Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2012 Giacomo Po <gpo@ucla.edu> |
| 5 | // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | |
| 12 | #ifndef EIGEN_MINRES_H_ |
| 13 | #define EIGEN_MINRES_H_ |
| 14 | |
| 15 | |
| 16 | namespace Eigen { |
| 17 | |
| 18 | namespace internal { |
| 19 | |
| 20 | /** \internal Low-level MINRES algorithm |
| 21 | * \param mat The matrix A |
| 22 | * \param rhs The right hand side vector b |
| 23 | * \param x On input and initial solution, on output the computed solution. |
| 24 | * \param precond A right preconditioner being able to efficiently solve for an |
| 25 | * approximation of Ax=b (regardless of b) |
| 26 | * \param iters On input the max number of iteration, on output the number of performed iterations. |
| 27 | * \param tol_error On input the tolerance error, on output an estimation of the relative error. |
| 28 | */ |
| 29 | template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> |
| 30 | EIGEN_DONT_INLINE |
| 31 | void minres(const MatrixType& mat, const Rhs& rhs, Dest& x, |
| 32 | const Preconditioner& precond, int& iters, |
| 33 | typename Dest::RealScalar& tol_error) |
| 34 | { |
| 35 | using std::sqrt; |
| 36 | typedef typename Dest::RealScalar RealScalar; |
| 37 | typedef typename Dest::Scalar Scalar; |
| 38 | typedef Matrix<Scalar,Dynamic,1> VectorType; |
| 39 | |
| 40 | // Check for zero rhs |
| 41 | const RealScalar rhsNorm2(rhs.squaredNorm()); |
| 42 | if(rhsNorm2 == 0) |
| 43 | { |
| 44 | x.setZero(); |
| 45 | iters = 0; |
| 46 | tol_error = 0; |
| 47 | return; |
| 48 | } |
| 49 | |
| 50 | // initialize |
| 51 | const int maxIters(iters); // initialize maxIters to iters |
| 52 | const int N(mat.cols()); // the size of the matrix |
| 53 | const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold (compared to residualNorm2) |
| 54 | |
| 55 | // Initialize preconditioned Lanczos |
| 56 | VectorType v_old(N); // will be initialized inside loop |
| 57 | VectorType v( VectorType::Zero(N) ); //initialize v |
| 58 | VectorType v_new(rhs-mat*x); //initialize v_new |
| 59 | RealScalar residualNorm2(v_new.squaredNorm()); |
| 60 | VectorType w(N); // will be initialized inside loop |
| 61 | VectorType w_new(precond.solve(v_new)); // initialize w_new |
| 62 | // RealScalar beta; // will be initialized inside loop |
| 63 | RealScalar beta_new2(v_new.dot(w_new)); |
| 64 | eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE"); |
| 65 | RealScalar beta_new(sqrt(beta_new2)); |
| 66 | const RealScalar beta_one(beta_new); |
| 67 | v_new /= beta_new; |
| 68 | w_new /= beta_new; |
| 69 | // Initialize other variables |
| 70 | RealScalar c(1.0); // the cosine of the Givens rotation |
| 71 | RealScalar c_old(1.0); |
| 72 | RealScalar s(0.0); // the sine of the Givens rotation |
| 73 | RealScalar s_old(0.0); // the sine of the Givens rotation |
| 74 | VectorType p_oold(N); // will be initialized in loop |
| 75 | VectorType p_old(VectorType::Zero(N)); // initialize p_old=0 |
| 76 | VectorType p(p_old); // initialize p=0 |
| 77 | RealScalar eta(1.0); |
| 78 | |
| 79 | iters = 0; // reset iters |
| 80 | while ( iters < maxIters ) |
| 81 | { |
| 82 | // Preconditioned Lanczos |
| 83 | /* Note that there are 4 variants on the Lanczos algorithm. These are |
| 84 | * described in Paige, C. C. (1972). Computational variants of |
| 85 | * the Lanczos method for the eigenproblem. IMA Journal of Applied |
| 86 | * Mathematics, 10(3), 373–381. The current implementation corresponds |
| 87 | * to the case A(2,7) in the paper. It also corresponds to |
| 88 | * algorithm 6.14 in Y. Saad, Iterative Methods for Sparse Linear |
| 89 | * Systems, 2003 p.173. For the preconditioned version see |
| 90 | * A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987). |
| 91 | */ |
| 92 | const RealScalar beta(beta_new); |
| 93 | v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter |
| 94 | // const VectorType v_old(v); // NOT SURE IF CREATING v_old EVERY ITERATION IS EFFICIENT |
| 95 | v = v_new; // update |
| 96 | w = w_new; // update |
| 97 | // const VectorType w(w_new); // NOT SURE IF CREATING w EVERY ITERATION IS EFFICIENT |
| 98 | v_new.noalias() = mat*w - beta*v_old; // compute v_new |
| 99 | const RealScalar alpha = v_new.dot(w); |
| 100 | v_new -= alpha*v; // overwrite v_new |
| 101 | w_new = precond.solve(v_new); // overwrite w_new |
| 102 | beta_new2 = v_new.dot(w_new); // compute beta_new |
| 103 | eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE"); |
| 104 | beta_new = sqrt(beta_new2); // compute beta_new |
| 105 | v_new /= beta_new; // overwrite v_new for next iteration |
| 106 | w_new /= beta_new; // overwrite w_new for next iteration |
| 107 | |
| 108 | // Givens rotation |
| 109 | const RealScalar r2 =s*alpha+c*c_old*beta; // s, s_old, c and c_old are still from previous iteration |
| 110 | const RealScalar r3 =s_old*beta; // s, s_old, c and c_old are still from previous iteration |
| 111 | const RealScalar r1_hat=c*alpha-c_old*s*beta; |
| 112 | const RealScalar r1 =sqrt( std::pow(r1_hat,2) + std::pow(beta_new,2) ); |
| 113 | c_old = c; // store for next iteration |
| 114 | s_old = s; // store for next iteration |
| 115 | c=r1_hat/r1; // new cosine |
| 116 | s=beta_new/r1; // new sine |
| 117 | |
| 118 | // Update solution |
| 119 | p_oold = p_old; |
| 120 | // const VectorType p_oold(p_old); // NOT SURE IF CREATING p_oold EVERY ITERATION IS EFFICIENT |
| 121 | p_old = p; |
| 122 | p.noalias()=(w-r2*p_old-r3*p_oold) /r1; // IS NOALIAS REQUIRED? |
| 123 | x += beta_one*c*eta*p; |
| 124 | |
| 125 | /* Update the squared residual. Note that this is the estimated residual. |
| 126 | The real residual |Ax-b|^2 may be slightly larger */ |
| 127 | residualNorm2 *= s*s; |
| 128 | |
| 129 | if ( residualNorm2 < threshold2) |
| 130 | { |
| 131 | break; |
| 132 | } |
| 133 | |
| 134 | eta=-s*eta; // update eta |
| 135 | iters++; // increment iteration number (for output purposes) |
| 136 | } |
| 137 | |
| 138 | /* Compute error. Note that this is the estimated error. The real |
| 139 | error |Ax-b|/|b| may be slightly larger */ |
| 140 | tol_error = std::sqrt(residualNorm2 / rhsNorm2); |
| 141 | } |
| 142 | |
| 143 | } |
| 144 | |
| 145 | template< typename _MatrixType, int _UpLo=Lower, |
| 146 | typename _Preconditioner = IdentityPreconditioner> |
| 147 | // typename _Preconditioner = IdentityPreconditioner<typename _MatrixType::Scalar> > // preconditioner must be positive definite |
| 148 | class MINRES; |
| 149 | |
| 150 | namespace internal { |
| 151 | |
| 152 | template< typename _MatrixType, int _UpLo, typename _Preconditioner> |
| 153 | struct traits<MINRES<_MatrixType,_UpLo,_Preconditioner> > |
| 154 | { |
| 155 | typedef _MatrixType MatrixType; |
| 156 | typedef _Preconditioner Preconditioner; |
| 157 | }; |
| 158 | |
| 159 | } |
| 160 | |
| 161 | /** \ingroup IterativeLinearSolvers_Module |
| 162 | * \brief A minimal residual solver for sparse symmetric problems |
| 163 | * |
| 164 | * This class allows to solve for A.x = b sparse linear problems using the MINRES algorithm |
| 165 | * of Paige and Saunders (1975). The sparse matrix A must be symmetric (possibly indefinite). |
| 166 | * The vectors x and b can be either dense or sparse. |
| 167 | * |
| 168 | * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. |
| 169 | * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower |
| 170 | * or Upper. Default is Lower. |
| 171 | * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner |
| 172 | * |
| 173 | * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() |
| 174 | * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations |
| 175 | * and NumTraits<Scalar>::epsilon() for the tolerance. |
| 176 | * |
| 177 | * This class can be used as the direct solver classes. Here is a typical usage example: |
| 178 | * \code |
| 179 | * int n = 10000; |
| 180 | * VectorXd x(n), b(n); |
| 181 | * SparseMatrix<double> A(n,n); |
| 182 | * // fill A and b |
| 183 | * MINRES<SparseMatrix<double> > mr; |
| 184 | * mr.compute(A); |
| 185 | * x = mr.solve(b); |
| 186 | * std::cout << "#iterations: " << mr.iterations() << std::endl; |
| 187 | * std::cout << "estimated error: " << mr.error() << std::endl; |
| 188 | * // update b, and solve again |
| 189 | * x = mr.solve(b); |
| 190 | * \endcode |
| 191 | * |
| 192 | * By default the iterations start with x=0 as an initial guess of the solution. |
| 193 | * One can control the start using the solveWithGuess() method. |
| 194 | * |
| 195 | * \sa class ConjugateGradient, BiCGSTAB, SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner |
| 196 | */ |
| 197 | template< typename _MatrixType, int _UpLo, typename _Preconditioner> |
| 198 | class MINRES : public IterativeSolverBase<MINRES<_MatrixType,_UpLo,_Preconditioner> > |
| 199 | { |
| 200 | |
| 201 | typedef IterativeSolverBase<MINRES> Base; |
| 202 | using Base::mp_matrix; |
| 203 | using Base::m_error; |
| 204 | using Base::m_iterations; |
| 205 | using Base::m_info; |
| 206 | using Base::m_isInitialized; |
| 207 | public: |
| 208 | typedef _MatrixType MatrixType; |
| 209 | typedef typename MatrixType::Scalar Scalar; |
| 210 | typedef typename MatrixType::Index Index; |
| 211 | typedef typename MatrixType::RealScalar RealScalar; |
| 212 | typedef _Preconditioner Preconditioner; |
| 213 | |
| 214 | enum {UpLo = _UpLo}; |
| 215 | |
| 216 | public: |
| 217 | |
| 218 | /** Default constructor. */ |
| 219 | MINRES() : Base() {} |
| 220 | |
| 221 | /** Initialize the solver with matrix \a A for further \c Ax=b solving. |
| 222 | * |
| 223 | * This constructor is a shortcut for the default constructor followed |
| 224 | * by a call to compute(). |
| 225 | * |
| 226 | * \warning this class stores a reference to the matrix A as well as some |
| 227 | * precomputed values that depend on it. Therefore, if \a A is changed |
| 228 | * this class becomes invalid. Call compute() to update it with the new |
| 229 | * matrix A, or modify a copy of A. |
| 230 | */ |
| 231 | MINRES(const MatrixType& A) : Base(A) {} |
| 232 | |
| 233 | /** Destructor. */ |
| 234 | ~MINRES(){} |
| 235 | |
| 236 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A |
| 237 | * \a x0 as an initial solution. |
| 238 | * |
| 239 | * \sa compute() |
| 240 | */ |
| 241 | template<typename Rhs,typename Guess> |
| 242 | inline const internal::solve_retval_with_guess<MINRES, Rhs, Guess> |
| 243 | solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const |
| 244 | { |
| 245 | eigen_assert(m_isInitialized && "MINRES is not initialized."); |
| 246 | eigen_assert(Base::rows()==b.rows() |
| 247 | && "MINRES::solve(): invalid number of rows of the right hand side matrix b"); |
| 248 | return internal::solve_retval_with_guess |
| 249 | <MINRES, Rhs, Guess>(*this, b.derived(), x0); |
| 250 | } |
| 251 | |
| 252 | /** \internal */ |
| 253 | template<typename Rhs,typename Dest> |
| 254 | void _solveWithGuess(const Rhs& b, Dest& x) const |
| 255 | { |
| 256 | typedef typename internal::conditional<UpLo==(Lower|Upper), |
| 257 | const MatrixType&, |
| 258 | SparseSelfAdjointView<const MatrixType, UpLo> |
| 259 | >::type MatrixWrapperType; |
| 260 | |
| 261 | m_iterations = Base::maxIterations(); |
| 262 | m_error = Base::m_tolerance; |
| 263 | |
| 264 | for(int j=0; j<b.cols(); ++j) |
| 265 | { |
| 266 | m_iterations = Base::maxIterations(); |
| 267 | m_error = Base::m_tolerance; |
| 268 | |
| 269 | typename Dest::ColXpr xj(x,j); |
| 270 | internal::minres(MatrixWrapperType(*mp_matrix), b.col(j), xj, |
| 271 | Base::m_preconditioner, m_iterations, m_error); |
| 272 | } |
| 273 | |
| 274 | m_isInitialized = true; |
| 275 | m_info = m_error <= Base::m_tolerance ? Success : NoConvergence; |
| 276 | } |
| 277 | |
| 278 | /** \internal */ |
| 279 | template<typename Rhs,typename Dest> |
| 280 | void _solve(const Rhs& b, Dest& x) const |
| 281 | { |
| 282 | x.setZero(); |
| 283 | _solveWithGuess(b,x); |
| 284 | } |
| 285 | |
| 286 | protected: |
| 287 | |
| 288 | }; |
| 289 | |
| 290 | namespace internal { |
| 291 | |
| 292 | template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs> |
| 293 | struct solve_retval<MINRES<_MatrixType,_UpLo,_Preconditioner>, Rhs> |
| 294 | : solve_retval_base<MINRES<_MatrixType,_UpLo,_Preconditioner>, Rhs> |
| 295 | { |
| 296 | typedef MINRES<_MatrixType,_UpLo,_Preconditioner> Dec; |
| 297 | EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) |
| 298 | |
| 299 | template<typename Dest> void evalTo(Dest& dst) const |
| 300 | { |
| 301 | dec()._solve(rhs(),dst); |
| 302 | } |
| 303 | }; |
| 304 | |
| 305 | } // end namespace internal |
| 306 | |
| 307 | } // end namespace Eigen |
| 308 | |
| 309 | #endif // EIGEN_MINRES_H |
| 310 | |