blob: 5db454d243a850ea25b52814a852c44db4d8cce7 [file] [log] [blame]
Brian Silverman72890c22015-09-19 14:37:37 -04001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2012 Giacomo Po <gpo@ucla.edu>
Austin Schuh189376f2018-12-20 22:11:15 +11005// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
Austin Schuhc55b0172022-02-20 17:52:35 -08006// Copyright (C) 2018 David Hyde <dabh@stanford.edu>
Brian Silverman72890c22015-09-19 14:37:37 -04007//
8// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
12
13#ifndef EIGEN_MINRES_H_
14#define EIGEN_MINRES_H_
15
16
17namespace Eigen {
18
19 namespace internal {
20
21 /** \internal Low-level MINRES algorithm
22 * \param mat The matrix A
23 * \param rhs The right hand side vector b
24 * \param x On input and initial solution, on output the computed solution.
25 * \param precond A right preconditioner being able to efficiently solve for an
26 * approximation of Ax=b (regardless of b)
27 * \param iters On input the max number of iteration, on output the number of performed iterations.
28 * \param tol_error On input the tolerance error, on output an estimation of the relative error.
29 */
30 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
31 EIGEN_DONT_INLINE
32 void minres(const MatrixType& mat, const Rhs& rhs, Dest& x,
Austin Schuh189376f2018-12-20 22:11:15 +110033 const Preconditioner& precond, Index& iters,
Brian Silverman72890c22015-09-19 14:37:37 -040034 typename Dest::RealScalar& tol_error)
35 {
36 using std::sqrt;
37 typedef typename Dest::RealScalar RealScalar;
38 typedef typename Dest::Scalar Scalar;
39 typedef Matrix<Scalar,Dynamic,1> VectorType;
40
41 // Check for zero rhs
42 const RealScalar rhsNorm2(rhs.squaredNorm());
43 if(rhsNorm2 == 0)
44 {
45 x.setZero();
46 iters = 0;
47 tol_error = 0;
48 return;
49 }
50
51 // initialize
Austin Schuh189376f2018-12-20 22:11:15 +110052 const Index maxIters(iters); // initialize maxIters to iters
53 const Index N(mat.cols()); // the size of the matrix
Brian Silverman72890c22015-09-19 14:37:37 -040054 const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold (compared to residualNorm2)
55
56 // Initialize preconditioned Lanczos
57 VectorType v_old(N); // will be initialized inside loop
58 VectorType v( VectorType::Zero(N) ); //initialize v
59 VectorType v_new(rhs-mat*x); //initialize v_new
60 RealScalar residualNorm2(v_new.squaredNorm());
61 VectorType w(N); // will be initialized inside loop
62 VectorType w_new(precond.solve(v_new)); // initialize w_new
63// RealScalar beta; // will be initialized inside loop
64 RealScalar beta_new2(v_new.dot(w_new));
65 eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
66 RealScalar beta_new(sqrt(beta_new2));
67 const RealScalar beta_one(beta_new);
Brian Silverman72890c22015-09-19 14:37:37 -040068 // Initialize other variables
69 RealScalar c(1.0); // the cosine of the Givens rotation
70 RealScalar c_old(1.0);
71 RealScalar s(0.0); // the sine of the Givens rotation
72 RealScalar s_old(0.0); // the sine of the Givens rotation
73 VectorType p_oold(N); // will be initialized in loop
74 VectorType p_old(VectorType::Zero(N)); // initialize p_old=0
75 VectorType p(p_old); // initialize p=0
76 RealScalar eta(1.0);
77
78 iters = 0; // reset iters
79 while ( iters < maxIters )
80 {
81 // Preconditioned Lanczos
82 /* Note that there are 4 variants on the Lanczos algorithm. These are
83 * described in Paige, C. C. (1972). Computational variants of
84 * the Lanczos method for the eigenproblem. IMA Journal of Applied
Austin Schuhc55b0172022-02-20 17:52:35 -080085 * Mathematics, 10(3), 373-381. The current implementation corresponds
Brian Silverman72890c22015-09-19 14:37:37 -040086 * to the case A(2,7) in the paper. It also corresponds to
Austin Schuhc55b0172022-02-20 17:52:35 -080087 * algorithm 6.14 in Y. Saad, Iterative Methods for Sparse Linear
Brian Silverman72890c22015-09-19 14:37:37 -040088 * Systems, 2003 p.173. For the preconditioned version see
89 * A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987).
90 */
91 const RealScalar beta(beta_new);
92 v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
Austin Schuhc55b0172022-02-20 17:52:35 -080093 v_new /= beta_new; // overwrite v_new for next iteration
94 w_new /= beta_new; // overwrite w_new for next iteration
Brian Silverman72890c22015-09-19 14:37:37 -040095 v = v_new; // update
96 w = w_new; // update
Brian Silverman72890c22015-09-19 14:37:37 -040097 v_new.noalias() = mat*w - beta*v_old; // compute v_new
98 const RealScalar alpha = v_new.dot(w);
99 v_new -= alpha*v; // overwrite v_new
100 w_new = precond.solve(v_new); // overwrite w_new
101 beta_new2 = v_new.dot(w_new); // compute beta_new
102 eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
103 beta_new = sqrt(beta_new2); // compute beta_new
Brian Silverman72890c22015-09-19 14:37:37 -0400104
105 // Givens rotation
106 const RealScalar r2 =s*alpha+c*c_old*beta; // s, s_old, c and c_old are still from previous iteration
107 const RealScalar r3 =s_old*beta; // s, s_old, c and c_old are still from previous iteration
108 const RealScalar r1_hat=c*alpha-c_old*s*beta;
109 const RealScalar r1 =sqrt( std::pow(r1_hat,2) + std::pow(beta_new,2) );
110 c_old = c; // store for next iteration
111 s_old = s; // store for next iteration
112 c=r1_hat/r1; // new cosine
113 s=beta_new/r1; // new sine
114
115 // Update solution
116 p_oold = p_old;
Brian Silverman72890c22015-09-19 14:37:37 -0400117 p_old = p;
118 p.noalias()=(w-r2*p_old-r3*p_oold) /r1; // IS NOALIAS REQUIRED?
119 x += beta_one*c*eta*p;
120
121 /* Update the squared residual. Note that this is the estimated residual.
122 The real residual |Ax-b|^2 may be slightly larger */
123 residualNorm2 *= s*s;
124
125 if ( residualNorm2 < threshold2)
126 {
127 break;
128 }
129
130 eta=-s*eta; // update eta
131 iters++; // increment iteration number (for output purposes)
132 }
133
134 /* Compute error. Note that this is the estimated error. The real
135 error |Ax-b|/|b| may be slightly larger */
136 tol_error = std::sqrt(residualNorm2 / rhsNorm2);
137 }
138
139 }
140
141 template< typename _MatrixType, int _UpLo=Lower,
142 typename _Preconditioner = IdentityPreconditioner>
Brian Silverman72890c22015-09-19 14:37:37 -0400143 class MINRES;
144
145 namespace internal {
146
147 template< typename _MatrixType, int _UpLo, typename _Preconditioner>
148 struct traits<MINRES<_MatrixType,_UpLo,_Preconditioner> >
149 {
150 typedef _MatrixType MatrixType;
151 typedef _Preconditioner Preconditioner;
152 };
153
154 }
155
156 /** \ingroup IterativeLinearSolvers_Module
157 * \brief A minimal residual solver for sparse symmetric problems
158 *
159 * This class allows to solve for A.x = b sparse linear problems using the MINRES algorithm
160 * of Paige and Saunders (1975). The sparse matrix A must be symmetric (possibly indefinite).
161 * The vectors x and b can be either dense or sparse.
162 *
163 * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
Austin Schuh189376f2018-12-20 22:11:15 +1100164 * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower,
165 * Upper, or Lower|Upper in which the full matrix entries will be considered. Default is Lower.
Brian Silverman72890c22015-09-19 14:37:37 -0400166 * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
167 *
168 * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
169 * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
170 * and NumTraits<Scalar>::epsilon() for the tolerance.
171 *
172 * This class can be used as the direct solver classes. Here is a typical usage example:
173 * \code
174 * int n = 10000;
175 * VectorXd x(n), b(n);
176 * SparseMatrix<double> A(n,n);
177 * // fill A and b
178 * MINRES<SparseMatrix<double> > mr;
179 * mr.compute(A);
180 * x = mr.solve(b);
181 * std::cout << "#iterations: " << mr.iterations() << std::endl;
182 * std::cout << "estimated error: " << mr.error() << std::endl;
183 * // update b, and solve again
184 * x = mr.solve(b);
185 * \endcode
186 *
187 * By default the iterations start with x=0 as an initial guess of the solution.
188 * One can control the start using the solveWithGuess() method.
189 *
Austin Schuh189376f2018-12-20 22:11:15 +1100190 * MINRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
191 *
Brian Silverman72890c22015-09-19 14:37:37 -0400192 * \sa class ConjugateGradient, BiCGSTAB, SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
193 */
194 template< typename _MatrixType, int _UpLo, typename _Preconditioner>
195 class MINRES : public IterativeSolverBase<MINRES<_MatrixType,_UpLo,_Preconditioner> >
196 {
197
198 typedef IterativeSolverBase<MINRES> Base;
Austin Schuh189376f2018-12-20 22:11:15 +1100199 using Base::matrix;
Brian Silverman72890c22015-09-19 14:37:37 -0400200 using Base::m_error;
201 using Base::m_iterations;
202 using Base::m_info;
203 using Base::m_isInitialized;
204 public:
Austin Schuh189376f2018-12-20 22:11:15 +1100205 using Base::_solve_impl;
Brian Silverman72890c22015-09-19 14:37:37 -0400206 typedef _MatrixType MatrixType;
207 typedef typename MatrixType::Scalar Scalar;
Brian Silverman72890c22015-09-19 14:37:37 -0400208 typedef typename MatrixType::RealScalar RealScalar;
209 typedef _Preconditioner Preconditioner;
210
211 enum {UpLo = _UpLo};
212
213 public:
214
215 /** Default constructor. */
216 MINRES() : Base() {}
217
218 /** Initialize the solver with matrix \a A for further \c Ax=b solving.
219 *
220 * This constructor is a shortcut for the default constructor followed
221 * by a call to compute().
222 *
223 * \warning this class stores a reference to the matrix A as well as some
224 * precomputed values that depend on it. Therefore, if \a A is changed
225 * this class becomes invalid. Call compute() to update it with the new
226 * matrix A, or modify a copy of A.
227 */
Austin Schuh189376f2018-12-20 22:11:15 +1100228 template<typename MatrixDerived>
229 explicit MINRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
Brian Silverman72890c22015-09-19 14:37:37 -0400230
231 /** Destructor. */
232 ~MINRES(){}
Austin Schuh189376f2018-12-20 22:11:15 +1100233
Brian Silverman72890c22015-09-19 14:37:37 -0400234 /** \internal */
235 template<typename Rhs,typename Dest>
Austin Schuhc55b0172022-02-20 17:52:35 -0800236 void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const
Brian Silverman72890c22015-09-19 14:37:37 -0400237 {
Austin Schuh189376f2018-12-20 22:11:15 +1100238 typedef typename Base::MatrixWrapper MatrixWrapper;
239 typedef typename Base::ActualMatrixType ActualMatrixType;
240 enum {
241 TransposeInput = (!MatrixWrapper::MatrixFree)
242 && (UpLo==(Lower|Upper))
243 && (!MatrixType::IsRowMajor)
244 && (!NumTraits<Scalar>::IsComplex)
245 };
246 typedef typename internal::conditional<TransposeInput,Transpose<const ActualMatrixType>, ActualMatrixType const&>::type RowMajorWrapper;
247 EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
Brian Silverman72890c22015-09-19 14:37:37 -0400248 typedef typename internal::conditional<UpLo==(Lower|Upper),
Austin Schuh189376f2018-12-20 22:11:15 +1100249 RowMajorWrapper,
250 typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type
251 >::type SelfAdjointWrapper;
252
Brian Silverman72890c22015-09-19 14:37:37 -0400253 m_iterations = Base::maxIterations();
254 m_error = Base::m_tolerance;
Austin Schuh189376f2018-12-20 22:11:15 +1100255 RowMajorWrapper row_mat(matrix());
Austin Schuhc55b0172022-02-20 17:52:35 -0800256 internal::minres(SelfAdjointWrapper(row_mat), b, x,
257 Base::m_preconditioner, m_iterations, m_error);
Brian Silverman72890c22015-09-19 14:37:37 -0400258 m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
259 }
260
Brian Silverman72890c22015-09-19 14:37:37 -0400261 protected:
262
263 };
Austin Schuh189376f2018-12-20 22:11:15 +1100264
Brian Silverman72890c22015-09-19 14:37:37 -0400265} // end namespace Eigen
266
267#endif // EIGEN_MINRES_H