| 293 | return; |
| 294 | } |
| 295 | |
| 296 | } // end namespace internal |
| 297 | |
| 298 | } // end namespace Eigen |