Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/unsupported/Eigen/src/NonLinearOptimization/lmpar.h b/unsupported/Eigen/src/NonLinearOptimization/lmpar.h
new file mode 100644
index 0000000..4c17d4c
--- /dev/null
+++ b/unsupported/Eigen/src/NonLinearOptimization/lmpar.h
@@ -0,0 +1,298 @@
+namespace Eigen { 
+
+namespace internal {
+
+template <typename Scalar>
+void lmpar(
+        Matrix< Scalar, Dynamic, Dynamic > &r,
+        const VectorXi &ipvt,
+        const Matrix< Scalar, Dynamic, 1 >  &diag,
+        const Matrix< Scalar, Dynamic, 1 >  &qtb,
+        Scalar delta,
+        Scalar &par,
+        Matrix< Scalar, Dynamic, 1 >  &x)
+{
+    using std::abs;
+    using std::sqrt;
+    typedef DenseIndex Index;
+
+    /* Local variables */
+    Index i, j, l;
+    Scalar fp;
+    Scalar parc, parl;
+    Index iter;
+    Scalar temp, paru;
+    Scalar gnorm;
+    Scalar dxnorm;
+
+
+    /* Function Body */
+    const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
+    const Index n = r.cols();
+    eigen_assert(n==diag.size());
+    eigen_assert(n==qtb.size());
+    eigen_assert(n==x.size());
+
+    Matrix< Scalar, Dynamic, 1 >  wa1, wa2;
+
+    /* compute and store in x the gauss-newton direction. if the */
+    /* jacobian is rank-deficient, obtain a least squares solution. */
+    Index nsing = n-1;
+    wa1 = qtb;
+    for (j = 0; j < n; ++j) {
+        if (r(j,j) == 0. && nsing == n-1)
+            nsing = j - 1;
+        if (nsing < n-1)
+            wa1[j] = 0.;
+    }
+    for (j = nsing; j>=0; --j) {
+        wa1[j] /= r(j,j);
+        temp = wa1[j];
+        for (i = 0; i < j ; ++i)
+            wa1[i] -= r(i,j) * temp;
+    }
+
+    for (j = 0; j < n; ++j)
+        x[ipvt[j]] = wa1[j];
+
+    /* initialize the iteration counter. */
+    /* evaluate the function at the origin, and test */
+    /* for acceptance of the gauss-newton direction. */
+    iter = 0;
+    wa2 = diag.cwiseProduct(x);
+    dxnorm = wa2.blueNorm();
+    fp = dxnorm - delta;
+    if (fp <= Scalar(0.1) * delta) {
+        par = 0;
+        return;
+    }
+
+    /* if the jacobian is not rank deficient, the newton */
+    /* step provides a lower bound, parl, for the zero of */
+    /* the function. otherwise set this bound to zero. */
+    parl = 0.;
+    if (nsing >= n-1) {
+        for (j = 0; j < n; ++j) {
+            l = ipvt[j];
+            wa1[j] = diag[l] * (wa2[l] / dxnorm);
+        }
+        // it's actually a triangularView.solveInplace(), though in a weird
+        // way:
+        for (j = 0; j < n; ++j) {
+            Scalar sum = 0.;
+            for (i = 0; i < j; ++i)
+                sum += r(i,j) * wa1[i];
+            wa1[j] = (wa1[j] - sum) / r(j,j);
+        }
+        temp = wa1.blueNorm();
+        parl = fp / delta / temp / temp;
+    }
+
+    /* calculate an upper bound, paru, for the zero of the function. */
+    for (j = 0; j < n; ++j)
+        wa1[j] = r.col(j).head(j+1).dot(qtb.head(j+1)) / diag[ipvt[j]];
+
+    gnorm = wa1.stableNorm();
+    paru = gnorm / delta;
+    if (paru == 0.)
+        paru = dwarf / (std::min)(delta,Scalar(0.1));
+
+    /* if the input par lies outside of the interval (parl,paru), */
+    /* set par to the closer endpoint. */
+    par = (std::max)(par,parl);
+    par = (std::min)(par,paru);
+    if (par == 0.)
+        par = gnorm / dxnorm;
+
+    /* beginning of an iteration. */
+    while (true) {
+        ++iter;
+
+        /* evaluate the function at the current value of par. */
+        if (par == 0.)
+            par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
+        wa1 = sqrt(par)* diag;
+
+        Matrix< Scalar, Dynamic, 1 > sdiag(n);
+        qrsolv<Scalar>(r, ipvt, wa1, qtb, x, sdiag);
+
+        wa2 = diag.cwiseProduct(x);
+        dxnorm = wa2.blueNorm();
+        temp = fp;
+        fp = dxnorm - delta;
+
+        /* if the function is small enough, accept the current value */
+        /* of par. also test for the exceptional cases where parl */
+        /* is zero or the number of iterations has reached 10. */
+        if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
+            break;
+
+        /* compute the newton correction. */
+        for (j = 0; j < n; ++j) {
+            l = ipvt[j];
+            wa1[j] = diag[l] * (wa2[l] / dxnorm);
+        }
+        for (j = 0; j < n; ++j) {
+            wa1[j] /= sdiag[j];
+            temp = wa1[j];
+            for (i = j+1; i < n; ++i)
+                wa1[i] -= r(i,j) * temp;
+        }
+        temp = wa1.blueNorm();
+        parc = fp / delta / temp / temp;
+
+        /* depending on the sign of the function, update parl or paru. */
+        if (fp > 0.)
+            parl = (std::max)(parl,par);
+        if (fp < 0.)
+            paru = (std::min)(paru,par);
+
+        /* compute an improved estimate for par. */
+        /* Computing MAX */
+        par = (std::max)(parl,par+parc);
+
+        /* end of an iteration. */
+    }
+
+    /* termination. */
+    if (iter == 0)
+        par = 0.;
+    return;
+}
+
+template <typename Scalar>
+void lmpar2(
+        const ColPivHouseholderQR<Matrix< Scalar, Dynamic, Dynamic> > &qr,
+        const Matrix< Scalar, Dynamic, 1 >  &diag,
+        const Matrix< Scalar, Dynamic, 1 >  &qtb,
+        Scalar delta,
+        Scalar &par,
+        Matrix< Scalar, Dynamic, 1 >  &x)
+
+{
+    using std::sqrt;
+    using std::abs;
+    typedef DenseIndex Index;
+
+    /* Local variables */
+    Index j;
+    Scalar fp;
+    Scalar parc, parl;
+    Index iter;
+    Scalar temp, paru;
+    Scalar gnorm;
+    Scalar dxnorm;
+
+
+    /* Function Body */
+    const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
+    const Index n = qr.matrixQR().cols();
+    eigen_assert(n==diag.size());
+    eigen_assert(n==qtb.size());
+
+    Matrix< Scalar, Dynamic, 1 >  wa1, wa2;
+
+    /* compute and store in x the gauss-newton direction. if the */
+    /* jacobian is rank-deficient, obtain a least squares solution. */
+
+//    const Index rank = qr.nonzeroPivots(); // exactly double(0.)
+    const Index rank = qr.rank(); // use a threshold
+    wa1 = qtb;
+    wa1.tail(n-rank).setZero();
+    qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank));
+
+    x = qr.colsPermutation()*wa1;
+
+    /* initialize the iteration counter. */
+    /* evaluate the function at the origin, and test */
+    /* for acceptance of the gauss-newton direction. */
+    iter = 0;
+    wa2 = diag.cwiseProduct(x);
+    dxnorm = wa2.blueNorm();
+    fp = dxnorm - delta;
+    if (fp <= Scalar(0.1) * delta) {
+        par = 0;
+        return;
+    }
+
+    /* if the jacobian is not rank deficient, the newton */
+    /* step provides a lower bound, parl, for the zero of */
+    /* the function. otherwise set this bound to zero. */
+    parl = 0.;
+    if (rank==n) {
+        wa1 = qr.colsPermutation().inverse() *  diag.cwiseProduct(wa2)/dxnorm;
+        qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
+        temp = wa1.blueNorm();
+        parl = fp / delta / temp / temp;
+    }
+
+    /* calculate an upper bound, paru, for the zero of the function. */
+    for (j = 0; j < n; ++j)
+        wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
+
+    gnorm = wa1.stableNorm();
+    paru = gnorm / delta;
+    if (paru == 0.)
+        paru = dwarf / (std::min)(delta,Scalar(0.1));
+
+    /* if the input par lies outside of the interval (parl,paru), */
+    /* set par to the closer endpoint. */
+    par = (std::max)(par,parl);
+    par = (std::min)(par,paru);
+    if (par == 0.)
+        par = gnorm / dxnorm;
+
+    /* beginning of an iteration. */
+    Matrix< Scalar, Dynamic, Dynamic > s = qr.matrixQR();
+    while (true) {
+        ++iter;
+
+        /* evaluate the function at the current value of par. */
+        if (par == 0.)
+            par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
+        wa1 = sqrt(par)* diag;
+
+        Matrix< Scalar, Dynamic, 1 > sdiag(n);
+        qrsolv<Scalar>(s, qr.colsPermutation().indices(), wa1, qtb, x, sdiag);
+
+        wa2 = diag.cwiseProduct(x);
+        dxnorm = wa2.blueNorm();
+        temp = fp;
+        fp = dxnorm - delta;
+
+        /* if the function is small enough, accept the current value */
+        /* of par. also test for the exceptional cases where parl */
+        /* is zero or the number of iterations has reached 10. */
+        if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
+            break;
+
+        /* compute the newton correction. */
+        wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
+        // we could almost use this here, but the diagonal is outside qr, in sdiag[]
+        // qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
+        for (j = 0; j < n; ++j) {
+            wa1[j] /= sdiag[j];
+            temp = wa1[j];
+            for (Index i = j+1; i < n; ++i)
+                wa1[i] -= s(i,j) * temp;
+        }
+        temp = wa1.blueNorm();
+        parc = fp / delta / temp / temp;
+
+        /* depending on the sign of the function, update parl or paru. */
+        if (fp > 0.)
+            parl = (std::max)(parl,par);
+        if (fp < 0.)
+            paru = (std::min)(paru,par);
+
+        /* compute an improved estimate for par. */
+        par = (std::max)(parl,par+parc);
+    }
+    if (iter == 0)
+        par = 0.;
+    return;
+}
+
+} // end namespace internal
+
+} // end namespace Eigen