Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD" |
| 5 | // research report written by Ming Gu and Stanley C.Eisenstat |
| 6 | // The code variable names correspond to the names they used in their |
| 7 | // report |
| 8 | // |
| 9 | // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com> |
| 10 | // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr> |
| 11 | // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr> |
| 12 | // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr> |
| 13 | // Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| 14 | // Copyright (C) 2014-2017 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 15 | // |
| 16 | // Source Code Form is subject to the terms of the Mozilla |
| 17 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 18 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 19 | |
| 20 | #ifndef EIGEN_BDCSVD_H |
| 21 | #define EIGEN_BDCSVD_H |
| 22 | // #define EIGEN_BDCSVD_DEBUG_VERBOSE |
| 23 | // #define EIGEN_BDCSVD_SANITY_CHECKS |
| 24 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 25 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 26 | #undef eigen_internal_assert |
| 27 | #define eigen_internal_assert(X) assert(X); |
| 28 | #endif |
| 29 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 30 | namespace Eigen { |
| 31 | |
| 32 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 33 | IOFormat bdcsvdfmt(8, 0, ", ", "\n", " [", "]"); |
| 34 | #endif |
| 35 | |
| 36 | template<typename _MatrixType> class BDCSVD; |
| 37 | |
| 38 | namespace internal { |
| 39 | |
| 40 | template<typename _MatrixType> |
| 41 | struct traits<BDCSVD<_MatrixType> > |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 42 | : traits<_MatrixType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 43 | { |
| 44 | typedef _MatrixType MatrixType; |
| 45 | }; |
| 46 | |
| 47 | } // end namespace internal |
| 48 | |
| 49 | |
| 50 | /** \ingroup SVD_Module |
| 51 | * |
| 52 | * |
| 53 | * \class BDCSVD |
| 54 | * |
| 55 | * \brief class Bidiagonal Divide and Conquer SVD |
| 56 | * |
| 57 | * \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition |
| 58 | * |
| 59 | * This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization, |
| 60 | * and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD. |
| 61 | * You can control the switching size with the setSwitchSize() method, default is 16. |
| 62 | * For small matrice (<16), it is thus preferable to directly use JacobiSVD. For larger ones, BDCSVD is highly |
| 63 | * recommended and can several order of magnitude faster. |
| 64 | * |
| 65 | * \warning this algorithm is unlikely to provide accurate result when compiled with unsafe math optimizations. |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 66 | * For instance, this concerns Intel's compiler (ICC), which performs such optimization by default unless |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 67 | * you compile with the \c -fp-model \c precise option. Likewise, the \c -ffast-math option of GCC or clang will |
| 68 | * significantly degrade the accuracy. |
| 69 | * |
| 70 | * \sa class JacobiSVD |
| 71 | */ |
| 72 | template<typename _MatrixType> |
| 73 | class BDCSVD : public SVDBase<BDCSVD<_MatrixType> > |
| 74 | { |
| 75 | typedef SVDBase<BDCSVD> Base; |
| 76 | |
| 77 | public: |
| 78 | using Base::rows; |
| 79 | using Base::cols; |
| 80 | using Base::computeU; |
| 81 | using Base::computeV; |
| 82 | |
| 83 | typedef _MatrixType MatrixType; |
| 84 | typedef typename MatrixType::Scalar Scalar; |
| 85 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| 86 | typedef typename NumTraits<RealScalar>::Literal Literal; |
| 87 | enum { |
| 88 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 89 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| 90 | DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime), |
| 91 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| 92 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| 93 | MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime), |
| 94 | MatrixOptions = MatrixType::Options |
| 95 | }; |
| 96 | |
| 97 | typedef typename Base::MatrixUType MatrixUType; |
| 98 | typedef typename Base::MatrixVType MatrixVType; |
| 99 | typedef typename Base::SingularValuesType SingularValuesType; |
| 100 | |
| 101 | typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> MatrixX; |
| 102 | typedef Matrix<RealScalar, Dynamic, Dynamic, ColMajor> MatrixXr; |
| 103 | typedef Matrix<RealScalar, Dynamic, 1> VectorType; |
| 104 | typedef Array<RealScalar, Dynamic, 1> ArrayXr; |
| 105 | typedef Array<Index,1,Dynamic> ArrayXi; |
| 106 | typedef Ref<ArrayXr> ArrayRef; |
| 107 | typedef Ref<ArrayXi> IndicesRef; |
| 108 | |
| 109 | /** \brief Default Constructor. |
| 110 | * |
| 111 | * The default constructor is useful in cases in which the user intends to |
| 112 | * perform decompositions via BDCSVD::compute(const MatrixType&). |
| 113 | */ |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 114 | BDCSVD() : m_algoswap(16), m_isTranspose(false), m_compU(false), m_compV(false), m_numIters(0) |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 115 | {} |
| 116 | |
| 117 | |
| 118 | /** \brief Default Constructor with memory preallocation |
| 119 | * |
| 120 | * Like the default constructor but with preallocation of the internal data |
| 121 | * according to the specified problem size. |
| 122 | * \sa BDCSVD() |
| 123 | */ |
| 124 | BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0) |
| 125 | : m_algoswap(16), m_numIters(0) |
| 126 | { |
| 127 | allocate(rows, cols, computationOptions); |
| 128 | } |
| 129 | |
| 130 | /** \brief Constructor performing the decomposition of given matrix. |
| 131 | * |
| 132 | * \param matrix the matrix to decompose |
| 133 | * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. |
| 134 | * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, |
| 135 | * #ComputeFullV, #ComputeThinV. |
| 136 | * |
| 137 | * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not |
| 138 | * available with the (non - default) FullPivHouseholderQR preconditioner. |
| 139 | */ |
| 140 | BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0) |
| 141 | : m_algoswap(16), m_numIters(0) |
| 142 | { |
| 143 | compute(matrix, computationOptions); |
| 144 | } |
| 145 | |
| 146 | ~BDCSVD() |
| 147 | { |
| 148 | } |
| 149 | |
| 150 | /** \brief Method performing the decomposition of given matrix using custom options. |
| 151 | * |
| 152 | * \param matrix the matrix to decompose |
| 153 | * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. |
| 154 | * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, |
| 155 | * #ComputeFullV, #ComputeThinV. |
| 156 | * |
| 157 | * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not |
| 158 | * available with the (non - default) FullPivHouseholderQR preconditioner. |
| 159 | */ |
| 160 | BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions); |
| 161 | |
| 162 | /** \brief Method performing the decomposition of given matrix using current options. |
| 163 | * |
| 164 | * \param matrix the matrix to decompose |
| 165 | * |
| 166 | * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). |
| 167 | */ |
| 168 | BDCSVD& compute(const MatrixType& matrix) |
| 169 | { |
| 170 | return compute(matrix, this->m_computationOptions); |
| 171 | } |
| 172 | |
| 173 | void setSwitchSize(int s) |
| 174 | { |
| 175 | eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3"); |
| 176 | m_algoswap = s; |
| 177 | } |
| 178 | |
| 179 | private: |
| 180 | void allocate(Index rows, Index cols, unsigned int computationOptions); |
| 181 | void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift); |
| 182 | void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V); |
| 183 | void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus); |
| 184 | void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat); |
| 185 | void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V); |
| 186 | void deflation43(Index firstCol, Index shift, Index i, Index size); |
| 187 | void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size); |
| 188 | void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift); |
| 189 | template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV> |
| 190 | void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev); |
| 191 | void structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1); |
| 192 | static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift); |
| 193 | |
| 194 | protected: |
| 195 | MatrixXr m_naiveU, m_naiveV; |
| 196 | MatrixXr m_computed; |
| 197 | Index m_nRec; |
| 198 | ArrayXr m_workspace; |
| 199 | ArrayXi m_workspaceI; |
| 200 | int m_algoswap; |
| 201 | bool m_isTranspose, m_compU, m_compV; |
| 202 | |
| 203 | using Base::m_singularValues; |
| 204 | using Base::m_diagSize; |
| 205 | using Base::m_computeFullU; |
| 206 | using Base::m_computeFullV; |
| 207 | using Base::m_computeThinU; |
| 208 | using Base::m_computeThinV; |
| 209 | using Base::m_matrixU; |
| 210 | using Base::m_matrixV; |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 211 | using Base::m_info; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 212 | using Base::m_isInitialized; |
| 213 | using Base::m_nonzeroSingularValues; |
| 214 | |
| 215 | public: |
| 216 | int m_numIters; |
| 217 | }; //end class BDCSVD |
| 218 | |
| 219 | |
| 220 | // Method to allocate and initialize matrix and attributes |
| 221 | template<typename MatrixType> |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 222 | void BDCSVD<MatrixType>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions) |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 223 | { |
| 224 | m_isTranspose = (cols > rows); |
| 225 | |
| 226 | if (Base::allocate(rows, cols, computationOptions)) |
| 227 | return; |
| 228 | |
| 229 | m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize ); |
| 230 | m_compU = computeV(); |
| 231 | m_compV = computeU(); |
| 232 | if (m_isTranspose) |
| 233 | std::swap(m_compU, m_compV); |
| 234 | |
| 235 | if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 ); |
| 236 | else m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 ); |
| 237 | |
| 238 | if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize); |
| 239 | |
| 240 | m_workspace.resize((m_diagSize+1)*(m_diagSize+1)*3); |
| 241 | m_workspaceI.resize(3*m_diagSize); |
| 242 | }// end allocate |
| 243 | |
| 244 | template<typename MatrixType> |
| 245 | BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions) |
| 246 | { |
| 247 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 248 | std::cout << "\n\n\n======================================================================================================================\n\n\n"; |
| 249 | #endif |
| 250 | allocate(matrix.rows(), matrix.cols(), computationOptions); |
| 251 | using std::abs; |
| 252 | |
| 253 | const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); |
| 254 | |
| 255 | //**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return |
| 256 | if(matrix.cols() < m_algoswap) |
| 257 | { |
| 258 | // FIXME this line involves temporaries |
| 259 | JacobiSVD<MatrixType> jsvd(matrix,computationOptions); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 260 | m_isInitialized = true; |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 261 | m_info = jsvd.info(); |
| 262 | if (m_info == Success || m_info == NoConvergence) { |
| 263 | if(computeU()) m_matrixU = jsvd.matrixU(); |
| 264 | if(computeV()) m_matrixV = jsvd.matrixV(); |
| 265 | m_singularValues = jsvd.singularValues(); |
| 266 | m_nonzeroSingularValues = jsvd.nonzeroSingularValues(); |
| 267 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 268 | return *this; |
| 269 | } |
| 270 | |
| 271 | //**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 272 | RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>(); |
| 273 | if (!(numext::isfinite)(scale)) { |
| 274 | m_isInitialized = true; |
| 275 | m_info = InvalidInput; |
| 276 | return *this; |
| 277 | } |
| 278 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 279 | if(scale==Literal(0)) scale = Literal(1); |
| 280 | MatrixX copy; |
| 281 | if (m_isTranspose) copy = matrix.adjoint()/scale; |
| 282 | else copy = matrix/scale; |
| 283 | |
| 284 | //**** step 1 - Bidiagonalization |
| 285 | // FIXME this line involves temporaries |
| 286 | internal::UpperBidiagonalization<MatrixX> bid(copy); |
| 287 | |
| 288 | //**** step 2 - Divide & Conquer |
| 289 | m_naiveU.setZero(); |
| 290 | m_naiveV.setZero(); |
| 291 | // FIXME this line involves a temporary matrix |
| 292 | m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose(); |
| 293 | m_computed.template bottomRows<1>().setZero(); |
| 294 | divide(0, m_diagSize - 1, 0, 0, 0); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 295 | if (m_info != Success && m_info != NoConvergence) { |
| 296 | m_isInitialized = true; |
| 297 | return *this; |
| 298 | } |
| 299 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 300 | //**** step 3 - Copy singular values and vectors |
| 301 | for (int i=0; i<m_diagSize; i++) |
| 302 | { |
| 303 | RealScalar a = abs(m_computed.coeff(i, i)); |
| 304 | m_singularValues.coeffRef(i) = a * scale; |
| 305 | if (a<considerZero) |
| 306 | { |
| 307 | m_nonzeroSingularValues = i; |
| 308 | m_singularValues.tail(m_diagSize - i - 1).setZero(); |
| 309 | break; |
| 310 | } |
| 311 | else if (i == m_diagSize - 1) |
| 312 | { |
| 313 | m_nonzeroSingularValues = i + 1; |
| 314 | break; |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 319 | // std::cout << "m_naiveU\n" << m_naiveU << "\n\n"; |
| 320 | // std::cout << "m_naiveV\n" << m_naiveV << "\n\n"; |
| 321 | #endif |
| 322 | if(m_isTranspose) copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU); |
| 323 | else copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV); |
| 324 | |
| 325 | m_isInitialized = true; |
| 326 | return *this; |
| 327 | }// end compute |
| 328 | |
| 329 | |
| 330 | template<typename MatrixType> |
| 331 | template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV> |
| 332 | void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV) |
| 333 | { |
| 334 | // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa |
| 335 | if (computeU()) |
| 336 | { |
| 337 | Index Ucols = m_computeThinU ? m_diagSize : householderU.cols(); |
| 338 | m_matrixU = MatrixX::Identity(householderU.cols(), Ucols); |
| 339 | m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize); |
| 340 | householderU.applyThisOnTheLeft(m_matrixU); // FIXME this line involves a temporary buffer |
| 341 | } |
| 342 | if (computeV()) |
| 343 | { |
| 344 | Index Vcols = m_computeThinV ? m_diagSize : householderV.cols(); |
| 345 | m_matrixV = MatrixX::Identity(householderV.cols(), Vcols); |
| 346 | m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize); |
| 347 | householderV.applyThisOnTheLeft(m_matrixV); // FIXME this line involves a temporary buffer |
| 348 | } |
| 349 | } |
| 350 | |
| 351 | /** \internal |
| 352 | * Performs A = A * B exploiting the special structure of the matrix A. Splitting A as: |
| 353 | * A = [A1] |
| 354 | * [A2] |
| 355 | * such that A1.rows()==n1, then we assume that at least half of the columns of A1 and A2 are zeros. |
| 356 | * We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large |
| 357 | * enough. |
| 358 | */ |
| 359 | template<typename MatrixType> |
| 360 | void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1) |
| 361 | { |
| 362 | Index n = A.rows(); |
| 363 | if(n>100) |
| 364 | { |
| 365 | // If the matrices are large enough, let's exploit the sparse structure of A by |
| 366 | // splitting it in half (wrt n1), and packing the non-zero columns. |
| 367 | Index n2 = n - n1; |
| 368 | Map<MatrixXr> A1(m_workspace.data() , n1, n); |
| 369 | Map<MatrixXr> A2(m_workspace.data()+ n1*n, n2, n); |
| 370 | Map<MatrixXr> B1(m_workspace.data()+ n*n, n, n); |
| 371 | Map<MatrixXr> B2(m_workspace.data()+2*n*n, n, n); |
| 372 | Index k1=0, k2=0; |
| 373 | for(Index j=0; j<n; ++j) |
| 374 | { |
| 375 | if( (A.col(j).head(n1).array()!=Literal(0)).any() ) |
| 376 | { |
| 377 | A1.col(k1) = A.col(j).head(n1); |
| 378 | B1.row(k1) = B.row(j); |
| 379 | ++k1; |
| 380 | } |
| 381 | if( (A.col(j).tail(n2).array()!=Literal(0)).any() ) |
| 382 | { |
| 383 | A2.col(k2) = A.col(j).tail(n2); |
| 384 | B2.row(k2) = B.row(j); |
| 385 | ++k2; |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | A.topRows(n1).noalias() = A1.leftCols(k1) * B1.topRows(k1); |
| 390 | A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2); |
| 391 | } |
| 392 | else |
| 393 | { |
| 394 | Map<MatrixXr,Aligned> tmp(m_workspace.data(),n,n); |
| 395 | tmp.noalias() = A*B; |
| 396 | A = tmp; |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | // The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the |
| 401 | // place of the submatrix we are currently working on. |
| 402 | |
| 403 | //@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU; |
| 404 | //@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU; |
| 405 | // lastCol + 1 - firstCol is the size of the submatrix. |
| 406 | //@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W) |
| 407 | //@param firstRowW : Same as firstRowW with the column. |
| 408 | //@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix |
| 409 | // to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper. |
| 410 | template<typename MatrixType> |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 411 | void BDCSVD<MatrixType>::divide(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift) |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 412 | { |
| 413 | // requires rows = cols + 1; |
| 414 | using std::pow; |
| 415 | using std::sqrt; |
| 416 | using std::abs; |
| 417 | const Index n = lastCol - firstCol + 1; |
| 418 | const Index k = n/2; |
| 419 | const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); |
| 420 | RealScalar alphaK; |
| 421 | RealScalar betaK; |
| 422 | RealScalar r0; |
| 423 | RealScalar lambda, phi, c0, s0; |
| 424 | VectorType l, f; |
| 425 | // We use the other algorithm which is more efficient for small |
| 426 | // matrices. |
| 427 | if (n < m_algoswap) |
| 428 | { |
| 429 | // FIXME this line involves temporaries |
| 430 | JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0)); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 431 | m_info = b.info(); |
| 432 | if (m_info != Success && m_info != NoConvergence) return; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 433 | if (m_compU) |
| 434 | m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU(); |
| 435 | else |
| 436 | { |
| 437 | m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0); |
| 438 | m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n); |
| 439 | } |
| 440 | if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV(); |
| 441 | m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero(); |
| 442 | m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n); |
| 443 | return; |
| 444 | } |
| 445 | // We use the divide and conquer algorithm |
| 446 | alphaK = m_computed(firstCol + k, firstCol + k); |
| 447 | betaK = m_computed(firstCol + k + 1, firstCol + k); |
| 448 | // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices |
| 449 | // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the |
| 450 | // right submatrix before the left one. |
| 451 | divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 452 | if (m_info != Success && m_info != NoConvergence) return; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 453 | divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 454 | if (m_info != Success && m_info != NoConvergence) return; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 455 | |
| 456 | if (m_compU) |
| 457 | { |
| 458 | lambda = m_naiveU(firstCol + k, firstCol + k); |
| 459 | phi = m_naiveU(firstCol + k + 1, lastCol + 1); |
| 460 | } |
| 461 | else |
| 462 | { |
| 463 | lambda = m_naiveU(1, firstCol + k); |
| 464 | phi = m_naiveU(0, lastCol + 1); |
| 465 | } |
| 466 | r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi)); |
| 467 | if (m_compU) |
| 468 | { |
| 469 | l = m_naiveU.row(firstCol + k).segment(firstCol, k); |
| 470 | f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1); |
| 471 | } |
| 472 | else |
| 473 | { |
| 474 | l = m_naiveU.row(1).segment(firstCol, k); |
| 475 | f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1); |
| 476 | } |
| 477 | if (m_compV) m_naiveV(firstRowW+k, firstColW) = Literal(1); |
| 478 | if (r0<considerZero) |
| 479 | { |
| 480 | c0 = Literal(1); |
| 481 | s0 = Literal(0); |
| 482 | } |
| 483 | else |
| 484 | { |
| 485 | c0 = alphaK * lambda / r0; |
| 486 | s0 = betaK * phi / r0; |
| 487 | } |
| 488 | |
| 489 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 490 | assert(m_naiveU.allFinite()); |
| 491 | assert(m_naiveV.allFinite()); |
| 492 | assert(m_computed.allFinite()); |
| 493 | #endif |
| 494 | |
| 495 | if (m_compU) |
| 496 | { |
| 497 | MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1)); |
| 498 | // we shiftW Q1 to the right |
| 499 | for (Index i = firstCol + k - 1; i >= firstCol; i--) |
| 500 | m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1); |
| 501 | // we shift q1 at the left with a factor c0 |
| 502 | m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0); |
| 503 | // last column = q1 * - s0 |
| 504 | m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0)); |
| 505 | // first column = q2 * s0 |
| 506 | m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0; |
| 507 | // q2 *= c0 |
| 508 | m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0; |
| 509 | } |
| 510 | else |
| 511 | { |
| 512 | RealScalar q1 = m_naiveU(0, firstCol + k); |
| 513 | // we shift Q1 to the right |
| 514 | for (Index i = firstCol + k - 1; i >= firstCol; i--) |
| 515 | m_naiveU(0, i + 1) = m_naiveU(0, i); |
| 516 | // we shift q1 at the left with a factor c0 |
| 517 | m_naiveU(0, firstCol) = (q1 * c0); |
| 518 | // last column = q1 * - s0 |
| 519 | m_naiveU(0, lastCol + 1) = (q1 * ( - s0)); |
| 520 | // first column = q2 * s0 |
| 521 | m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0; |
| 522 | // q2 *= c0 |
| 523 | m_naiveU(1, lastCol + 1) *= c0; |
| 524 | m_naiveU.row(1).segment(firstCol + 1, k).setZero(); |
| 525 | m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero(); |
| 526 | } |
| 527 | |
| 528 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 529 | assert(m_naiveU.allFinite()); |
| 530 | assert(m_naiveV.allFinite()); |
| 531 | assert(m_computed.allFinite()); |
| 532 | #endif |
| 533 | |
| 534 | m_computed(firstCol + shift, firstCol + shift) = r0; |
| 535 | m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real(); |
| 536 | m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real(); |
| 537 | |
| 538 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 539 | ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues(); |
| 540 | #endif |
| 541 | // Second part: try to deflate singular values in combined matrix |
| 542 | deflation(firstCol, lastCol, k, firstRowW, firstColW, shift); |
| 543 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 544 | ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues(); |
| 545 | std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n"; |
| 546 | std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n"; |
| 547 | std::cout << "err: " << ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n"; |
| 548 | static int count = 0; |
| 549 | std::cout << "# " << ++count << "\n\n"; |
| 550 | assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm()); |
| 551 | // assert(count<681); |
| 552 | // assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all()); |
| 553 | #endif |
| 554 | |
| 555 | // Third part: compute SVD of combined matrix |
| 556 | MatrixXr UofSVD, VofSVD; |
| 557 | VectorType singVals; |
| 558 | computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD); |
| 559 | |
| 560 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 561 | assert(UofSVD.allFinite()); |
| 562 | assert(VofSVD.allFinite()); |
| 563 | #endif |
| 564 | |
| 565 | if (m_compU) |
| 566 | structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2); |
| 567 | else |
| 568 | { |
| 569 | Map<Matrix<RealScalar,2,Dynamic>,Aligned> tmp(m_workspace.data(),2,n+1); |
| 570 | tmp.noalias() = m_naiveU.middleCols(firstCol, n+1) * UofSVD; |
| 571 | m_naiveU.middleCols(firstCol, n + 1) = tmp; |
| 572 | } |
| 573 | |
| 574 | if (m_compV) structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2); |
| 575 | |
| 576 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 577 | assert(m_naiveU.allFinite()); |
| 578 | assert(m_naiveV.allFinite()); |
| 579 | assert(m_computed.allFinite()); |
| 580 | #endif |
| 581 | |
| 582 | m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero(); |
| 583 | m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals; |
| 584 | }// end divide |
| 585 | |
| 586 | // Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in |
| 587 | // the first column and on the diagonal and has undergone deflation, so diagonal is in increasing |
| 588 | // order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except |
| 589 | // that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order. |
| 590 | // |
| 591 | // TODO Opportunities for optimization: better root finding algo, better stopping criterion, better |
| 592 | // handling of round-off errors, be consistent in ordering |
| 593 | // For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf |
| 594 | template <typename MatrixType> |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 595 | void BDCSVD<MatrixType>::computeSVDofM(Eigen::Index firstCol, Eigen::Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V) |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 596 | { |
| 597 | const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); |
| 598 | using std::abs; |
| 599 | ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n); |
| 600 | m_workspace.head(n) = m_computed.block(firstCol, firstCol, n, n).diagonal(); |
| 601 | ArrayRef diag = m_workspace.head(n); |
| 602 | diag(0) = Literal(0); |
| 603 | |
| 604 | // Allocate space for singular values and vectors |
| 605 | singVals.resize(n); |
| 606 | U.resize(n+1, n+1); |
| 607 | if (m_compV) V.resize(n, n); |
| 608 | |
| 609 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 610 | if (col0.hasNaN() || diag.hasNaN()) |
| 611 | std::cout << "\n\nHAS NAN\n\n"; |
| 612 | #endif |
| 613 | |
| 614 | // Many singular values might have been deflated, the zero ones have been moved to the end, |
| 615 | // but others are interleaved and we must ignore them at this stage. |
| 616 | // To this end, let's compute a permutation skipping them: |
| 617 | Index actual_n = n; |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 618 | while(actual_n>1 && diag(actual_n-1)==Literal(0)) {--actual_n; eigen_internal_assert(col0(actual_n)==Literal(0)); } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 619 | Index m = 0; // size of the deflated problem |
| 620 | for(Index k=0;k<actual_n;++k) |
| 621 | if(abs(col0(k))>considerZero) |
| 622 | m_workspaceI(m++) = k; |
| 623 | Map<ArrayXi> perm(m_workspaceI.data(),m); |
| 624 | |
| 625 | Map<ArrayXr> shifts(m_workspace.data()+1*n, n); |
| 626 | Map<ArrayXr> mus(m_workspace.data()+2*n, n); |
| 627 | Map<ArrayXr> zhat(m_workspace.data()+3*n, n); |
| 628 | |
| 629 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 630 | std::cout << "computeSVDofM using:\n"; |
| 631 | std::cout << " z: " << col0.transpose() << "\n"; |
| 632 | std::cout << " d: " << diag.transpose() << "\n"; |
| 633 | #endif |
| 634 | |
| 635 | // Compute singVals, shifts, and mus |
| 636 | computeSingVals(col0, diag, perm, singVals, shifts, mus); |
| 637 | |
| 638 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 639 | std::cout << " j: " << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n"; |
| 640 | std::cout << " sing-val: " << singVals.transpose() << "\n"; |
| 641 | std::cout << " mu: " << mus.transpose() << "\n"; |
| 642 | std::cout << " shift: " << shifts.transpose() << "\n"; |
| 643 | |
| 644 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 645 | std::cout << "\n\n mus: " << mus.head(actual_n).transpose() << "\n\n"; |
| 646 | std::cout << " check1 (expect0) : " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n"; |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 647 | assert((((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n) >= 0).all()); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 648 | std::cout << " check2 (>0) : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n"; |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 649 | assert((((singVals.array()-diag) / singVals.array()).head(actual_n) >= 0).all()); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 650 | } |
| 651 | #endif |
| 652 | |
| 653 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 654 | assert(singVals.allFinite()); |
| 655 | assert(mus.allFinite()); |
| 656 | assert(shifts.allFinite()); |
| 657 | #endif |
| 658 | |
| 659 | // Compute zhat |
| 660 | perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat); |
| 661 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 662 | std::cout << " zhat: " << zhat.transpose() << "\n"; |
| 663 | #endif |
| 664 | |
| 665 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 666 | assert(zhat.allFinite()); |
| 667 | #endif |
| 668 | |
| 669 | computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V); |
| 670 | |
| 671 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 672 | std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n"; |
| 673 | std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() << "\n"; |
| 674 | #endif |
| 675 | |
| 676 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 677 | assert(m_naiveU.allFinite()); |
| 678 | assert(m_naiveV.allFinite()); |
| 679 | assert(m_computed.allFinite()); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 680 | assert(U.allFinite()); |
| 681 | assert(V.allFinite()); |
| 682 | // assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 100*NumTraits<RealScalar>::epsilon() * n); |
| 683 | // assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 100*NumTraits<RealScalar>::epsilon() * n); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 684 | #endif |
| 685 | |
| 686 | // Because of deflation, the singular values might not be completely sorted. |
| 687 | // Fortunately, reordering them is a O(n) problem |
| 688 | for(Index i=0; i<actual_n-1; ++i) |
| 689 | { |
| 690 | if(singVals(i)>singVals(i+1)) |
| 691 | { |
| 692 | using std::swap; |
| 693 | swap(singVals(i),singVals(i+1)); |
| 694 | U.col(i).swap(U.col(i+1)); |
| 695 | if(m_compV) V.col(i).swap(V.col(i+1)); |
| 696 | } |
| 697 | } |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 698 | |
| 699 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 700 | { |
| 701 | bool singular_values_sorted = (((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).array() >= 0).all(); |
| 702 | if(!singular_values_sorted) |
| 703 | std::cout << "Singular values are not sorted: " << singVals.segment(1,actual_n).transpose() << "\n"; |
| 704 | assert(singular_values_sorted); |
| 705 | } |
| 706 | #endif |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 707 | |
| 708 | // Reverse order so that singular values in increased order |
| 709 | // Because of deflation, the zeros singular-values are already at the end |
| 710 | singVals.head(actual_n).reverseInPlace(); |
| 711 | U.leftCols(actual_n).rowwise().reverseInPlace(); |
| 712 | if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace(); |
| 713 | |
| 714 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 715 | JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n) ); |
| 716 | std::cout << " * j: " << jsvd.singularValues().transpose() << "\n\n"; |
| 717 | std::cout << " * sing-val: " << singVals.transpose() << "\n"; |
| 718 | // std::cout << " * err: " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n"; |
| 719 | #endif |
| 720 | } |
| 721 | |
| 722 | template <typename MatrixType> |
| 723 | typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift) |
| 724 | { |
| 725 | Index m = perm.size(); |
| 726 | RealScalar res = Literal(1); |
| 727 | for(Index i=0; i<m; ++i) |
| 728 | { |
| 729 | Index j = perm(i); |
| 730 | // The following expression could be rewritten to involve only a single division, |
| 731 | // but this would make the expression more sensitive to overflow. |
| 732 | res += (col0(j) / (diagShifted(j) - mu)) * (col0(j) / (diag(j) + shift + mu)); |
| 733 | } |
| 734 | return res; |
| 735 | |
| 736 | } |
| 737 | |
| 738 | template <typename MatrixType> |
| 739 | void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, |
| 740 | VectorType& singVals, ArrayRef shifts, ArrayRef mus) |
| 741 | { |
| 742 | using std::abs; |
| 743 | using std::swap; |
| 744 | using std::sqrt; |
| 745 | |
| 746 | Index n = col0.size(); |
| 747 | Index actual_n = n; |
| 748 | // Note that here actual_n is computed based on col0(i)==0 instead of diag(i)==0 as above |
| 749 | // because 1) we have diag(i)==0 => col0(i)==0 and 2) if col0(i)==0, then diag(i) is already a singular value. |
| 750 | while(actual_n>1 && col0(actual_n-1)==Literal(0)) --actual_n; |
| 751 | |
| 752 | for (Index k = 0; k < n; ++k) |
| 753 | { |
| 754 | if (col0(k) == Literal(0) || actual_n==1) |
| 755 | { |
| 756 | // if col0(k) == 0, then entry is deflated, so singular value is on diagonal |
| 757 | // if actual_n==1, then the deflated problem is already diagonalized |
| 758 | singVals(k) = k==0 ? col0(0) : diag(k); |
| 759 | mus(k) = Literal(0); |
| 760 | shifts(k) = k==0 ? col0(0) : diag(k); |
| 761 | continue; |
| 762 | } |
| 763 | |
| 764 | // otherwise, use secular equation to find singular value |
| 765 | RealScalar left = diag(k); |
| 766 | RealScalar right; // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm()); |
| 767 | if(k==actual_n-1) |
| 768 | right = (diag(actual_n-1) + col0.matrix().norm()); |
| 769 | else |
| 770 | { |
| 771 | // Skip deflated singular values, |
| 772 | // recall that at this stage we assume that z[j]!=0 and all entries for which z[j]==0 have been put aside. |
| 773 | // This should be equivalent to using perm[] |
| 774 | Index l = k+1; |
| 775 | while(col0(l)==Literal(0)) { ++l; eigen_internal_assert(l<actual_n); } |
| 776 | right = diag(l); |
| 777 | } |
| 778 | |
| 779 | // first decide whether it's closer to the left end or the right end |
| 780 | RealScalar mid = left + (right-left) / Literal(2); |
| 781 | RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0)); |
| 782 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 783 | std::cout << "right-left = " << right-left << "\n"; |
| 784 | // std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, ArrayXr(diag-left), left) |
| 785 | // << " " << secularEq(mid-right, col0, diag, perm, ArrayXr(diag-right), right) << "\n"; |
| 786 | std::cout << " = " << secularEq(left+RealScalar(0.000001)*(right-left), col0, diag, perm, diag, 0) |
| 787 | << " " << secularEq(left+RealScalar(0.1) *(right-left), col0, diag, perm, diag, 0) |
| 788 | << " " << secularEq(left+RealScalar(0.2) *(right-left), col0, diag, perm, diag, 0) |
| 789 | << " " << secularEq(left+RealScalar(0.3) *(right-left), col0, diag, perm, diag, 0) |
| 790 | << " " << secularEq(left+RealScalar(0.4) *(right-left), col0, diag, perm, diag, 0) |
| 791 | << " " << secularEq(left+RealScalar(0.49) *(right-left), col0, diag, perm, diag, 0) |
| 792 | << " " << secularEq(left+RealScalar(0.5) *(right-left), col0, diag, perm, diag, 0) |
| 793 | << " " << secularEq(left+RealScalar(0.51) *(right-left), col0, diag, perm, diag, 0) |
| 794 | << " " << secularEq(left+RealScalar(0.6) *(right-left), col0, diag, perm, diag, 0) |
| 795 | << " " << secularEq(left+RealScalar(0.7) *(right-left), col0, diag, perm, diag, 0) |
| 796 | << " " << secularEq(left+RealScalar(0.8) *(right-left), col0, diag, perm, diag, 0) |
| 797 | << " " << secularEq(left+RealScalar(0.9) *(right-left), col0, diag, perm, diag, 0) |
| 798 | << " " << secularEq(left+RealScalar(0.999999)*(right-left), col0, diag, perm, diag, 0) << "\n"; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 799 | #endif |
| 800 | RealScalar shift = (k == actual_n-1 || fMid > Literal(0)) ? left : right; |
| 801 | |
| 802 | // measure everything relative to shift |
| 803 | Map<ArrayXr> diagShifted(m_workspace.data()+4*n, n); |
| 804 | diagShifted = diag - shift; |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 805 | |
| 806 | if(k!=actual_n-1) |
| 807 | { |
| 808 | // check that after the shift, f(mid) is still negative: |
| 809 | RealScalar midShifted = (right - left) / RealScalar(2); |
| 810 | if(shift==right) |
| 811 | midShifted = -midShifted; |
| 812 | RealScalar fMidShifted = secularEq(midShifted, col0, diag, perm, diagShifted, shift); |
| 813 | if(fMidShifted>0) |
| 814 | { |
| 815 | // fMid was erroneous, fix it: |
| 816 | shift = fMidShifted > Literal(0) ? left : right; |
| 817 | diagShifted = diag - shift; |
| 818 | } |
| 819 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 820 | |
| 821 | // initial guess |
| 822 | RealScalar muPrev, muCur; |
| 823 | if (shift == left) |
| 824 | { |
| 825 | muPrev = (right - left) * RealScalar(0.1); |
| 826 | if (k == actual_n-1) muCur = right - left; |
| 827 | else muCur = (right - left) * RealScalar(0.5); |
| 828 | } |
| 829 | else |
| 830 | { |
| 831 | muPrev = -(right - left) * RealScalar(0.1); |
| 832 | muCur = -(right - left) * RealScalar(0.5); |
| 833 | } |
| 834 | |
| 835 | RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift); |
| 836 | RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift); |
| 837 | if (abs(fPrev) < abs(fCur)) |
| 838 | { |
| 839 | swap(fPrev, fCur); |
| 840 | swap(muPrev, muCur); |
| 841 | } |
| 842 | |
| 843 | // rational interpolation: fit a function of the form a / mu + b through the two previous |
| 844 | // iterates and use its zero to compute the next iterate |
| 845 | bool useBisection = fPrev*fCur>Literal(0); |
| 846 | while (fCur!=Literal(0) && abs(muCur - muPrev) > Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection) |
| 847 | { |
| 848 | ++m_numIters; |
| 849 | |
| 850 | // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples. |
| 851 | RealScalar a = (fCur - fPrev) / (Literal(1)/muCur - Literal(1)/muPrev); |
| 852 | RealScalar b = fCur - a / muCur; |
| 853 | // And find mu such that f(mu)==0: |
| 854 | RealScalar muZero = -a/b; |
| 855 | RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 856 | |
| 857 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 858 | assert((numext::isfinite)(fZero)); |
| 859 | #endif |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 860 | |
| 861 | muPrev = muCur; |
| 862 | fPrev = fCur; |
| 863 | muCur = muZero; |
| 864 | fCur = fZero; |
| 865 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 866 | if (shift == left && (muCur < Literal(0) || muCur > right - left)) useBisection = true; |
| 867 | if (shift == right && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true; |
| 868 | if (abs(fCur)>abs(fPrev)) useBisection = true; |
| 869 | } |
| 870 | |
| 871 | // fall back on bisection method if rational interpolation did not work |
| 872 | if (useBisection) |
| 873 | { |
| 874 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 875 | std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n"; |
| 876 | #endif |
| 877 | RealScalar leftShifted, rightShifted; |
| 878 | if (shift == left) |
| 879 | { |
| 880 | // to avoid overflow, we must have mu > max(real_min, |z(k)|/sqrt(real_max)), |
| 881 | // the factor 2 is to be more conservative |
| 882 | leftShifted = numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), Literal(2) * abs(col0(k)) / sqrt((std::numeric_limits<RealScalar>::max)()) ); |
| 883 | |
| 884 | // check that we did it right: |
| 885 | eigen_internal_assert( (numext::isfinite)( (col0(k)/leftShifted)*(col0(k)/(diag(k)+shift+leftShifted)) ) ); |
| 886 | // I don't understand why the case k==0 would be special there: |
| 887 | // if (k == 0) rightShifted = right - left; else |
| 888 | rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.51)); // theoretically we can take 0.5, but let's be safe |
| 889 | } |
| 890 | else |
| 891 | { |
| 892 | leftShifted = -(right - left) * RealScalar(0.51); |
| 893 | if(k+1<n) |
| 894 | rightShifted = -numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), abs(col0(k+1)) / sqrt((std::numeric_limits<RealScalar>::max)()) ); |
| 895 | else |
| 896 | rightShifted = -(std::numeric_limits<RealScalar>::min)(); |
| 897 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 898 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 899 | RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift); |
| 900 | eigen_internal_assert(fLeft<Literal(0)); |
| 901 | |
| 902 | #if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_SANITY_CHECKS |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 903 | RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift); |
| 904 | #endif |
| 905 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 906 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 907 | if(!(numext::isfinite)(fLeft)) |
| 908 | std::cout << "f(" << leftShifted << ") =" << fLeft << " ; " << left << " " << shift << " " << right << "\n"; |
| 909 | assert((numext::isfinite)(fLeft)); |
| 910 | |
| 911 | if(!(numext::isfinite)(fRight)) |
| 912 | std::cout << "f(" << rightShifted << ") =" << fRight << " ; " << left << " " << shift << " " << right << "\n"; |
| 913 | // assert((numext::isfinite)(fRight)); |
| 914 | #endif |
| 915 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 916 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 917 | if(!(fLeft * fRight<0)) |
| 918 | { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 919 | std::cout << "f(leftShifted) using leftShifted=" << leftShifted << " ; diagShifted(1:10):" << diagShifted.head(10).transpose() << "\n ; " |
| 920 | << "left==shift=" << bool(left==shift) << " ; left-shift = " << (left-shift) << "\n"; |
| 921 | std::cout << "k=" << k << ", " << fLeft << " * " << fRight << " == " << fLeft * fRight << " ; " |
| 922 | << "[" << left << " .. " << right << "] -> [" << leftShifted << " " << rightShifted << "], shift=" << shift |
| 923 | << " , f(right)=" << secularEq(0, col0, diag, perm, diagShifted, shift) |
| 924 | << " == " << secularEq(right, col0, diag, perm, diag, 0) << " == " << fRight << "\n"; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 925 | } |
| 926 | #endif |
| 927 | eigen_internal_assert(fLeft * fRight < Literal(0)); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 928 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 929 | if(fLeft<Literal(0)) |
| 930 | { |
| 931 | while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted))) |
| 932 | { |
| 933 | RealScalar midShifted = (leftShifted + rightShifted) / Literal(2); |
| 934 | fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift); |
| 935 | eigen_internal_assert((numext::isfinite)(fMid)); |
| 936 | |
| 937 | if (fLeft * fMid < Literal(0)) |
| 938 | { |
| 939 | rightShifted = midShifted; |
| 940 | } |
| 941 | else |
| 942 | { |
| 943 | leftShifted = midShifted; |
| 944 | fLeft = fMid; |
| 945 | } |
| 946 | } |
| 947 | muCur = (leftShifted + rightShifted) / Literal(2); |
| 948 | } |
| 949 | else |
| 950 | { |
| 951 | // We have a problem as shifting on the left or right give either a positive or negative value |
| 952 | // at the middle of [left,right]... |
| 953 | // Instead fo abbording or entering an infinite loop, |
| 954 | // let's just use the middle as the estimated zero-crossing: |
| 955 | muCur = (right - left) * RealScalar(0.5); |
| 956 | if(shift == right) |
| 957 | muCur = -muCur; |
| 958 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 959 | } |
| 960 | |
| 961 | singVals[k] = shift + muCur; |
| 962 | shifts[k] = shift; |
| 963 | mus[k] = muCur; |
| 964 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 965 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 966 | if(k+1<n) |
| 967 | std::cout << "found " << singVals[k] << " == " << shift << " + " << muCur << " from " << diag(k) << " .. " << diag(k+1) << "\n"; |
| 968 | #endif |
| 969 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 970 | assert(k==0 || singVals[k]>=singVals[k-1]); |
| 971 | assert(singVals[k]>=diag(k)); |
| 972 | #endif |
| 973 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 974 | // perturb singular value slightly if it equals diagonal entry to avoid division by zero later |
| 975 | // (deflation is supposed to avoid this from happening) |
| 976 | // - this does no seem to be necessary anymore - |
| 977 | // if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon(); |
| 978 | // if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon(); |
| 979 | } |
| 980 | } |
| 981 | |
| 982 | |
| 983 | // zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1) |
| 984 | template <typename MatrixType> |
| 985 | void BDCSVD<MatrixType>::perturbCol0 |
| 986 | (const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals, |
| 987 | const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat) |
| 988 | { |
| 989 | using std::sqrt; |
| 990 | Index n = col0.size(); |
| 991 | Index m = perm.size(); |
| 992 | if(m==0) |
| 993 | { |
| 994 | zhat.setZero(); |
| 995 | return; |
| 996 | } |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 997 | Index lastIdx = perm(m-1); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 998 | // The offset permits to skip deflated entries while computing zhat |
| 999 | for (Index k = 0; k < n; ++k) |
| 1000 | { |
| 1001 | if (col0(k) == Literal(0)) // deflated |
| 1002 | zhat(k) = Literal(0); |
| 1003 | else |
| 1004 | { |
| 1005 | // see equation (3.6) |
| 1006 | RealScalar dk = diag(k); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1007 | RealScalar prod = (singVals(lastIdx) + dk) * (mus(lastIdx) + (shifts(lastIdx) - dk)); |
| 1008 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 1009 | if(prod<0) { |
| 1010 | std::cout << "k = " << k << " ; z(k)=" << col0(k) << ", diag(k)=" << dk << "\n"; |
| 1011 | std::cout << "prod = " << "(" << singVals(lastIdx) << " + " << dk << ") * (" << mus(lastIdx) << " + (" << shifts(lastIdx) << " - " << dk << "))" << "\n"; |
| 1012 | std::cout << " = " << singVals(lastIdx) + dk << " * " << mus(lastIdx) + (shifts(lastIdx) - dk) << "\n"; |
| 1013 | } |
| 1014 | assert(prod>=0); |
| 1015 | #endif |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1016 | |
| 1017 | for(Index l = 0; l<m; ++l) |
| 1018 | { |
| 1019 | Index i = perm(l); |
| 1020 | if(i!=k) |
| 1021 | { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1022 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 1023 | if(i>=k && (l==0 || l-1>=m)) |
| 1024 | { |
| 1025 | std::cout << "Error in perturbCol0\n"; |
| 1026 | std::cout << " " << k << "/" << n << " " << l << "/" << m << " " << i << "/" << n << " ; " << col0(k) << " " << diag(k) << " " << "\n"; |
| 1027 | std::cout << " " <<diag(i) << "\n"; |
| 1028 | Index j = (i<k /*|| l==0*/) ? i : perm(l-1); |
| 1029 | std::cout << " " << "j=" << j << "\n"; |
| 1030 | } |
| 1031 | #endif |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1032 | Index j = i<k ? i : perm(l-1); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1033 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 1034 | if(!(dk!=Literal(0) || diag(i)!=Literal(0))) |
| 1035 | { |
| 1036 | std::cout << "k=" << k << ", i=" << i << ", l=" << l << ", perm.size()=" << perm.size() << "\n"; |
| 1037 | } |
| 1038 | assert(dk!=Literal(0) || diag(i)!=Literal(0)); |
| 1039 | #endif |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1040 | prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk))); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1041 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 1042 | assert(prod>=0); |
| 1043 | #endif |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1044 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1045 | if(i!=k && numext::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 ) |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1046 | std::cout << " " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk)) |
| 1047 | << ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n"; |
| 1048 | #endif |
| 1049 | } |
| 1050 | } |
| 1051 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1052 | std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(lastIdx) + dk) << " * " << mus(lastIdx) + shifts(lastIdx) << " - " << dk << "\n"; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1053 | #endif |
| 1054 | RealScalar tmp = sqrt(prod); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1055 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 1056 | assert((numext::isfinite)(tmp)); |
| 1057 | #endif |
| 1058 | zhat(k) = col0(k) > Literal(0) ? RealScalar(tmp) : RealScalar(-tmp); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1059 | } |
| 1060 | } |
| 1061 | } |
| 1062 | |
| 1063 | // compute singular vectors |
| 1064 | template <typename MatrixType> |
| 1065 | void BDCSVD<MatrixType>::computeSingVecs |
| 1066 | (const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals, |
| 1067 | const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V) |
| 1068 | { |
| 1069 | Index n = zhat.size(); |
| 1070 | Index m = perm.size(); |
| 1071 | |
| 1072 | for (Index k = 0; k < n; ++k) |
| 1073 | { |
| 1074 | if (zhat(k) == Literal(0)) |
| 1075 | { |
| 1076 | U.col(k) = VectorType::Unit(n+1, k); |
| 1077 | if (m_compV) V.col(k) = VectorType::Unit(n, k); |
| 1078 | } |
| 1079 | else |
| 1080 | { |
| 1081 | U.col(k).setZero(); |
| 1082 | for(Index l=0;l<m;++l) |
| 1083 | { |
| 1084 | Index i = perm(l); |
| 1085 | U(i,k) = zhat(i)/(((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k])); |
| 1086 | } |
| 1087 | U(n,k) = Literal(0); |
| 1088 | U.col(k).normalize(); |
| 1089 | |
| 1090 | if (m_compV) |
| 1091 | { |
| 1092 | V.col(k).setZero(); |
| 1093 | for(Index l=1;l<m;++l) |
| 1094 | { |
| 1095 | Index i = perm(l); |
| 1096 | V(i,k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k])); |
| 1097 | } |
| 1098 | V(0,k) = Literal(-1); |
| 1099 | V.col(k).normalize(); |
| 1100 | } |
| 1101 | } |
| 1102 | } |
| 1103 | U.col(n) = VectorType::Unit(n+1, n); |
| 1104 | } |
| 1105 | |
| 1106 | |
| 1107 | // page 12_13 |
| 1108 | // i >= 1, di almost null and zi non null. |
| 1109 | // We use a rotation to zero out zi applied to the left of M |
| 1110 | template <typename MatrixType> |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1111 | void BDCSVD<MatrixType>::deflation43(Eigen::Index firstCol, Eigen::Index shift, Eigen::Index i, Eigen::Index size) |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1112 | { |
| 1113 | using std::abs; |
| 1114 | using std::sqrt; |
| 1115 | using std::pow; |
| 1116 | Index start = firstCol + shift; |
| 1117 | RealScalar c = m_computed(start, start); |
| 1118 | RealScalar s = m_computed(start+i, start); |
| 1119 | RealScalar r = numext::hypot(c,s); |
| 1120 | if (r == Literal(0)) |
| 1121 | { |
| 1122 | m_computed(start+i, start+i) = Literal(0); |
| 1123 | return; |
| 1124 | } |
| 1125 | m_computed(start,start) = r; |
| 1126 | m_computed(start+i, start) = Literal(0); |
| 1127 | m_computed(start+i, start+i) = Literal(0); |
| 1128 | |
| 1129 | JacobiRotation<RealScalar> J(c/r,-s/r); |
| 1130 | if (m_compU) m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J); |
| 1131 | else m_naiveU.applyOnTheRight(firstCol, firstCol+i, J); |
| 1132 | }// end deflation 43 |
| 1133 | |
| 1134 | |
| 1135 | // page 13 |
| 1136 | // i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M) |
| 1137 | // We apply two rotations to have zj = 0; |
| 1138 | // TODO deflation44 is still broken and not properly tested |
| 1139 | template <typename MatrixType> |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1140 | void BDCSVD<MatrixType>::deflation44(Eigen::Index firstColu , Eigen::Index firstColm, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index i, Eigen::Index j, Eigen::Index size) |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1141 | { |
| 1142 | using std::abs; |
| 1143 | using std::sqrt; |
| 1144 | using std::conj; |
| 1145 | using std::pow; |
| 1146 | RealScalar c = m_computed(firstColm+i, firstColm); |
| 1147 | RealScalar s = m_computed(firstColm+j, firstColm); |
| 1148 | RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s)); |
| 1149 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 1150 | std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; " |
| 1151 | << m_computed(firstColm + i-1, firstColm) << " " |
| 1152 | << m_computed(firstColm + i, firstColm) << " " |
| 1153 | << m_computed(firstColm + i+1, firstColm) << " " |
| 1154 | << m_computed(firstColm + i+2, firstColm) << "\n"; |
| 1155 | std::cout << m_computed(firstColm + i-1, firstColm + i-1) << " " |
| 1156 | << m_computed(firstColm + i, firstColm+i) << " " |
| 1157 | << m_computed(firstColm + i+1, firstColm+i+1) << " " |
| 1158 | << m_computed(firstColm + i+2, firstColm+i+2) << "\n"; |
| 1159 | #endif |
| 1160 | if (r==Literal(0)) |
| 1161 | { |
| 1162 | m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j); |
| 1163 | return; |
| 1164 | } |
| 1165 | c/=r; |
| 1166 | s/=r; |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1167 | m_computed(firstColm + i, firstColm) = r; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1168 | m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i); |
| 1169 | m_computed(firstColm + j, firstColm) = Literal(0); |
| 1170 | |
| 1171 | JacobiRotation<RealScalar> J(c,-s); |
| 1172 | if (m_compU) m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J); |
| 1173 | else m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J); |
| 1174 | if (m_compV) m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J); |
| 1175 | }// end deflation 44 |
| 1176 | |
| 1177 | |
| 1178 | // acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive] |
| 1179 | template <typename MatrixType> |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1180 | void BDCSVD<MatrixType>::deflation(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index k, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift) |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1181 | { |
| 1182 | using std::sqrt; |
| 1183 | using std::abs; |
| 1184 | const Index length = lastCol + 1 - firstCol; |
| 1185 | |
| 1186 | Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1); |
| 1187 | Diagonal<MatrixXr> fulldiag(m_computed); |
| 1188 | VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length); |
| 1189 | |
| 1190 | const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); |
| 1191 | RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff(); |
| 1192 | RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero,NumTraits<RealScalar>::epsilon() * maxDiag); |
| 1193 | RealScalar epsilon_coarse = Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag); |
| 1194 | |
| 1195 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 1196 | assert(m_naiveU.allFinite()); |
| 1197 | assert(m_naiveV.allFinite()); |
| 1198 | assert(m_computed.allFinite()); |
| 1199 | #endif |
| 1200 | |
| 1201 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 1202 | std::cout << "\ndeflate:" << diag.head(k+1).transpose() << " | " << diag.segment(k+1,length-k-1).transpose() << "\n"; |
| 1203 | #endif |
| 1204 | |
| 1205 | //condition 4.1 |
| 1206 | if (diag(0) < epsilon_coarse) |
| 1207 | { |
| 1208 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 1209 | std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n"; |
| 1210 | #endif |
| 1211 | diag(0) = epsilon_coarse; |
| 1212 | } |
| 1213 | |
| 1214 | //condition 4.2 |
| 1215 | for (Index i=1;i<length;++i) |
| 1216 | if (abs(col0(i)) < epsilon_strict) |
| 1217 | { |
| 1218 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 1219 | std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict << " (diag(" << i << ")=" << diag(i) << ")\n"; |
| 1220 | #endif |
| 1221 | col0(i) = Literal(0); |
| 1222 | } |
| 1223 | |
| 1224 | //condition 4.3 |
| 1225 | for (Index i=1;i<length; i++) |
| 1226 | if (diag(i) < epsilon_coarse) |
| 1227 | { |
| 1228 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 1229 | std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) << " < " << epsilon_coarse << "\n"; |
| 1230 | #endif |
| 1231 | deflation43(firstCol, shift, i, length); |
| 1232 | } |
| 1233 | |
| 1234 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 1235 | assert(m_naiveU.allFinite()); |
| 1236 | assert(m_naiveV.allFinite()); |
| 1237 | assert(m_computed.allFinite()); |
| 1238 | #endif |
| 1239 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 1240 | std::cout << "to be sorted: " << diag.transpose() << "\n\n"; |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1241 | std::cout << " : " << col0.transpose() << "\n\n"; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1242 | #endif |
| 1243 | { |
| 1244 | // Check for total deflation |
| 1245 | // If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting |
| 1246 | bool total_deflation = (col0.tail(length-1).array()<considerZero).all(); |
| 1247 | |
| 1248 | // Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge. |
| 1249 | // First, compute the respective permutation. |
| 1250 | Index *permutation = m_workspaceI.data(); |
| 1251 | { |
| 1252 | permutation[0] = 0; |
| 1253 | Index p = 1; |
| 1254 | |
| 1255 | // Move deflated diagonal entries at the end. |
| 1256 | for(Index i=1; i<length; ++i) |
| 1257 | if(abs(diag(i))<considerZero) |
| 1258 | permutation[p++] = i; |
| 1259 | |
| 1260 | Index i=1, j=k+1; |
| 1261 | for( ; p < length; ++p) |
| 1262 | { |
| 1263 | if (i > k) permutation[p] = j++; |
| 1264 | else if (j >= length) permutation[p] = i++; |
| 1265 | else if (diag(i) < diag(j)) permutation[p] = j++; |
| 1266 | else permutation[p] = i++; |
| 1267 | } |
| 1268 | } |
| 1269 | |
| 1270 | // If we have a total deflation, then we have to insert diag(0) at the right place |
| 1271 | if(total_deflation) |
| 1272 | { |
| 1273 | for(Index i=1; i<length; ++i) |
| 1274 | { |
| 1275 | Index pi = permutation[i]; |
| 1276 | if(abs(diag(pi))<considerZero || diag(0)<diag(pi)) |
| 1277 | permutation[i-1] = permutation[i]; |
| 1278 | else |
| 1279 | { |
| 1280 | permutation[i-1] = 0; |
| 1281 | break; |
| 1282 | } |
| 1283 | } |
| 1284 | } |
| 1285 | |
| 1286 | // Current index of each col, and current column of each index |
| 1287 | Index *realInd = m_workspaceI.data()+length; |
| 1288 | Index *realCol = m_workspaceI.data()+2*length; |
| 1289 | |
| 1290 | for(int pos = 0; pos< length; pos++) |
| 1291 | { |
| 1292 | realCol[pos] = pos; |
| 1293 | realInd[pos] = pos; |
| 1294 | } |
| 1295 | |
| 1296 | for(Index i = total_deflation?0:1; i < length; i++) |
| 1297 | { |
| 1298 | const Index pi = permutation[length - (total_deflation ? i+1 : i)]; |
| 1299 | const Index J = realCol[pi]; |
| 1300 | |
| 1301 | using std::swap; |
| 1302 | // swap diagonal and first column entries: |
| 1303 | swap(diag(i), diag(J)); |
| 1304 | if(i!=0 && J!=0) swap(col0(i), col0(J)); |
| 1305 | |
| 1306 | // change columns |
| 1307 | if (m_compU) m_naiveU.col(firstCol+i).segment(firstCol, length + 1).swap(m_naiveU.col(firstCol+J).segment(firstCol, length + 1)); |
| 1308 | else m_naiveU.col(firstCol+i).segment(0, 2) .swap(m_naiveU.col(firstCol+J).segment(0, 2)); |
| 1309 | if (m_compV) m_naiveV.col(firstColW + i).segment(firstRowW, length).swap(m_naiveV.col(firstColW + J).segment(firstRowW, length)); |
| 1310 | |
| 1311 | //update real pos |
| 1312 | const Index realI = realInd[i]; |
| 1313 | realCol[realI] = J; |
| 1314 | realCol[pi] = i; |
| 1315 | realInd[J] = realI; |
| 1316 | realInd[i] = pi; |
| 1317 | } |
| 1318 | } |
| 1319 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 1320 | std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n"; |
| 1321 | std::cout << " : " << col0.transpose() << "\n\n"; |
| 1322 | #endif |
| 1323 | |
| 1324 | //condition 4.4 |
| 1325 | { |
| 1326 | Index i = length-1; |
| 1327 | while(i>0 && (abs(diag(i))<considerZero || abs(col0(i))<considerZero)) --i; |
| 1328 | for(; i>1;--i) |
| 1329 | if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag ) |
| 1330 | { |
| 1331 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1332 | std::cout << "deflation 4.4 with i = " << i << " because " << diag(i) << " - " << diag(i-1) << " == " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*/*diag(i)*/maxDiag << "\n"; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1333 | #endif |
| 1334 | eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted"); |
| 1335 | deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length); |
| 1336 | } |
| 1337 | } |
| 1338 | |
| 1339 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 1340 | for(Index j=2;j<length;++j) |
| 1341 | assert(diag(j-1)<=diag(j) || abs(diag(j))<considerZero); |
| 1342 | #endif |
| 1343 | |
| 1344 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 1345 | assert(m_naiveU.allFinite()); |
| 1346 | assert(m_naiveV.allFinite()); |
| 1347 | assert(m_computed.allFinite()); |
| 1348 | #endif |
| 1349 | }//end deflation |
| 1350 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1351 | /** \svd_module |
| 1352 | * |
| 1353 | * \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm |
| 1354 | * |
| 1355 | * \sa class BDCSVD |
| 1356 | */ |
| 1357 | template<typename Derived> |
| 1358 | BDCSVD<typename MatrixBase<Derived>::PlainObject> |
| 1359 | MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const |
| 1360 | { |
| 1361 | return BDCSVD<PlainObject>(*this, computationOptions); |
| 1362 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1363 | |
| 1364 | } // end namespace Eigen |
| 1365 | |
| 1366 | #endif |